
DA Freedman Notes on the MLE Fall 2003

The object here is to provide a sketch of the theory of the MLE. Rigorous presentations can
be found in the references cited below.

Calculus. Let f be a smooth, scalar function of thep × 1 vectorx. We viewf ′ as a 1× p

vector of partial derivatives{∂f/∂xi : i = 1, . . . , p}. Likewise,f ′′ is ap × p matrix andf ′′′ is a
3-D array of partials. As a matter of notation,f ′ is the derivative off andgT is the transpose of
g. Moreover,‖x‖ is the Euclidean norm,‖x‖2 = ∑p

i=1 x
2
i . Abbreviate

f ′′′
ijk = ∂3f

∂xi∂xj ∂xk

(1) Lemma. Let
M = max

ijk
max‖x‖≤δ |f ′′′

ijk|;

the indicesi, j , andk need not be distinct. If‖x‖ ≤ δ, then

f (x) = f (0)+ f ′(0)x + 1

2
xT f ′′(0)x + g(x)

where

|g(x)| ≤ 1

6
p3/2M‖x‖3.

Sketch of proof. We may assume thatf (0) = f ′(0) = f ′′(0) = 0. Fix x with ‖x‖ ≤ δ; let
0 ≤ u ≤ 1; viewφ(u) = f (ux)as a scalar function of the scalaru; thenφ(0) = φ′(0) = φ′′(0) = 0,
soφ(u) = u3φ′′′(v)/3! by Taylor’s theorem, with 0≤ v ≤ u. Now 0≤ u3 ≤ 1, and

φ′′′(v) =
∑
ijk

f ′′′
ijk(vx)xixj xk

so

|φ(u)| ≤ 1

6
M

∑
ijk

|xi |||xj ||xk| = 1

6
M

( ∑
i

|xi |
)3 ≤ 1

6
Mp3/2‖x‖3

by the inequality of Cauchy-Schwarz.

Let g be a smooth 1× p function ofx. We viewg′ asp × p; and

g(x + δ) = g(x)+ δT g′(x)+O(‖δ‖2) asδ → 0.
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(2) Lemma. Leth = fg, wheref is scalar andg is 1× p; both functions are smooth. Thenh′ is
p × p and

h′ = fg′ + f ′T g.

Examples. Supposea is a 1× p vector of reals andf (x) = ax. Thenf ′(x) = a and
f ′′(x) = 0. SupposeA is ap × p matrix of reals, perhaps asymmetric, andg(x) = xT A. Then
g′(x) = A andg′′(x) = 0. Leth(x) = xT Ax. Thenh′(x) = xT (A + AT ), h′′(x) = (A + AT )

andh′′′(x) = 0.

Fisher information. Letfθ (x) be a density, bounded, positive, vanishing rapidly as|x| → ∞.
There are problems at boundary points; we takeθ andx to be Euclidean;θ, x → fθ (x) is assumed
smooth. Now

∫
fθ (x) dx = 1, so

(3)
∫

∂

∂θ
fθ (x) dx =

∫
∂2

∂θ2fθ (x) dx = 0.

TheFisher Information Matrix is

I (θ) = −
∫ ( ∂2

∂θ2 logfθ (x)
)
fθ (x) dx.

(4) Lemma.

I (θ) =
∫ ( ∂

∂θ
logfθ (x)

)T ( ∂

∂θ
logfθ (x)

)
fθ (x) dx

=
∫ ( ∂

∂θ
fθ (x)

)T ( ∂

∂θ
fθ (x)

) 1

fθ (x)
dx.

Proof. To begin with,

(5)
∂

∂θ
logfθ (x) = 1

fθ (x)

∂

∂θ
fθ (x).

Then by (2),

∂2

∂θ2 logfθ (x) = 1

fθ (x)

∂2

∂θ2fθ (x)− 1

fθ (x)2

( ∂

∂θ
fθ (x)

)T ( ∂

∂θ
fθ (x)

)
;

and (3) completes the proof.

The statistical model. Let Xi be measurable functions on(�,F ) for i = 1, . . . , n, with
values inRq . Forθ ∈ Rp, letPθ be a probability on(�, �). With respect to the probabilityPθ , let
Xi be independent random variables, having common probability densityfθ onRq . In particular,

I (θ) = −Eθ
{ ∂2

∂θ2 logfθ (Xi)
}
.
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We assumeI (θ) is invertible. By (3) and (4),

(6) Eθ
{ ∂

∂θ
logfθ (Xi)

}
= 0, varθ

{ ∂

∂θ
logfθ (Xi)

}
= I (θ).

Thelog likelihood function is

L(θ) =
n∑
i=1

logfθ (Xi).

TheXi are often viewed as fixed, the variable isθ . Write θ0 for the (unknown) true value ofθ . The
first derivative of the log likelihood function is

L′(θ) =
n∑
i=1

∂

∂θ
logfθ (Xi).

Of course,L′(θ) is random, because it depends on theXi ; this is suppressed in the notation. By
(6),

(7) Eθ {L′(θ)} = 0, varθ {L′(θ)} = nI (θ).

The MLE θ̂ , by definition, maximizes the likelihood function. (Technically, there may be
multiple maxima, but see below; with weaker conditions, there may be no maximum, but the theory
can still be pushed through.) The main result to be discussed here says that asymptotically, the
MLE is normal, with meanθ0 and varianceI (θ0)

−1/n. Asymptotic optimality is another idea, see
the references below.

(8) Theorem. Asn → ∞, thePθ0-distribution of
√
n(θ̂ − θ0) converges to normal, with mean 0

and varianceI (θ0)
−1.

