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Hierarchical Linear Regression

The following hierarchical linear model was the basis for smoothing in the proposed 1990
census adjustment (Freedman et al, 1993):

Y = γ + δ(1a)

γ = Xβ + ε.(1b)

Here, X may be viewed as a fixed n × p matrix; δ and ε are assumed to be independent n × 1
vectors; the means are 0; cov(δ) = K is a given positive definite matrix; cov(ε) = σ 2I , where σ 2

is given, being positive and finite; I is the n× n identity matrix. In the census context, Y would be
the vector of “raw” adjustment factors and γ the “true” adjustment factors, with one component of
the vector for each post stratum in a region. Theorem (3) below would not apply: σ 2 and K have
to be estimated from the data, X is chosen by a data-based algorithm, etc. For more discussion of
the model in the census context, see Freedman et al (1993).

Goldberger (1962) proposed the estimator γ̂ for γ . His construction involves an auxiliary
matrix �; to define the latter, let H be the OLS projection matrix, that is, H = X(X′X)−1X′. Now

�−1 = K−1 + σ−2(I − H)(2a)

γ̂ = �K−1Y.(2b)

The estimator γ̂ can be motivated in the normal case as Bayes with a diffuse prior on β; then � is
the posterior covariance of γ given Y ; see Lindley and Smith (JRSS, 1972). Being positive definite,
K−1 + σ−2(I − H) is invertible. Hence, � is well-defined and positive definite. Moreover, � is
symmetric because K and H are symmetric.

Notes. Being a covariance matrix, K is symmetric; so is �; but �K−1 is asymmetric. The
estimator γ̂ can also be represented as a generalized average of Y and gls; see (28). If U,V are
n × 1 and m × 1, respectively, and E(U) = E(V ) = 0, then cov(U, V ) is defined as E(UV ′).

(3) Theorem (Goldberger).

(a) E(γ̂ − γ ) = 0

(b) cov(γ̂ − γ ) = �

(c) γ̂ is the minimum-variance unbiased linear estimator of γ .

The object here is to prove (3). Claim (c) can be translated as follows. If M is an n× n matrix and
E(MY − γ ) = 0, then cov(MY − γ ) − � is non-negative definite, vanishing only if M = �K−1.

Warning. cov(γ̂ ) �= � for the objectivist, because γ is random.

(4) Lemma. �K−1X = X so �K−1H = H .
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Proof. Let x be in the column space of X. Then

�−1x = K−1x;
indeed, by (2a) the difference is σ−2(I − H)x = 0. Pre-multiply the display by �. QED

Claim (a) in the theorem is immediate: E(γ ) = Xβ = E(γ̂ ), the last equality holding by (4).

(5) Lemma. If M is an n × n matrix and E(MY − γ ) = 0, then MX = X and MH = H .

Proof. Clearly, (MX − X)β = 0 for all β. QED

(6) Lemma. If M is an n × n matrix and MX = X, then

cov(MY − γ ) = MKM ′ + σ 2(M − I )(M ′ − I ).

Proof. Clearly,

(7) MY − γ = Mδ + (M − I )ε

because MX = X. Now use the assumptions on δ and ε. QED

Use (7) with M = �K−1 to see

(8) γ̂ − γ = �K−1δ + (�K−1 − I )ε.

Claim (3b) follows from (6) applied to M = �K−1 and the identity

(9) �K−1� + σ 2(�K−1 − I )(K−1� − I ) = �.

To prove (9), multiply from the right by �−1; use definition (2a) to evaluate K−1 − �−1 and (4) to
simplify the results.

For claim (3c), let ζ = MY − γ̂ , so that

(10) MY − γ = (γ̂ − γ ) + ζ.

It suffices to show that MX = X implies

(11) cov(ζ, γ̂ − γ ) = 0

because then cov(MY − γ ) = cov(γ̂ − γ ) + cov(ζ ). Clearly,

(12) ζ = (M − �K−1)(δ + ε).
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By (8) and (12),

(13) cov(ζ, γ̂ − γ ) = E{ζ(γ̂ − γ )′} = (M − �K−1)� + (M − �K−1)(K−1� − I )σ 2.

The right side of (13) is

(14) (M − �K−1)
[
� + σ 2(K−1� − I )

]
.

By the definition (2a) of �, [
K−1 + σ−2(I − H)

]
� = I,

so
K−1� = I − σ−2(I − H)�

and

(15) σ 2(K−1� − I ) = −(I − H)�.

The identity (15) can be used to evaluate the expression (14) as

(M − �K−1)(� − � + H�) =
[
(M − �K−1)H

]
� = 0

by (4) and (5). This proves (11), hence, (3). QED

Notes. (i) The proof of (9) could be rearranged slightly to use (15).

