Hierarchical Linear Regression

The following hierarchical linear model was the basis for smoothing in the proposed 1990 census adjustment (Freedman et al, 1993):

$$
\begin{align*}
& Y=\gamma+\delta \tag{1a}\\
& \gamma=X \beta+\epsilon . \tag{1b}
\end{align*}
$$

Here, X may be viewed as a fixed $n \times p$ matrix; δ and ϵ are assumed to be independent $n \times 1$ vectors; the means are $0 ; \operatorname{cov}(\delta)=K$ is a given positive definite matrix; $\operatorname{cov}(\epsilon)=\sigma^{2} I$, where σ^{2} is given, being positive and finite; I is the $n \times n$ identity matrix. In the census context, Y would be the vector of "raw" adjustment factors and γ the "true" adjustment factors, with one component of the vector for each post stratum in a region. Theorem (3) below would not apply: σ^{2} and K have to be estimated from the data, X is chosen by a data-based algorithm, etc. For more discussion of the model in the census context, see Freedman et al (1993).

Goldberger (1962) proposed the estimator $\hat{\gamma}$ for γ. His construction involves an auxiliary matrix Γ; to define the latter, let H be the OLS projection matrix, that is, $H=X\left(X^{\prime} X\right)^{-1} X^{\prime}$. Now

$$
\begin{align*}
\Gamma^{-1} & =K^{-1}+\sigma^{-2}(I-H) \tag{2a}\\
\hat{\gamma} & =\Gamma K^{-1} Y . \tag{2b}
\end{align*}
$$

The estimator $\hat{\gamma}$ can be motivated in the normal case as Bayes with a diffuse prior on β; then Γ is the posterior covariance of γ given Y; see Lindley and Smith (JRSS, 1972). Being positive definite, $K^{-1}+\sigma^{-2}(I-H)$ is invertible. Hence, Γ is well-defined and positive definite. Moreover, Γ is symmetric because K and H are symmetric.

Notes. Being a covariance matrix, K is symmetric; so is Γ; but ΓK^{-1} is asymmetric. The estimator $\hat{\gamma}$ can also be represented as a generalized average of Y and gls; see (28). If U, V are $n \times 1$ and $m \times 1$, respectively, and $\mathrm{E}(U)=\mathrm{E}(V)=0$, then $\operatorname{cov}(U, V)$ is defined as $\mathrm{E}\left(U V^{\prime}\right)$.
(3) Theorem (Goldberger).
(a) $\mathrm{E}(\hat{\gamma}-\gamma)=0$
(b) $\operatorname{cov}(\hat{\gamma}-\gamma)=\Gamma$
(c) $\hat{\gamma}$ is the minimum-variance unbiased linear estimator of γ.

The object here is to prove (3). Claim (c) can be translated as follows. If M is an $n \times n$ matrix and $\mathrm{E}(M Y-\gamma)=0$, then $\operatorname{cov}(M Y-\gamma)-\Gamma$ is non-negative definite, vanishing only if $M=\Gamma K^{-1}$.

Warning. $\operatorname{cov}(\hat{\gamma}) \neq \Gamma$ for the objectivist, because γ is random.
(4) Lemma. $\Gamma K^{-1} X=X$ so $\Gamma K^{-1} H=H$.

Proof. Let x be in the column space of X. Then

$$
\Gamma^{-1} x=K^{-1} x
$$

indeed, by (2a) the difference is $\sigma^{-2}(I-H) x=0$. Pre-multiply the display by Γ. QED
Claim (a) in the theorem is immediate: $\mathrm{E}(\gamma)=X \beta=\mathrm{E}(\hat{\gamma})$, the last equality holding by (4).
(5) Lemma. If M is an $n \times n$ matrix and $\mathrm{E}(M Y-\gamma)=0$, then $M X=X$ and $M H=H$.