Sketch of proof. By entropy considerations, for largen, the MLE will almost surely be within a
small neighborhood of the true parameter valueθ0. Indeed, iff andg are densities, then

∫
f logg <∫

f logf unlessg = f . SoL(θ) is much smaller thanL(θ0) unless|θ − θ0| ≤ δ. Then the log
likelihood function can be expanded in a Taylor series aroundθ0:

L(θ) = L(θ0)+ L′(θ0)(θ − θ0)+ 1

2
(θ − θ0)

T L′′(θ0)(θ − θ0)+ R.

The lead termL(θ0) is random; but since this term does not depend onθ , its behavior is immaterial.
The first derivativeL′(θ0) is asymptotically normal with mean 0 and variancenI (θ0) by the central
limit theorem and (7). By the strong law,L′′(θ0) ≈ −nI (θ0). The remainder termR has

|R| = O(n‖θ − θ0‖3)
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by (1), and is negligible relative to the quadratic term. Thus, the MLEθ̂ essentially maximizes

θ → L′(θ0)(θ − θ0)+ 1

2
(θ − θ0)

T L′′(θ0)(θ − θ0).

So
θ̂ − θ0 ≈ −L′′(θ0)

−1L′(θ0)
T

and is asymptotically N(0,I (θ0)
−1/n), as required.

The maximum can be found by setting the derivative to 0. The “likelihood equation"L′(θ̂) = 0
(almost) boils down to

L′(θ0)+ (θ − θ0)
T L′′(θ0) = 0.

The “observed information"L′′(θ̂)/n can be used to approximate Fisher information. There is
similar theory for integer-valued random variables, for random variables with fairly general range
spaces, for# a half-space, an open subset ofRp, etc., etc.

Testing. Let #0 be ap0-dimensional subset ofRp. We wish to test the null hypothesis
that θ0 ∈ #0. Let θ̂0 be the MLE, where the maximization is restricted to#0. For a simple
hypothesis, Wald’st-test compares the MLE to its SE and there is a version like Hotelling’sT 2

for composite hypotheses. The Neyman-Pearson (or Wilks) statistic is 2[L(θ̂) − L(θ̂0)], which
has under the null hypothesis an asymptoticχ2

p−p0
distribution. Rao’s score test uses the statistic

L′(θ̂0)I (θ̂0)
−1L′(θ̂0)

T /n; again the asymptotic distribution isχ2
p−p0

. At interior points, these test
statistics are asymptotically equivalent; at boundary points, Wald’s test and the Neyman-Pearson
statistic get into trouble, while the score test often does fine. The leading special case for the
null distribution of these tests hasn = 1, X ∼ N(θ0, I ), so I (θ0) is the identity matrix, and
#0 = {θ : θp0+1 = · · · = θp = 0}. The general case follows by change of variables and rotation.

Examples. Suppose theUi are IID N(α,1), theVi are IID N(β,1), theU ’s andV ’s are
independent. LetXi = (Ui, Vi) andθ = (α, β). Now

2L(θ) = n log
1

2π
−

n∑
i=1

(Ui − Ū )2 −
n∑
i=1

(Vi − V̄ )2 − n(Ū − α)2 − n(V̄ − β)2.

The MLE is the sample mean. For testing the null hypothesis thatβ = 0, the Neyman-Pearson
statistic and the Rao score statistic are bothnV̄ 2. If you restrictβ to be non-negative,̂β is 0 when
V̄ < 0; the Neyman-Pearson statisticnβ̂2 is notχ2-like: the score statistic is stillnV̄ 2, whose null
distribution isχ2

1 .

Exercises. Suppose theXi are IID Poisson, with meanλ. Write downL, L′, L′′, I . Find the
MLE for λ. If λ1 > 0, write down the Neyman-Pearson statistic and the score statistic for testing
the null hypothesis thatλ = λ1. Verify the asymptotic distributions under the null. Which test is
more powerful forλ > λ1? Forλ < λ1?
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Suppose theXi are independent N(θi,1) for i = 1, . . . , p; theθi are unrestricted real numbers.
Find the MLE forθ . Find the Neyman-Pearson and Rao tests for the null hypothesis that

θi = 0 for i = p0 + 1, . . . , p

Let M be a non-randomn × p matrix of full rank; supposeY = Mθ + ε, where theεi are
IID N(0, σ 2). Write downL, L′, L′′, I . Find the MLE forθ andσ 2. Write down the Neyman-
Pearson statistic and the score statistic for testing the null hypothesis thatθ1 = 0. Derive the normal
equations by differentiatingθ → ‖Y −Mθ‖2 with respect toθ .

Let1 be the standard normal distribution function, with1′ = φ being the density. According
to the probit model, givenX1, . . . , Xn, the variablesY1, . . . , Yn are independent 0–1 variables, each
being 1 with probability1(Xiβ). Forx > 0, show that 1−1(x) < φ(x)/x. Conclude that1 and
1 − 1 are log concave. Conclude further that the log likelihood function for the probit model is
concave. Hint: show first 1−1(x) <

∫ ∞
x
(z/x)φ(z) dz.
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Notation

I = I (θ)

3 = L

V = L′(θ)T /
√
n

D =
√
n(θ̂ − θ0).

The subscript 0 means, substituteθ0 for θ .

The superscript * means, substituteθ∗ for θ , the former being the MLE over a restricted subset
of parameter space; Rao’s parameterθ is q-dimensional, and his restricted parameter space is
s-dimensional.
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Theχ2 and likelihood ratio tests are discussed on pp.477ff.
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The information inequality (aka the Cram`er-Rao inequality) is discussed on pp.115ff, and the theory
of the MLE is developed in Chapter 6. For exponential families, the calculus is much more tractable;
see pp.119, 417, 438.
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