(ii) For uniqueness, cov(ζ ) = 0 means that MY = γ̂ almost surely, and then M = �K−1

rather easily.

Discussion

Goldberger’s estimate is in the shrinkage—empirical Bayes style; Y is shrunk toward the
column space C of X. This works fine if C is low-dimensional and γ is almost in there, i.e.,
σ 2 is small. The amount of shrinking and the directions are controlled by σ 2 and K . If you get
these wrong, or some of the modeling assumptions break down, shrinking can actually make the
errors bigger rather than smaller. Also, the benefits of shrinking—as gauged by �—depend rather
critically on the assumptions about the error terms δ and ε. To sum up: If the model is wrong,
the benefits of shrinking can be over-stated, and shrinking can be counter-productive. For some
empirical evidence, see (Freedman and Navidi, 1986) or (Freedman et al, 1993).

Conditional Normal Distributions

Let U and V be jointly normal vectors, n × 1 and m × 1, respectively; both have mean 0.
Suppose V is of full rank. By definition, cov(U, V ) = E(UV ′) and cov(V ) = cov(V , V ). Let
M = cov(U, V )cov(V )−1; this is an n × m matrix, well-defined because V has full rank.
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(16) Proposition.

(a) E{U |V } = MV .

(b) cov{U |V } = cov(U) − cov(U, V )cov(V )−1cov(V ,U).

(c) The conditional distribution of U is normal.

Proof. Let ζ = U − MV . Clearly, U , V , and ζ are jointly normal with mean 0; furthermore,
cov(ζ, V ) = 0 and cov(ζ ) is given by the right hand side of (b). Thus, ζ and V are independent;
given V = v, U is distributed as Mv + ζ . QED

Notes. (i) It is normality that converts cov(ζ, V ) = 0 to independence. To argue the indepen-
dence, you need to write down the density and factor it.

(ii) The right hand side in (b) is “total variance − explained variance.”

(17) Lemma. Let A and B be n × n matrices; suppose A + B is invertible.

(a) A(A + B)−1 = In − B(A + B)−1.

(b) (A + B)−1A = In − (A + B)−1B.

(c) A(A + B)−1B = B(A + B)−1A.

(d) Suppose A is invertible and A−1B = BA−1. Then

A(A + B)−1 = (A + B)−1A.

Proof. For claim (a), In = (A+B)(A+B)−1 = A(A+B)−1 +B(A+B)−1, and (b) is the same.
For (c), use (a) and (b):

A(A + B)−1B = A
[
(A + B)−1B

]

= A
[
In − (A + B)−1A

]

= A − A(A + B)−1A

=
[
In − A(A + B)−1

]
A

= B(A + B)−1A.

For (d),

A(A + B)−1 =
(
In + B

A

)−1 = (A + B)−1A. QED

(18) Proposition. Let ζ and η be independent mean 0 normaln×1 vectors with respective covariance
matrices C and D. Then

(a) E{ζ |ζ + η} = C(C + D)−1(ζ + η)

(b) cov{ζ |ζ + η} = C(C + D)−1D.
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Proof. This follows from (16). Indeed, cov(ζ, ζ + η) = cov(ζ ) so M = C(C + D)−1. And
cov{ζ |ζ + η} is given by (17b) as

C − C(C + D)−1C = C
(
In − (C + D)−1C

)
= C(C + D)−1D. QED

Bayesian Least Squares

Consider the regression model

(19) Y = Xβ + ε, ε ∼ N(0, σ 2In)

where Y is n × 1, X is n × p of full rank, β is p × 1, and ε is n × 1. For the moment, β is
unknown but σ is known. Take X to be constant (non-random). For the Bayesian, β has a prior
distribution—and a posterior given the data Y .

(20) Proposition. With the OLS regression model (19), and β ∼ N(0, τ 2Ip) independent of ε, the
posterior distribution of β given Y is normal, with conditional mean

β̂Bayes =
(
Ip − σ 2

τ 2X′X + σ 2Ip

)
β̂ols

and conditional variance

cov{β|Y } = τ 2σ 2

τ 2X′X + σ 2Ip
.

Proof. Since X′Y is sufficient, it is enough to compute the conditional law of β given X′Y . This can
be done using (16) with U = β and V = X′Y . For the Bayesian, cov(X′Y ) = τ 2(X′X)2 +σ 2X′X
while cov(β,X′Y ) = τ 2(X′X). So

M = τ 2X′X
τ 2(X′X)2 + σ 2X′X

= τ 2X′X
τ 2X′X + σ 2Ip

(X′X)−1

=
(
Ip − σ 2

τ 2X′X + σ 2Ip

)
(X′X)−1

and

MX′Y =
(
Ip − σ 2

τ 2X′X + σ 2Ip

)
β̂ols.