Proof. Clearly, $(M X-X) \beta=0$ for all β. QED
(6) Lemma. If M is an $n \times n$ matrix and $M X=X$, then

$$
\operatorname{cov}(M Y-\gamma)=M K M^{\prime}+\sigma^{2}(M-I)\left(M^{\prime}-I\right)
$$

Proof. Clearly,

$$
\begin{equation*}
M Y-\gamma=M \delta+(M-I) \epsilon \tag{7}
\end{equation*}
$$

because $M X=X$. Now use the assumptions on δ and ϵ. QED
Use (7) with $M=\Gamma K^{-1}$ to see

$$
\begin{equation*}
\hat{\gamma}-\gamma=\Gamma K^{-1} \delta+\left(\Gamma K^{-1}-I\right) \epsilon \tag{8}
\end{equation*}
$$

Claim (3b) follows from (6) applied to $M=\Gamma K^{-1}$ and the identity

$$
\begin{equation*}
\Gamma K^{-1} \Gamma+\sigma^{2}\left(\Gamma K^{-1}-I\right)\left(K^{-1} \Gamma-I\right)=\Gamma . \tag{9}
\end{equation*}
$$

To prove (9), multiply from the right by Γ^{-1}; use definition (2a) to evaluate $K^{-1}-\Gamma^{-1}$ and (4) to simplify the results.

For claim (3c), let $\zeta=M Y-\hat{\gamma}$, so that

$$
\begin{equation*}
M Y-\gamma=(\hat{\gamma}-\gamma)+\zeta \tag{10}
\end{equation*}
$$

It suffices to show that $M X=X$ implies

$$
\begin{equation*}
\operatorname{cov}(\zeta, \hat{\gamma}-\gamma)=0 \tag{11}
\end{equation*}
$$

because then $\operatorname{cov}(M Y-\gamma)=\operatorname{cov}(\hat{\gamma}-\gamma)+\operatorname{cov}(\zeta)$. Clearly,

$$
\begin{equation*}
\zeta=\left(M-\Gamma K^{-1}\right)(\delta+\epsilon) . \tag{12}
\end{equation*}
$$

By (8) and (12),

$$
\begin{equation*}
\operatorname{cov}(\zeta, \hat{\gamma}-\gamma)=\mathrm{E}\left\{\zeta(\hat{\gamma}-\gamma)^{\prime}\right\}=\left(M-\Gamma K^{-1}\right) \Gamma+\left(M-\Gamma K^{-1}\right)\left(K^{-1} \Gamma-I\right) \sigma^{2} \tag{13}
\end{equation*}
$$

The right side of (13) is

$$
\begin{equation*}
\left(M-\Gamma K^{-1}\right)\left[\Gamma+\sigma^{2}\left(K^{-1} \Gamma-I\right)\right] \tag{14}
\end{equation*}
$$

By the definition (2a) of Γ,

$$
\left[K^{-1}+\sigma^{-2}(I-H)\right] \Gamma=I
$$

so

$$
K^{-1} \Gamma=I-\sigma^{-2}(I-H) \Gamma
$$

and

$$
\begin{equation*}
\sigma^{2}\left(K^{-1} \Gamma-I\right)=-(I-H) \Gamma . \tag{15}
\end{equation*}
$$

The identity (15) can be used to evaluate the expression (14) as

$$
\left(M-\Gamma K^{-1}\right)(\Gamma-\Gamma+H \Gamma)=\left[\left(M-\Gamma K^{-1}\right) H\right] \Gamma=0
$$

by (4) and (5). This proves (11), hence, (3). QED
Notes. (i) The proof of (9) could be rearranged slightly to use (15).
(ii) For uniqueness, $\operatorname{cov}(\zeta)=0$ means that $M Y=\hat{\gamma}$ almost surely, and then $M=\Gamma K^{-1}$ rather easily.

