An example to illustrate the asymptotics of IVLS
DA Freedman

Let $\left(Z_{i}, X_{i}, \delta_{i}\right)$ be IID triplets for $i=1, \ldots, n$; each random variable has a fourth moment, $E\left(\delta_{i}\right)=0$, and $E\left(\delta_{i}^{2}\right)=\sigma^{2}>0$. We assume $Z_{i} \Perp \delta_{i}$. Let $a=E\left(X_{i} Z_{i}\right)>0$ and $b=E\left(X_{i} \delta_{i}\right)$. To simplify the notation, take $E\left(Z_{i}^{2}\right)=1$. Let

$$
Y_{i}=\beta X_{i}+\delta_{i}
$$

Here, a, b, β, σ^{2} are parameters. We wish to estimate β. In this model, X_{i} is endogeneous if $b>0$. On the other hand, we can instrument X_{i} by Z_{i}, because $Z_{i} \Perp \delta_{i}$ and $a>0$.

The object here is to show that the IVLS estimator differs from β by a random error of order $1 / \sqrt{n}$, with asymptotic bias of order $1 / n$. Based on a sample of size n, the IVLS estimator is

$$
\begin{equation*}
\hat{\beta}_{n}=\left(\sum_{i=1}^{n} Z_{i} Y_{i}\right) /\left(\sum_{i=1}^{n} Z_{i} X_{i}\right)=\beta+\eta_{n} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta_{n}=N_{n} / D_{n}, \quad N_{n}=\sum_{i=1}^{n} Z_{i} \delta_{i}, \quad D_{n}=\sum_{i=1}^{n} Z_{i} X_{i} \tag{2}
\end{equation*}
$$

Let

$$
\begin{equation*}
\zeta_{n}=N_{n} / \sqrt{n} \tag{3}
\end{equation*}
$$

By the central limit theorem, $\zeta_{n} \rightarrow N\left(0, \sigma^{2}\right)$: the $Z_{i} \delta_{i}$ are IID with mean 0 , and the variance is σ^{2} because $E\left(Z_{i}^{2} \delta_{i}^{2}\right)=E\left(Z_{i}^{2}\right) E\left(\delta_{i}^{2}\right)=1$. Next, $E\left(Z_{i} X_{i}\right)=a$. So $D_{n}=n a\left(1+\xi_{n}\right)$, where

$$
\begin{equation*}
\xi_{n}=\frac{1}{n} \sum_{i=1}^{n}\left(a^{-1} Z_{i} X_{i}-1\right) \tag{4}
\end{equation*}
$$

is of order $1 / \sqrt{n}$ by the central limit theorem. Thus

$$
\begin{equation*}
\hat{\beta}_{n}-\beta=\eta_{n}=\frac{\sqrt{n}}{n a} \frac{\zeta_{n}}{1+\xi_{n}} \tag{5}
\end{equation*}
$$

and-the next being a little informal-

$$
\begin{equation*}
\eta_{n} \doteq \frac{\zeta_{n}-\zeta_{n} \xi_{n}}{a \sqrt{n}} \tag{6}
\end{equation*}
$$

The step from (5) to (6) is "the delta-method," i.e., a one-term Taylor expansion of $1 /\left(1+\xi_{n}\right)$. A more rigorous argument will be given, below. We conclude that $\hat{\beta}_{n}-\beta$ is asymptotically normal, with mean 0 and an SE of $1 /(a \sqrt{n})$. However, there is asymptotic bias of order $1 / n$, because

$$
\begin{aligned}
a^{-1} n^{-1 / 2} E\left\{\zeta_{n} \xi_{n}\right\} & =a^{-1} n^{-1 / 2} E\left\{\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(Z_{i} \delta_{i}\right) \frac{1}{n} \sum_{i=1}^{n}\left(a^{-1} Z_{i} X_{i}-1\right)\right\} \\
& =a^{-1} n^{-2} E\left\{\sum_{i=1}^{n}\left(Z_{i} \delta_{i}\right) \sum_{i=1}^{n}\left(a^{-1} Z_{i} X_{i}-1\right)\right\} \\
& =a^{-2} n^{-2} E\left\{\sum_{i=1}^{n} Z_{i}^{2} X_{i} \delta_{i}\right\} \\
& =a^{-2} n^{-1} E\left\{Z_{i}^{2} X_{i} \delta_{i}\right\}
\end{aligned}
$$

For the third equality, expand the product of the two sums as a double sum

$$
\sum_{i j}\left(Z_{i} \delta_{i}\right)\left(a^{-1} Z_{j} X_{j}-1\right)
$$

When $i \neq j$, factors are independent, and products have expectation zero because $E\left(Z_{i} \delta_{i}\right)=$ $E\left(Z_{i}\right) E\left(\delta_{i}\right)=0$. Similarly, $E\left(Z_{i} \delta_{i}\right)=0$ when $i=j$. The only terms with (possibly) non-zero expectation are $a^{-1} Z_{i}^{2} X_{i} \delta_{i}$.