The matrices commute, so the informal notation is unambiguous. The assertion about the condi-
tional mean is now proved, and the conditional variance follows from (16b) by a straightforward
calculation. QED
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Notes. (i) With lots of data (and a little luck), X′X is large. Then β̂Bayes ≈ β̂ols = β̂mle

and cov{β|Y } ≈ σ 2(X′X)−1, the frequentist covariance of β̂mle. This is a special case of
the Bernstein-von Mises theorem: under suitable regularity conditions, asymptotically, the
posterior distribution of β − β̂mle is close to the frequentist distribution of β̂mle − βtrue.

(ii) Suppose σ 2 is fixed and τ 2 is large, so the prior is “diffuse” or “uninformative” or an
“ignorance prior.” (An uninformative prior could be defined as Lebesgue measure on Ip.)
Then the Bayes estimate is essentially the same as the OLS estimate.

(iii) Suppose τ 2 is fixed and σ 2 is large, so the data are “uninformative.” Then the posterior is
essentially the same as the prior. In the extreme, if τ 2 = 0, you start by knowing that β = 0,
that is how you end up.

(iv) The proof of (20) can be based on (18) with ζ = X′Xβ and η = X′ε.

(21) Corollary. In (19), suppose ε ∼ N(0,K) where K is n × n positive definite and given. With
this GLS model, the posterior distribution of β given Y is normal, with conditional mean

β̂Bayes =
(
Ip − (τ 2X′K−1X + Ip)

−1
)
β̂gls

and conditional variance
cov{β|Y } = τ 2(τ 2X′K−1X + Ip)

−1.

Proof. Multiplication from the left by K−1/2 converts the GLS model to OLS, with σ 2 = 1 and
design matrix K−1/2X. QED

An Identity

Of course, with the GLS regression model, it is possible to compute the posterior mean directly
from (16), as E(β|Y ) = τ 2X′(τ 2XX′ + K)−1. Thus we have an indirect proof of the well-known
identity

(22) X′(τ 2XX′ + K)−1 = (τ 2X′K−1X + Ip)
−1X′K−1.

This can be proved directly: multiply from the left by

τ 2X′K−1X + Ip

and from the right by τ 2XX′ + K; then clean up.

Note. XX′ is singular, so the behavior of (τ 2XX′ + K)−1 on the left in (22) for large τ 2 is
problematic. On the right, X′K−1X is invertible.

Bayes and Goldberger

Consider the model (1) from a Bayesian perspective: we assume K and σ 2 are known, and
put a prior on the “hyper-parameters” β, namely, β ∼ N(0, τ 2Ip), independent of δ and ε.
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(23) Theorem. Consider the model (1) with prior distribution β ∼ N(0, τ 2Ip) independent of δ
and ε. Let τ → ∞. The Bayes estimate for γ converges to γ̂ , and the posterior variance converges
to �.

The proof is a bit involved. As before, we can use (16) to compute the posterior law of γ

given Y . This is best done in three steps:

Step 1. Compute the posterior law of β given Y . We have a GLS model with covariance matrix
! = K + σ 2In. The posterior distribution is by (16) multivariate normal with conditional mean

(24) β̂Bayes =
(
Ip − (τ 2X′!−1X + Ip)

−1
)
β̂gls

and conditional variance

(25) cov{β|Y } = τ 2(τ 2X′!−1X + Ip)
−1.

Step 2. Compute the conditional law of γ given β and Y ; this is done below, also using (16).
Call the conditional density f (γ |β, y). Of course, f is normal.

Step 3. Integrate out β in f (·|β, y) from Step 2 using the posterior law of β from Step 1. This
too is done below.

Step 2 can be implemented as follows: β and Y contain the same information (i.e., span the
same σ -field) as β and δ + ε. Recall that γ = Xβ + ε. Let ! = σ 2Ip + K . By (18),

E{γ |β, Y } = E{γ |β, δ + ε}(26)

= Xβ + E{ε|β, δ + ε}
= Xβ + E{ε|δ + ε} because β ⊥ (δ, ε)

= Xβ + σ 2!−1(δ + ε)

= Xβ + σ 2!−1(Y − Xβ)

= σ 2!−1Y + K!−1Xβ by (17a).

Likewise,

cov{γ |β, Y } = σ 2!−1K.(27)

Note. Step 2 is conditional on β and results do not involve τ 2.