Discussion

Goldberger's estimate is in the shrinkage-empirical Bayes style; Y is shrunk toward the column space C of X. This works fine if C is low-dimensional and γ is almost in there, i.e., σ^{2} is small. The amount of shrinking and the directions are controlled by σ^{2} and K. If you get these wrong, or some of the modeling assumptions break down, shrinking can actually make the errors bigger rather than smaller. Also, the benefits of shrinking-as gauged by Γ-depend rather critically on the assumptions about the error terms δ and ϵ. To sum up: If the model is wrong, the benefits of shrinking can be over-stated, and shrinking can be counter-productive. For some empirical evidence, see (Freedman and Navidi, 1986) or (Freedman et al, 1993).

Conditional Normal Distributions

Let U and V be jointly normal vectors, $n \times 1$ and $m \times 1$, respectively; both have mean 0 . Suppose V is of full rank. By definition, $\operatorname{cov}(U, V)=\mathrm{E}\left(U V^{\prime}\right)$ and $\operatorname{cov}(V)=\operatorname{cov}(V, V)$. Let $M=\operatorname{cov}(U, V) \operatorname{cov}(V)^{-1}$; this is an $n \times m$ matrix, well-defined because V has full rank.
(16) Proposition.
(a) $\mathrm{E}\{U \mid V\}=M V$.
(b) $\operatorname{cov}\{U \mid V\}=\operatorname{cov}(U)-\operatorname{cov}(U, V) \operatorname{cov}(V)^{-1} \operatorname{cov}(V, U)$.
(c) The conditional distribution of U is normal.

Proof. Let $\zeta=U-M V$. Clearly, U, V, and ζ are jointly normal with mean 0 ; furthermore, $\operatorname{cov}(\zeta, V)=0$ and $\operatorname{cov}(\zeta)$ is given by the right hand side of (b). Thus, ζ and V are independent; given $V=v, U$ is distributed as $M v+\zeta$. QED

Notes. (i) It is normality that converts $\operatorname{cov}(\zeta, V)=0$ to independence. To argue the independence, you need to write down the density and factor it.
(ii) The right hand side in (b) is "total variance - explained variance."
(17) Lemma. Let A and B be $n \times n$ matrices; suppose $A+B$ is invertible.
(a) $A(A+B)^{-1}=I_{n}-B(A+B)^{-1}$.
(b) $(A+B)^{-1} A=I_{n}-(A+B)^{-1} B$.
(c) $A(A+B)^{-1} B=B(A+B)^{-1} A$.
(d) Suppose A is invertible and $A^{-1} B=B A^{-1}$. Then

$$
A(A+B)^{-1}=(A+B)^{-1} A .
$$

Proof. For claim (a), $I_{n}=(A+B)(A+B)^{-1}=A(A+B)^{-1}+B(A+B)^{-1}$, and (b) is the same. For (c), use (a) and (b):

$$
\begin{aligned}
A(A+B)^{-1} B & =A\left[(A+B)^{-1} B\right] \\
& =A\left[I_{n}-(A+B)^{-1} A\right] \\
& =A-A(A+B)^{-1} A \\
& =\left[I_{n}-A(A+B)^{-1}\right] A \\
& =B(A+B)^{-1} A .
\end{aligned}
$$

For (d),

$$
A(A+B)^{-1}=\left(I_{n}+\frac{B}{A}\right)^{-1}=(A+B)^{-1} A . \quad \text { QED }
$$

(18) Proposition. Let ζ and η be independent mean 0 normal $n \times 1$ vectors with respective covariance matrices C and D. Then
(a) $\mathrm{E}\{\zeta \mid \zeta+\eta\}=C(C+D)^{-1}(\zeta+\eta)$
(b) $\operatorname{cov}\{\zeta \mid \zeta+\eta\}=C(C+D)^{-1} D$.

