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Let Y = Xβ + ε where the response vector Y is n × 1. The n × p design matrix X has full
rank p < n. The p × 1 parameter vector is β. The n × 1 disturbance vector ε is random. The OLS
estimator is β̂ = (X′X)−1X′Y . At the moment, no assumptions are imposed on ε.

Lemma 1. β̂ = β + (X′X)−1X′ε.

Proof. Substitute the formula for Y into the formula for β̂:

β̂ = (X′X)−1X′Y
= (X′X)−1X′(Xβ + ε)

= (X′X)−1(X′X)β + (X′X)−1X′ε
= Ip×pβ + (X′X)−1X′ε
= β + (X′X)−1X′ε

Theorem 1. E(β̂|X) = β + (X′X)−1X′E(ε|X).

Proof. Given X, related matrices like (X′X)−1X′ are constant and factor out of the expectation.
(This idea will be used several times below, without comment.) Lemma 1 completes the proof.

Corollary 1. If E(ε|X) = 0 then β̂ is conditionally unbiased.

Definition 1. If U is random p × 1, then

cov(U) = E
{
[U − E(U)][U − E(U)]′

} = E(UU ′) − E(U)[E(U)]′

Remark. You might want to check the equality, and the fact that [E(U)]′ = E(U ′).

Lemma 2. If U is a random p × 1 vector, while A is a constant p × p matrix, and B is a
constant p × 1 vector, then cov(AU + B) = Acov(U)A′.

Proof. The covariance does not depend on additive constants like B; these cancel. For
simplicity, assume E(U) = 0p×1. Then E(AU) = AE(U) = 0p×1. Recall that (CD)′ = D′C′.
Now cov(AU) = E[(AU)(AU)′] = E(AUU ′A′) = AE(UU ′)A′ = Acov(U)A′.

Theorem 2. cov(β̂|X) = (X′X)−1X′cov(ε|X)X(X′X)−1.

Proof. Use the lemmas and the fact that X′X is symmetric.

Corollary 2. If E(ε|X) = 0 and cov(ε|X) = σ 2In×n then β̂ is conditionally unbiased and
cov(β̂|X) = σ 2(X′X)−1.

Proof. For the covariance, substitute into the theorem:

cov(β̂|X) = (X′X)−1X′σ 2In×nX(X′X)−1

= σ 2(X′X)−1X′(In×nX)(X′X)−1

= σ 2(X′X)−1(X′X)(X′X)−1

= σ 2(X′X)−1Ip×p

= σ 2(X′X)−1
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Definition 2. If A is a square matrix, the “trace” of A is the sum of the diagonal elements of A.

Lemma 3. (i) If A is m × n and B is n × m, then trace(AB) = trace(BA). (ii) If C

and D are m × m, then trace(C + D) = trace(C) + trace(D); if α is a scalar constant, then
trace(αC) = α trace(C).

The “hat matrix” H = X(X′X)−1X′ is symmetric and idempotent (H 2 = H ); ditto for
In×n − H . The “fitted values” are Ŷ = Xβ̂ = HY . Confirm that HX = X. The “residuals” are
e = Y − Ŷ = (In×n − H)Y = (In×n − H)ε: substitute the formula for Y into the formula for e,
and check that (In×n − H)X = 0n×p. The hat matrix projects onto the column space of X, and
In×n − H projects onto the orthocomplement.

Lemma 4. trace(H) = p and trace(In×n − H) = n − p.

Proof. trace[X(X′X)−1X′] = trace[(X′X)−1X′X] = trace(Ip×p) = p: use lemma 3(i) to
move X from the left end of the product to the right end. Lemma 3(ii) completes the proof.

Theorem 3. E(‖e‖2|X) = trace
[
(In×n − H)E(εε′|X)

]
.

Proof. ee′ = (In×n − H)εε′(In×n − H), because (In×n − H)′ = (In×n − H). Now

‖e‖2 = e′e = trace(ee′) = trace
[
(In×n − H)εε′(In×n − H)

] = trace
[
(In×n − H)εε′]

Use lemma 3(i) to see that e′e = trace(ee′). Use lemma 3(i) again to move In×n − H from right to
left: keep in mind that In×n − H is idempotent. Finally, take the conditional expectation given X.
The trace is linear by lemma 3(ii), and H is conditionally a constant matrix, so

E
{
trace

[
(In×n − H)εε′]|X} = trace

[
(In×n − H)E

{
εε′|X}]

Corollary 3. If E(ε|X) = 0 and cov(ε|X) = σ 2In×n then E(σ̂ 2|X) = σ 2, where σ̂ 2 =
‖e‖2/(n − p).

Proof. E(εε′|X) = σ 2In×n and trace (In×n − H) = n − p.

Corollary 4. Suppose ε is independent of X, the εi are IID, E(εi) = 0, and var(εi) = σ 2.

(i) E(β̂|X) = β.

(ii) cov(β̂|X) = σ 2(X′X)−1.

(iii) E(σ̂ 2|X) = σ 2, where σ̂ 2 = ‖e‖2/(n − p).
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