Step 3 is done by the following computation:

E{γ |Y } = σ 2!−1Y + K!−1XE{β|Y }(28)

= σ 2!−1Y + K!−1Xβ̂Bayes

= σ 2!−1Y + K!−1Xβ̂gls − $

= σ 2!−1Y + K!−1Ŷgls − $

where
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$ = K!−1X(τ 2X′!−1X + Ip)
−1β̂gls.(29)

For τ 2 large the term $ is negligible, presenting γ̂ as a mixture—with matrix weights—of Y and
the GLS projection onto the column space of X.

Now cov(γ |Y ) may be computed by integrating out β but holding Y fixed:

(30) E{cov(γ |β, Y ) ∣∣ Y } + cov{E(γ |β, Y ) ∣∣ Y }.

In the first term of (30), cov(γ |β, Y ) = σ 2K!−1 and is constant, see (27). In the second term,
E(γ |β, Y ) is by (26) equal to

σ 2!−1Y + K!−1Xβ,

whose covariance given Y is

(31) K!−1Xcov{β|Y }X′!−1K.

But cov{β|Y } was computed in Step 1, see (25); and (31) is

K!−1X
[
τ 2(τ 2X′!−1X + Ip)

−1
]
X′!−1K → K!−1H!K

as τ 2 → ∞. (By definition, ! = σ 2In + K , and H! = X(X′!−1X)−1X′!−1 is the GLS
projection matrix relative to !.) Thus,

(32) cov{γ |Y } = σ 2!−1K + K!−1H!K.

Note: We have to use cov(β|Y ) not cov(β) in (31).

(33) Lemma. Let ! = σ 2In + K and H! = X(X′!−1X)−1X′!−1.

(a) X′!−1(In − H!) = 0.

(b) H!−1(In − H!) = 0.

(c) (In − H)H! = 0.

(d) �K−1 = H! + σ 2!−1(In − H!).

(e) �K−1 = σ 2!−1 + K!−1H! .

(f) � = σ 2!−1K + K!−1H!K .

Proof. Claim (a) is easy and (b) follows on multiplying from the left by X(X′X)−1. Claim (c) is
easy. For (d), by (2a),

(34) K�−1 = In + σ−2K(In − H).

We have to prove

(35)
[
In + σ−2K(In − H)

][
H! + σ 2!−1(In − H!)

]
= In.
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By (c), the left side of (35) is

H! + σ 2!−1(In − H!) + K!−1(In − H!)

= H! + (σ 2In + K)!−1(In − H!)

= H! + !!−1(In − H!) = In.

This proves (35) and hence (d). Claim (e) follows from (d): the difference between the two right
hand sides is 0, as one sees by collecting terms. For (f), multiply (e) on the right by K. QED

(36) Corollary. Let τ → ∞.

(a) E{γ |Y } → σ 2(σ 2Ip + K)−1Y + K(σ 2Ip + K)−1Ŷgls = �K−1Y .

(b) cov{γ |Y } → �.

Proof. Claim (a). Convergence follows from (28), because $ → 0. Then use (33e). Claim (b) is
immediate from (32) and (33f). QED

This completes our first proof of (23).

Bayes, Goldberger and the Identity

Here is a more direct approach, with the same model and prior as in the previous section. We
use (18) with ζ = γ and η = δ. For the Bayesian, these are independent normal vectors with mean
0; furthermore,

C = cov(ζ ) = cov(γ ) = σ 2In + τ 2XX′(37)

D = cov(η) = cov(δ) = K.(38)

Thus, E{γ |Y } = MY where M = C(C + D)−1 so

(39) M−1 = In + σ−2K(In + λXX′)−1

with λ = τ 2/σ 2. We want M−1 → K�−1 as λ → ∞, that is,

(40) (In + λXX′)−1 → I − H.

Of course, if x ⊥ X, then (In + λXX′)x = x so (In + λXX′)−1x = x = (I −H)x. Suppose now
that x is in the column space of X, that is, x = Xc where c is p × 1. We must show

(41) (In + λXX′)−1x → 0.

To prove (41), we use (22) twice, with K = In and τ 2 = 1/λ:

‖(In + λXX′)−1Xc‖2 = c′X′(In + λXX′)−2Xc

= c′(Ip + λX′X)−1X′(In + λXX′)−1Xc

= c′(Ip + λX′X)−2X′Xc

= λ−2c′(λ−2Ip + X′X)−2X′Xc → 0.
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The point of rigor: the function A → A−2 is continuous at X′X not at XX′.

The covariance of γ given Y follows from (18b), indeed

cov{β|Y } = C(C + D)−1D = MK;

But M → �K−1 as τ → ∞. This completes our second proof of (23).
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