Let $Y=X \beta+\epsilon$ where the response vector Y is $n \times 1$. The $n \times p$ design matrix X has full rank $p<n$. The $p \times 1$ parameter vector is β. The $n \times 1$ disturbance vector ϵ is random. The OLS estimator is $\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$. At the moment, no assumptions are imposed on ϵ.

Lemma 1. $\hat{\beta}=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} \epsilon$.
Proof. Substitute the formula for Y into the formula for $\hat{\beta}$:

$$
\begin{aligned}
\hat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} Y \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime}(X \beta+\epsilon) \\
& =\left(X^{\prime} X\right)^{-1}\left(X^{\prime} X\right) \beta+\left(X^{\prime} X\right)^{-1} X^{\prime} \epsilon \\
& =I_{p \times p} \beta+\left(X^{\prime} X\right)^{-1} X^{\prime} \epsilon \\
& =\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} \epsilon
\end{aligned}
$$

Theorem 1. $E(\hat{\beta} \mid X)=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} E(\epsilon \mid X)$.
Proof. Given X, related matrices like $\left(X^{\prime} X\right)^{-1} X^{\prime}$ are constant and factor out of the expectation. (This idea will be used several times below, without comment.) Lemma 1 completes the proof.

Corollary 1. If $E(\epsilon \mid X)=0$ then $\hat{\beta}$ is conditionally unbiased.
Definition 1. If U is random $p \times 1$, then

$$
\operatorname{cov}(U)=E\left\{[U-E(U)][U-E(U)]^{\prime}\right\}=E\left(U U^{\prime}\right)-E(U)[E(U)]^{\prime}
$$

Remark. You might want to check the equality, and the fact that $[E(U)]^{\prime}=E\left(U^{\prime}\right)$.
Lemma 2. If U is a random $p \times 1$ vector, while A is a constant $p \times p$ matrix, and B is a constant $p \times 1$ vector, then $\operatorname{cov}(A U+B)=A \operatorname{cov}(U) A^{\prime}$.

Proof. The covariance does not depend on additive constants like B; these cancel. For simplicity, assume $E(U)=0_{p \times 1}$. Then $E(A U)=A E(U)=0_{p \times 1}$. Recall that $(C D)^{\prime}=D^{\prime} C^{\prime}$. $\operatorname{Now} \operatorname{cov}(A U)=E\left[(A U)(A U)^{\prime}\right]=E\left(A U U^{\prime} A^{\prime}\right)=A E\left(U U^{\prime}\right) A^{\prime}=A \operatorname{cov}(U) A^{\prime}$.

Theorem 2. $\operatorname{cov}(\hat{\beta} \mid X)=\left(X^{\prime} X\right)^{-1} X^{\prime} \operatorname{cov}(\epsilon \mid X) X\left(X^{\prime} X\right)^{-1}$.
Proof. Use the lemmas and the fact that $X^{\prime} X$ is symmetric.
Corollary 2. If $E(\epsilon \mid X)=0$ and $\operatorname{cov}(\epsilon \mid X)=\sigma^{2} I_{n \times n}$ then $\hat{\beta}$ is conditionally unbiased and $\operatorname{cov}(\hat{\beta} \mid X)=\sigma^{2}\left(X^{\prime} X\right)^{-1}$.

Proof. For the covariance, substitute into the theorem:

$$
\begin{aligned}
\operatorname{cov}(\hat{\beta} \mid X) & =\left(X^{\prime} X\right)^{-1} X^{\prime} \sigma^{2} I_{n \times n} X\left(X^{\prime} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime}\left(I_{n \times n} X\right)\left(X^{\prime} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1}\left(X^{\prime} X\right)\left(X^{\prime} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1} I_{p \times p} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1}
\end{aligned}
$$

Definition 2. If A is a square matrix, the "trace" of A is the sum of the diagonal elements of A.
Lemma 3. (i) If A is $m \times n$ and B is $n \times m$, then $\operatorname{trace}(A B)=\operatorname{trace}(B A)$. (ii) If C and D are $m \times m$, then $\operatorname{trace}(C+D)=\operatorname{trace}(C)+\operatorname{trace}(D)$; if α is a scalar constant, then $\operatorname{trace}(\alpha C)=\alpha \operatorname{trace}(C)$.