Proof. This follows from (16). Indeed, $\operatorname{cov}(\zeta, \zeta+\eta)=\operatorname{cov}(\zeta)$ so $M=C(C+D)^{-1}$. And $\operatorname{cov}\{\zeta \mid \zeta+\eta\}$ is given by (17b) as

$$
C-C(C+D)^{-1} C=C\left(I_{n}-(C+D)^{-1} C\right)=C(C+D)^{-1} D . \quad \text { QED }
$$

Bayesian Least Squares

Consider the regression model

$$
\begin{equation*}
Y=X \beta+\epsilon, \quad \epsilon \sim N\left(0, \sigma^{2} I_{n}\right) \tag{19}
\end{equation*}
$$

where Y is $n \times 1, X$ is $n \times p$ of full rank, β is $p \times 1$, and ϵ is $n \times 1$. For the moment, β is unknown but σ is known. Take X to be constant (non-random). For the Bayesian, β has a prior distribution-and a posterior given the data Y.
(20) Proposition. With the OLS regression model (19), and $\beta \sim N\left(0, \tau^{2} I_{p}\right)$ independent of ϵ, the posterior distribution of β given Y is normal, with conditional mean

$$
\hat{\beta}_{\mathrm{Bayes}}=\left(I_{p}-\frac{\sigma^{2}}{\tau^{2} X^{\prime} X+\sigma^{2} I_{p}}\right) \hat{\beta}_{\mathrm{ols}}
$$

and conditional variance

$$
\operatorname{cov}\{\beta \mid Y\}=\frac{\tau^{2} \sigma^{2}}{\tau^{2} X^{\prime} X+\sigma^{2} I_{p}}
$$

Proof. Since $X^{\prime} Y$ is sufficient, it is enough to compute the conditional law of β given $X^{\prime} Y$. This can be done using (16) with $U=\beta$ and $V=X^{\prime} Y$. For the Bayesian, $\operatorname{cov}\left(X^{\prime} Y\right)=\tau^{2}\left(X^{\prime} X\right)^{2}+\sigma^{2} X^{\prime} X$ while $\operatorname{cov}\left(\beta, X^{\prime} Y\right)=\tau^{2}\left(X^{\prime} X\right)$. So

$$
\begin{aligned}
M & =\frac{\tau^{2} X^{\prime} X}{\tau^{2}\left(X^{\prime} X\right)^{2}+\sigma^{2} X^{\prime} X} \\
& =\frac{\tau^{2} X^{\prime} X}{\tau^{2} X^{\prime} X+\sigma^{2} I_{p}}\left(X^{\prime} X\right)^{-1} \\
& =\left(I_{p}-\frac{\sigma^{2}}{\tau^{2} X^{\prime} X+\sigma^{2} I_{p}}\right)\left(X^{\prime} X\right)^{-1}
\end{aligned}
$$

and

$$
M X^{\prime} Y=\left(I_{p}-\frac{\sigma^{2}}{\tau^{2} X^{\prime} X+\sigma^{2} I_{p}}\right) \hat{\beta}_{\mathrm{ols}}
$$

The matrices commute, so the informal notation is unambiguous. The assertion about the conditional mean is now proved, and the conditional variance follows from (16b) by a straightforward calculation. QED

Notes. (i) With lots of data (and a little luck), $X^{\prime} X$ is large. Then $\hat{\beta}_{\text {Bayes }} \approx \hat{\beta}_{\text {ols }}=\hat{\beta}_{\text {mle }}$ and $\operatorname{cov}\{\beta \mid Y\} \approx \sigma^{2}\left(X^{\prime} X\right)^{-1}$, the frequentist covariance of $\hat{\beta}_{\text {mle }}$. This is a special case of the Bernstein-von Mises theorem: under suitable regularity conditions, asymptotically, the posterior distribution of $\beta-\hat{\beta}_{\mathrm{mle}}$ is close to the frequentist distribution of $\hat{\beta}_{\mathrm{mle}}-\beta_{\text {true }}$.
(ii) Suppose σ^{2} is fixed and τ^{2} is large, so the prior is "diffuse" or "uninformative" or an "ignorance prior." (An uninformative prior could be defined as Lebesgue measure on I_{p}.) Then the Bayes estimate is essentially the same as the OLS estimate.
(iii) Suppose τ^{2} is fixed and σ^{2} is large, so the data are "uninformative." Then the posterior is essentially the same as the prior. In the extreme, if $\tau^{2}=0$, you start by knowing that $\beta=0$, that is how you end up.
(iv) The proof of (20) can be based on (18) with $\zeta=X^{\prime} X \beta$ and $\eta=X^{\prime} \epsilon$.
(21) Corollary. In (19), suppose $\epsilon \sim N(0, K)$ where K is $n \times n$ positive definite and given. With this GLS model, the posterior distribution of β given Y is normal, with conditional mean