We continue with previous assumptions and notation, but give a formal theorem and proof.
ThEOREM. $\hat{\beta}_{n}-\beta=\zeta_{n} /(a \sqrt{n})-\Delta_{n} /(a n)$, where ζ_{n} converges in distribution to $N\left(0, \sigma^{2}\right)$, and Δ_{n} converges in distribution to a random variable with expectation k / a, where $k=E\left(Z_{i}^{2} X_{i} \delta_{i}\right)$ may be positive, negative, or zero.

Proof. Keep in mind that ζ_{n} and $\sqrt{n} \xi_{n}$ are asymptotically normal, with expectation 0 : the notation is therefore a little misleading. Start the argument from (5) above: $1 /(1+x)=1-1 /(1+x)$ unless $x=-1$, so

$$
a \sqrt{n}\left(\hat{\beta}_{n}-\beta\right)=\frac{\zeta_{n}}{1+\xi_{n}}=\zeta_{n}-\frac{\zeta_{n} \xi_{n}}{1+\xi_{n}}=\zeta_{n}-\frac{\Delta_{n}}{\sqrt{n}}
$$

where

$$
\begin{equation*}
\Delta_{n}=\frac{\zeta_{n} \sqrt{n} \xi_{n}}{1+\xi_{n}} \tag{7}
\end{equation*}
$$

The pairs

$$
Z_{i} \delta_{i}, a^{-1} Z_{i} X_{i}-1
$$

are IID, with expectation 0 and covariance matrix

$$
K=\left(\begin{array}{cc}
\sigma^{2} & k / a \tag{8}\\
k / a & a^{-2} E\left(Z_{i}^{2} X_{i}^{2}\right)-1
\end{array}\right)
$$

The central limit theorem shows that $\left(\zeta_{n}, \sqrt{n} \xi_{n}\right)$ converges in distribution to bivariate normal, with expectation 0 and covariance matrix K. In the denominator of (7), $\xi_{n} \rightarrow 0$, so Δ_{n} has the same limiting behavior as $\zeta_{n} \sqrt{n} \xi_{n}$. QED

