General formulas for bias and variance in OLS Statistics 215

DA Freedman February 2008

Let $Y = X\beta + \epsilon$ where the response vector Y is $n \times 1$. The $n \times p$ design matrix X has full rank p < n. The $p \times 1$ parameter vector is β . The $n \times 1$ disturbance vector ϵ is random. The OLS estimator is $\hat{\beta} = (X'X)^{-1}X'Y$. At the moment, no assumptions are imposed on ϵ .

Lemma 1. $\hat{\beta} = \beta + (X'X)^{-1}X'\epsilon$.

Proof. Substitute the formula for *Y* into the formula for $\hat{\beta}$:

$$\hat{\beta} = (X'X)^{-1}X'Y$$

$$= (X'X)^{-1}X'(X\beta + \epsilon)$$

$$= (X'X)^{-1}(X'X)\beta + (X'X)^{-1}X'\epsilon$$

$$= I_{p \times p}\beta + (X'X)^{-1}X'\epsilon$$

$$= \beta + (X'X)^{-1}X'\epsilon$$

Theorem 1. $E(\hat{\beta}|X) = \beta + (X'X)^{-1}X'E(\epsilon|X).$

Proof. Given X, related matrices like $(X'X)^{-1}X'$ are constant and factor out of the expectation. (This idea will be used several times below, without comment.) Lemma 1 completes the proof.

Corollary 1. If $E(\epsilon|X) = 0$ then $\hat{\beta}$ is conditionally unbiased.

Definition 1. If U is random $p \times 1$, then

 $cov(U) = E\{[U - E(U)][U - E(U)]'\} = E(UU') - E(U)[E(U)]'$

Remark. You might want to check the equality, and the fact that [E(U)]' = E(U').

Lemma 2. If U is a random $p \times 1$ vector, while A is a constant $p \times p$ matrix, and B is a constant $p \times 1$ vector, then cov(AU + B) = Acov(U)A'.

Proof. The covariance does not depend on additive constants like *B*; these cancel. For simplicity, assume $E(U) = 0_{p \times 1}$. Then $E(AU) = AE(U) = 0_{p \times 1}$. Recall that (CD)' = D'C'. Now cov(AU) = E[(AU)(AU)'] = E(AUU'A') = AE(UU')A' = Acov(U)A'.

Theorem 2. $\operatorname{cov}(\hat{\beta}|X) = (X'X)^{-1}X'\operatorname{cov}(\epsilon|X)X(X'X)^{-1}$.

Proof. Use the lemmas and the fact that X'X is symmetric.

Corollary 2. If $E(\epsilon|X) = 0$ and $\operatorname{cov}(\epsilon|X) = \sigma^2 I_{n \times n}$ then $\hat{\beta}$ is conditionally unbiased and $\operatorname{cov}(\hat{\beta}|X) = \sigma^2 (X'X)^{-1}$.

Proof. For the covariance, substitute into the theorem:

$$cov(\hat{\beta}|X) = (X'X)^{-1}X'\sigma^2 I_{n \times n}X(X'X)^{-1}$$

= $\sigma^2 (X'X)^{-1}X'(I_{n \times n}X)(X'X)^{-1}$
= $\sigma^2 (X'X)^{-1}(X'X)(X'X)^{-1}$
= $\sigma^2 (X'X)^{-1}I_{p \times p}$
= $\sigma^2 (X'X)^{-1}$

Definition 2. If A is a square matrix, the "trace" of A is the sum of the diagonal elements of A.

Lemma 3. (i) If A is $m \times n$ and B is $n \times m$, then trace(AB) = trace(BA). (ii) If C and D are $m \times m$, then trace(C + D) = trace(C) + trace(D); if α is a scalar constant, then trace(αC) = α trace(C).

The "hat matrix" $H = X(X'X)^{-1}X'$ is symmetric and idempotent $(H^2 = H)$; ditto for $I_{n \times n} - H$. The "fitted values" are $\hat{Y} = X\hat{\beta} = HY$. Confirm that HX = X. The "residuals" are $e = Y - \hat{Y} = (I_{n \times n} - H)Y = (I_{n \times n} - H)\epsilon$: substitute the formula for Y into the formula for e, and check that $(I_{n \times n} - H)X = 0_{n \times p}$. The hat matrix projects onto the column space of X, and $I_{n \times n} - H$ projects onto the orthocomplement.

Lemma 4. trace(*H*) = p and trace($I_{n \times n} - H$) = n - p.

Proof. trace[$X(X'X)^{-1}X'$] = trace[$(X'X)^{-1}X'X$] = trace($I_{p\times p}$) = p: use lemma 3(i) to move X from the left end of the product to the right end. Lemma 3(ii) completes the proof.

Theorem 3.
$$E(||e||^2|X) = \operatorname{trace}[(I_{n \times n} - H)E(\epsilon\epsilon'|X)].$$

Proof. $ee' = (I_{n \times n} - H)\epsilon\epsilon'(I_{n \times n} - H)$, because $(I_{n \times n} - H)' = (I_{n \times n} - H)$. Now
 $||e||^2 = e'e = \operatorname{trace}(ee') = \operatorname{trace}[(I_{n \times n} - H)\epsilon\epsilon'(I_{n \times n} - H)] = \operatorname{trace}[(I_{n \times n} - H)\epsilon\epsilon']$

Use lemma 3(i) to see that e'e = trace(ee'). Use lemma 3(i) again to move $I_{n \times n} - H$ from right to left: keep in mind that $I_{n \times n} - H$ is idempotent. Finally, take the conditional expectation given *X*. The trace is linear by lemma 3(ii), and *H* is conditionally a constant matrix, so

$$E\left\{\operatorname{trace}\left[(I_{n\times n}-H)\epsilon\epsilon'\right]|X\right\}=\operatorname{trace}\left[(I_{n\times n}-H)E\left\{\epsilon\epsilon'|X\right\}\right]$$

Corollary 3. If $E(\epsilon|X) = 0$ and $\operatorname{cov}(\epsilon|X) = \sigma^2 I_{n \times n}$ then $E(\hat{\sigma}^2|X) = \sigma^2$, where $\hat{\sigma}^2 = ||e||^2/(n-p)$.

Proof. $E(\epsilon \epsilon' | X) = \sigma^2 I_{n \times n}$ and trace $(I_{n \times n} - H) = n - p$.

Corollary 4. Suppose ϵ is independent of X, the ϵ_i are IID, $E(\epsilon_i) = 0$, and $var(\epsilon_i) = \sigma^2$.

- (i) $E(\hat{\beta}|X) = \beta$.
- (ii) $\operatorname{cov}(\hat{\beta}|X) = \sigma^2 (X'X)^{-1}$.
- (iii) $E(\hat{\sigma}^2 | X) = \sigma^2$, where $\hat{\sigma}^2 = ||e||^2/(n-p)$.