$$
\hat{\beta}_{\text {Bayes }}=\left(I_{p}-\left(\tau^{2} X^{\prime} K^{-1} X+I_{p}\right)^{-1}\right) \hat{\beta}_{\mathrm{gls}}
$$

and conditional variance

$$
\operatorname{cov}\{\beta \mid Y\}=\tau^{2}\left(\tau^{2} X^{\prime} K^{-1} X+I_{p}\right)^{-1}
$$

Proof. Multiplication from the left by $K^{-1 / 2}$ converts the GLS model to OLS, with $\sigma^{2}=1$ and design matrix $K^{-1 / 2} X$. QED

An Identity

Of course, with the GLS regression model, it is possible to compute the posterior mean directly from (16), as $\mathrm{E}(\beta \mid Y)=\tau^{2} X^{\prime}\left(\tau^{2} X X^{\prime}+K\right)^{-1}$. Thus we have an indirect proof of the well-known identity

$$
\begin{equation*}
X^{\prime}\left(\tau^{2} X X^{\prime}+K\right)^{-1}=\left(\tau^{2} X^{\prime} K^{-1} X+I_{p}\right)^{-1} X^{\prime} K^{-1} \tag{22}
\end{equation*}
$$

This can be proved directly: multiply from the left by

$$
\tau^{2} X^{\prime} K^{-1} X+I_{p}
$$

and from the right by $\tau^{2} X X^{\prime}+K$; then clean up.
Note. $\quad X X^{\prime}$ is singular, so the behavior of $\left(\tau^{2} X X^{\prime}+K\right)^{-1}$ on the left in (22) for large τ^{2} is problematic. On the right, $X^{\prime} K^{-1} X$ is invertible.

Bayes and Goldberger

Consider the model (1) from a Bayesian perspective: we assume K and σ^{2} are known, and put a prior on the "hyper-parameters" β, namely, $\beta \sim N\left(0, \tau^{2} I_{p}\right)$, independent of δ and ϵ.
(23) Theorem. Consider the model (1) with prior distribution $\beta \sim N\left(0, \tau^{2} I_{p}\right)$ independent of δ and ϵ. Let $\tau \rightarrow \infty$. The Bayes estimate for γ converges to $\hat{\gamma}$, and the posterior variance converges to Γ.

The proof is a bit involved. As before, we can use (16) to compute the posterior law of γ given Y. This is best done in three steps:

Step 1. Compute the posterior law of β given Y. We have a GLS model with covariance matrix $\Sigma=K+\sigma^{2} I_{n}$. The posterior distribution is by (16) multivariate normal with conditional mean

$$
\begin{equation*}
\hat{\beta}_{\text {Bayes }}=\left(I_{p}-\left(\tau^{2} X^{\prime} \Sigma^{-1} X+I_{p}\right)^{-1}\right) \hat{\beta}_{\mathrm{gls}} \tag{24}
\end{equation*}
$$

and conditional variance

$$
\begin{equation*}
\operatorname{cov}\{\beta \mid Y\}=\tau^{2}\left(\tau^{2} X^{\prime} \Sigma^{-1} X+I_{p}\right)^{-1} \tag{25}
\end{equation*}
$$

Step 2. Compute the conditional law of γ given β and Y; this is done below, also using (16). Call the conditional density $f(\gamma \mid \beta, y)$. Of course, f is normal.