Remarks

(i) If $E\left(Z_{i} X_{i}\right)<0$, replace Z_{i} by $-Z_{i}$ or a by $|a|$; if $E\left(Z_{i} X_{i}\right) \neq 0$, then $E\left(Z_{i}^{2}\right)>0$ and $E\left(X_{i}^{2}\right)>0$.
(ii) The source of the bias in IVLS is randomness in ξ_{n}, coupled with the correlation between ξ_{n} and ζ_{n}-that is, randomness in $\sum Z_{i} X_{i}$, coupled with the correlation between $\sum Z_{i} X_{i}$ and $\sum Z_{i} \delta_{i}$. When n is large, $\xi_{n} \doteq 0$-the law of large numbers-and the bias is negligible. The correlation traces back to the endogeneity of X_{i}, i.e., the correlation between X_{i} and δ_{i}. If, e.g., $\left(X_{i}, Z_{i}\right) \Perp \delta_{i}$, it is straightforward to show that $E\left(\hat{\beta}_{n} \mid X, Z\right)=\beta$. Then $k=0$ in (8).
(iii) Equations (1-2) and the strong law of large numbers show that $\hat{\beta}_{n} \rightarrow \beta$ almost surely.
(iv) What about estimating σ^{2} ? In our setup, if $e=Y-X \hat{\beta}_{n}$ is the vector of residuals, then $e_{i}-\epsilon_{i}=X_{i}\left(\hat{\beta}_{n}-\beta\right)$ so $\|e-\epsilon\|^{2}=\sum_{i} X_{i}^{2}\left(\hat{\beta}_{n}-\beta\right)^{2}$ and $\|e-\epsilon\|^{2} / n \rightarrow 0$ almost surely.
(v) The usual presentation of IVLS conditions on Z. Then $\hat{\beta}_{\mathrm{IVLS}}-\beta=\sum_{1}^{n} Z_{i} \delta_{i} / \sum_{1}^{n} Z_{i} X_{i}$; conditionally, the numerator is essentially normal with mean 0 and variance $\sum_{1}^{n} Z_{i}^{2} \doteq n E\left(Z_{i}^{2}\right)$. The denominator is essentially $\sum_{1}^{n} Z_{i} E\left(X_{i} \mid Z_{i}\right) \doteq n E\left[Z_{i} E\left(X_{i} \mid Z_{i}\right)\right]=n E\left(Z_{i} X_{i}\right)=n a$. With some more effort, the theorem can be extended to describe the limiting conditional behavior of $\left(\xi_{n}, \sqrt{n} \zeta_{n}\right)$, given Z_{1}, \ldots, Z_{n}. In a little more detail, let $\phi\left(Z_{i}\right)=a^{-1} Z_{i} E\left(X_{i} \mid Z_{i}\right)-1$, so $E\left(\sqrt{n} \zeta_{n} \mid Z_{1}, \ldots, Z_{n}\right)=n^{-1 / 2} \sum_{1}^{n} \phi\left(Z_{i}\right)$. The $\phi\left(Z_{i}\right)$ are IID, and $E\left(\phi\left(Z_{i}\right)\right)=a^{-1} E\left(Z_{i} X_{i}\right)-1=$ 0 by the definition of a. Moreover, $0 \leq \operatorname{var}\left(\phi\left(Z_{i}\right)\right)<\infty$. If the variance is positive, the central limit theorem applies and $E\left(\sqrt{n} \zeta_{n} \mid Z_{1}, \ldots, Z_{n}\right)$ converges in distribution. In any event, we can center, considering the conditional joint distribution of

$$
\xi_{n}, \sqrt{n}\left(\zeta_{n}-E\left(\zeta_{n} \mid Z_{1}, \ldots, Z_{n}\right)\right)
$$

given Z_{1}, \ldots, Z_{n}. Apparently, this conditional distribution converges weak-star, along almost all sample sequences of Z_{1}, Z_{2}, \ldots. For example, ξ_{n} is $n^{-1 / 2} \sum_{1}^{n} Z_{i} \delta_{i}$, where the δ_{i} are IID with mean 0 , and-conditionally-the Z_{i} are (almost surely) a well-behaved sequence of constants:

$$
\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{2} \rightarrow 1, \quad \frac{1}{n} \sum_{i}\left\{Z_{i}^{2}: 1 \leq i \leq n \&\left|Z_{i}\right|>L\right\} \rightarrow 0 \text { as } n \rightarrow \infty \text { and then } L \rightarrow \infty
$$

As in many other such situations, when n is large, there would seem to be little difference between conditional and unconditional inference.
(vi) Suppose ($Z_{i}, \delta_{i}, \epsilon_{i}$) are independent, with expectation 0 , variance 1 , and fourth moments. We can set $X_{i}=a Z_{i}+b \delta_{i}+c \epsilon_{i}$. Then $\operatorname{cov}\left(Z_{i}, X_{i}\right)=a$, because $E\left(Z_{i}^{2}\right)=1$; and $\operatorname{cov}\left(X_{i}, \delta_{i}\right)=b$, because $E\left(\delta_{i}^{2}\right)=1$. The k in the theorem is $k=E\left(Z_{i}^{2} X_{i} \delta_{i}\right)=b$, because

$$
Z_{i}^{2} X_{i} \delta_{i}=a Z_{i}^{3} \delta_{i}+b Z_{i}^{2} \delta_{i}^{2}+c Z_{i}^{2} \epsilon_{i},
$$

while $E\left(Z_{i}^{3} \delta_{i}\right)=E\left(Z_{i}^{3}\right) E\left(\delta_{i}\right)=0, E\left(Z_{i}^{2} \delta_{i}^{2}\right)=E\left(Z_{i}^{2}\right) E\left(\delta_{i}^{2}\right)=1, E\left(Z_{i}^{2} \epsilon_{i}\right)=E\left(Z_{i}^{2}\right) E\left(\epsilon_{i}\right)=0$.
(vii) With, say, two instruments and one endogenous variable, the proof of consistency and asymptotic normality is about the same. However, evaluating the small-sample bias is trickier. For instance, expansions like (6) can be done in the matrix domain.