Step 3. Integrate out β in $f(\cdot \mid \beta, y)$ from Step 2 using the posterior law of β from Step 1. This too is done below.

Step 2 can be implemented as follows: β and Y contain the same information (i.e., span the same σ-field) as β and $\delta+\epsilon$. Recall that $\gamma=X \beta+\epsilon$. Let $\Sigma=\sigma^{2} I_{p}+K$. By (18),

$$
\begin{array}{rlr}
\mathrm{E}\{\gamma \mid \beta, Y\} & =\mathrm{E}\{\gamma \mid \beta, \delta+\epsilon\} & \tag{26}\\
& =X \beta+\mathrm{E}\{\epsilon \mid \beta, \delta+\epsilon\} & \\
& =X \beta+\mathrm{E}\{\epsilon \mid \delta+\epsilon\} & \text { because } \beta \perp(\delta, \epsilon) \\
& =X \beta+\sigma^{2} \Sigma^{-1}(\delta+\epsilon) & \\
& =X \beta+\sigma^{2} \Sigma^{-1}(Y-X \beta) & \\
& =\sigma^{2} \Sigma^{-1} Y+K \Sigma^{-1} X \beta \quad \text { by (17a). }
\end{array}
$$

Likewise,

$$
\begin{equation*}
\operatorname{cov}\{\gamma \mid \beta, Y\}=\sigma^{2} \Sigma^{-1} K \tag{27}
\end{equation*}
$$

Note. Step 2 is conditional on β and results do not involve τ^{2}.
Step 3 is done by the following computation:

$$
\begin{align*}
\mathrm{E}\{\gamma \mid Y\} & =\sigma^{2} \Sigma^{-1} Y+K \Sigma^{-1} X \mathrm{E}\{\beta \mid Y\} \tag{28}\\
& =\sigma^{2} \Sigma^{-1} Y+K \Sigma^{-1} X \hat{\beta}_{\text {Bayes }} \\
& =\sigma^{2} \Sigma^{-1} Y+K \Sigma^{-1} X \hat{\beta}_{\mathrm{gls}}-\Delta \\
& =\sigma^{2} \Sigma^{-1} Y+K \Sigma^{-1} \hat{Y}_{\mathrm{gls}}-\Delta
\end{align*}
$$

where

$$
\begin{equation*}
\Delta=K \Sigma^{-1} X\left(\tau^{2} X^{\prime} \Sigma^{-1} X+I_{p}\right)^{-1} \hat{\beta}_{\mathrm{gls}} \tag{29}
\end{equation*}
$$

For τ^{2} large the term Δ is negligible, presenting $\hat{\gamma}$ as a mixture-with matrix weights-of Y and the GLS projection onto the column space of X.

Now $\operatorname{cov}(\gamma \mid Y)$ may be computed by integrating out β but holding Y fixed:

$$
\begin{equation*}
\mathrm{E}\{\operatorname{cov}(\gamma \mid \beta, Y) \mid Y\}+\operatorname{cov}\{\mathrm{E}(\gamma \mid \beta, Y) \mid Y\} \tag{30}
\end{equation*}
$$

In the first term of (30), $\operatorname{cov}(\gamma \mid \beta, Y)=\sigma^{2} K \Sigma^{-1}$ and is constant, see (27). In the second term, $\mathrm{E}(\gamma \mid \beta, Y)$ is by (26) equal to

$$
\sigma^{2} \Sigma^{-1} Y+K \Sigma^{-1} X \beta
$$

whose covariance given Y is

$$
\begin{equation*}
K \Sigma^{-1} X \operatorname{cov}\{\beta \mid Y\} X^{\prime} \Sigma^{-1} K \tag{31}
\end{equation*}
$$

But $\operatorname{cov}\{\beta \mid Y\}$ was computed in Step 1, see (25); and (31) is

$$
K \Sigma^{-1} X\left[\tau^{2}\left(\tau^{2} X^{\prime} \Sigma^{-1} X+I_{p}\right)^{-1}\right] X^{\prime} \Sigma^{-1} K \rightarrow K \Sigma^{-1} H_{\Sigma} K
$$

as $\tau^{2} \rightarrow \infty$. (By definition, $\Sigma=\sigma^{2} I_{n}+K$, and $H_{\Sigma}=X\left(X^{\prime} \Sigma^{-1} X\right)^{-1} X^{\prime} \Sigma^{-1}$ is the GLS projection matrix relative to Σ.) Thus,

$$
\begin{equation*}
\operatorname{cov}\{\gamma \mid Y\}=\sigma^{2} \Sigma^{-1} K+K \Sigma^{-1} H_{\Sigma} K \tag{32}
\end{equation*}
$$

Note: We have to use $\operatorname{cov}(\beta \mid Y)$ not $\operatorname{cov}(\beta)$ in (31).
(33) Lemma. Let $\Sigma=\sigma^{2} I_{n}+K$ and $H_{\Sigma}=X\left(X^{\prime} \Sigma^{-1} X\right)^{-1} X^{\prime} \Sigma^{-1}$.
(a) $X^{\prime} \Sigma^{-1}\left(I_{n}-H_{\Sigma}\right)=0$.
(b) $H \Sigma^{-1}\left(I_{n}-H_{\Sigma}\right)=0$.
(c) $\left(I_{n}-H\right) H_{\Sigma}=0$.
(d) $\Gamma K^{-1}=H_{\Sigma}+\sigma^{2} \Sigma^{-1}\left(I_{n}-H_{\Sigma}\right)$.
(e) $\Gamma K^{-1}=\sigma^{2} \Sigma^{-1}+K \Sigma^{-1} H_{\Sigma}$.
(f) $\Gamma=\sigma^{2} \Sigma^{-1} K+K \Sigma^{-1} H_{\Sigma} K$.

Proof. Claim (a) is easy and (b) follows on multiplying from the left by $X\left(X^{\prime} X\right)^{-1}$. Claim (c) is easy. For (d), by (2a),

$$
\begin{equation*}
K \Gamma^{-1}=I_{n}+\sigma^{-2} K\left(I_{n}-H\right) . \tag{34}
\end{equation*}
$$

We have to prove

$$
\begin{equation*}
\left[I_{n}+\sigma^{-2} K\left(I_{n}-H\right)\right]\left[H_{\Sigma}+\sigma^{2} \Sigma^{-1}\left(I_{n}-H_{\Sigma}\right)\right]=I_{n} \tag{35}
\end{equation*}
$$

By (c), the left side of (35) is

$$
\begin{aligned}
H_{\Sigma}+\sigma^{2} \Sigma^{-1}\left(I_{n}-H_{\Sigma}\right)+ & K \Sigma^{-1}\left(I_{n}-H_{\Sigma}\right) \\
& =H_{\Sigma}+\left(\sigma^{2} I_{n}+K\right) \Sigma^{-1}\left(I_{n}-H_{\Sigma}\right) \\
& =H_{\Sigma}+\Sigma \Sigma^{-1}\left(I_{n}-H_{\Sigma}\right)=I_{n}
\end{aligned}
$$

This proves (35) and hence (d). Claim (e) follows from (d): the difference between the two right hand sides is 0 , as one sees by collecting terms. For (f), multiply (e) on the right by K. QED
(36) Corollary. Let $\tau \rightarrow \infty$.
(a) $\mathrm{E}\{\gamma \mid Y\} \rightarrow \sigma^{2}\left(\sigma^{2} I_{p}+K\right)^{-1} Y+K\left(\sigma^{2} I_{p}+K\right)^{-1} \hat{Y}_{\mathrm{gls}}=\Gamma K^{-1} Y$.
(b) $\operatorname{cov}\{\gamma \mid Y\} \rightarrow \Gamma$.

Proof. Claim (a). Convergence follows from (28), because $\Delta \rightarrow 0$. Then use (33e). Claim (b) is immediate from (32) and (33f). QED

This completes our first proof of (23).

Bayes, Goldberger and the Identity

Here is a more direct approach, with the same model and prior as in the previous section. We use (18) with $\zeta=\gamma$ and $\eta=\delta$. For the Bayesian, these are independent normal vectors with mean 0 ; furthermore,

$$
\begin{align*}
& C=\operatorname{cov}(\zeta)=\operatorname{cov}(\gamma)=\sigma^{2} I_{n}+\tau^{2} X X^{\prime} \tag{37}\\
& D=\operatorname{cov}(\eta)=\operatorname{cov}(\delta)=K \tag{38}
\end{align*}
$$

Thus, $\mathrm{E}\{\gamma \mid Y\}=M Y$ where $M=C(C+D)^{-1}$ so

$$
\begin{equation*}
M^{-1}=I_{n}+\sigma^{-2} K\left(I_{n}+\lambda X X^{\prime}\right)^{-1} \tag{39}
\end{equation*}
$$

with $\lambda=\tau^{2} / \sigma^{2}$. We want $M^{-1} \rightarrow K \Gamma^{-1}$ as $\lambda \rightarrow \infty$, that is,

$$
\begin{equation*}
\left(I_{n}+\lambda X X^{\prime}\right)^{-1} \rightarrow I-H \tag{40}
\end{equation*}
$$

Of course, if $x \perp X$, then $\left(I_{n}+\lambda X X^{\prime}\right) x=x$ so $\left(I_{n}+\lambda X X^{\prime}\right)^{-1} x=x=(I-H) x$. Suppose now that x is in the column space of X, that is, $x=X c$ where c is $p \times 1$. We must show

$$
\begin{equation*}
\left(I_{n}+\lambda X X^{\prime}\right)^{-1} x \rightarrow 0 \tag{41}
\end{equation*}
$$

To prove (41), we use (22) twice, with $K=I_{n}$ and $\tau^{2}=1 / \lambda$:

$$
\begin{aligned}
\left\|\left(I_{n}+\lambda X X^{\prime}\right)^{-1} X c\right\|^{2} & =c^{\prime} X^{\prime}\left(I_{n}+\lambda X X^{\prime}\right)^{-2} X c \\
& =c^{\prime}\left(I_{p}+\lambda X^{\prime} X\right)^{-1} X^{\prime}\left(I_{n}+\lambda X X^{\prime}\right)^{-1} X c \\
& =c^{\prime}\left(I_{p}+\lambda X^{\prime} X\right)^{-2} X^{\prime} X c \\
& =\lambda^{-2} c^{\prime}\left(\lambda^{-2} I_{p}+X^{\prime} X\right)^{-2} X^{\prime} X c \rightarrow 0 .
\end{aligned}
$$

The point of rigor: the function $A \rightarrow A^{-2}$ is continuous at $X^{\prime} X$ not at $X X^{\prime}$.
The covariance of γ given Y follows from (18b), indeed

$$
\operatorname{cov}\{\beta \mid Y\}=C(C+D)^{-1} D=M K
$$

But $M \rightarrow \Gamma K^{-1}$ as $\tau \rightarrow \infty$. This completes our second proof of (23).

References

D. Freedman and W. Navidi (1986). Regression models for adjusting the 1980 census. Statistical Science 1: 1-39 (with discussion).
D. Freedman, K. Wachter, D. Coster, R. Cutler and S. Klein (1993). Adjusting the census of 1990: the smoothing model. Evaluation Review 17: 371-444.
A. Goldberger (1962). Best linear unbiased prediction in the generalized linear regression model. Journal of the American Statistical Association 57: 369-75.
D. V. Lindley and A. F. M. Smith (1972). Bayes estimates for the linear model. Journal of the Royal Statistical Society 67: 1-19.