The "hat matrix" $H=X\left(X^{\prime} X\right)^{-1} X^{\prime}$ is symmetric and idempotent ($H^{2}=H$); ditto for $I_{n \times n}-H$. The "fitted values" are $\hat{Y}=X \hat{\beta}=H Y$. Confirm that $H X=X$. The "residuals" are $e=Y-\hat{Y}=\left(I_{n \times n}-H\right) Y=\left(I_{n \times n}-H\right) \epsilon$: substitute the formula for Y into the formula for e, and check that $\left(I_{n \times n}-H\right) X=0_{n \times p}$. The hat matrix projects onto the column space of X, and $I_{n \times n}-H$ projects onto the orthocomplement.

Lemma 4. $\operatorname{trace}(H)=p$ and $\operatorname{trace}\left(I_{n \times n}-H\right)=n-p$.
Proof. $\operatorname{trace}\left[X\left(X^{\prime} X\right)^{-1} X^{\prime}\right]=\operatorname{trace}\left[\left(X^{\prime} X\right)^{-1} X^{\prime} X\right]=\operatorname{trace}\left(I_{p \times p}\right)=p$: use lemma 3(i) to move X from the left end of the product to the right end. Lemma 3(ii) completes the proof.

Theorem 3. $E\left(\|e\|^{2} \mid X\right)=\operatorname{trace}\left[\left(I_{n \times n}-H\right) E\left(\epsilon \epsilon^{\prime} \mid X\right)\right]$.
Proof. $e e^{\prime}=\left(I_{n \times n}-H\right) \epsilon \epsilon^{\prime}\left(I_{n \times n}-H\right)$, because $\left(I_{n \times n}-H\right)^{\prime}=\left(I_{n \times n}-H\right)$. Now

$$
\|e\|^{2}=e^{\prime} e=\operatorname{trace}\left(e e^{\prime}\right)=\operatorname{trace}\left[\left(I_{n \times n}-H\right) \epsilon \epsilon^{\prime}\left(I_{n \times n}-H\right)\right]=\operatorname{trace}\left[\left(I_{n \times n}-H\right) \epsilon \epsilon^{\prime}\right]
$$

Use lemma 3(i) to see that $e^{\prime} e=\operatorname{trace}\left(e e^{\prime}\right)$. Use lemma 3(i) again to move $I_{n \times n}-H$ from right to left: keep in mind that $I_{n \times n}-H$ is idempotent. Finally, take the conditional expectation given X. The trace is linear by lemma 3(ii), and H is conditionally a constant matrix, so

$$
E\left\{\operatorname{trace}\left[\left(I_{n \times n}-H\right) \epsilon \epsilon^{\prime}\right] \mid X\right\}=\operatorname{trace}\left[\left(I_{n \times n}-H\right) E\left\{\epsilon \epsilon^{\prime} \mid X\right\}\right]
$$

Corollary 3. If $E(\epsilon \mid X)=0$ and $\operatorname{cov}(\epsilon \mid X)=\sigma^{2} I_{n \times n}$ then $E\left(\hat{\sigma}^{2} \mid X\right)=\sigma^{2}$, where $\hat{\sigma}^{2}=$ $\|e\|^{2} /(n-p)$.

Proof. $E\left(\epsilon \epsilon^{\prime} \mid X\right)=\sigma^{2} I_{n \times n}$ and trace $\left(I_{n \times n}-H\right)=n-p$.
Corollary 4. Suppose ϵ is independent of X, the ϵ_{i} are IID, $E\left(\epsilon_{i}\right)=0$, and $\operatorname{var}\left(\epsilon_{i}\right)=\sigma^{2}$.
(i) $E(\hat{\beta} \mid X)=\beta$.
(ii) $\operatorname{cov}(\hat{\beta} \mid X)=\sigma^{2}\left(X^{\prime} X\right)^{-1}$.
(iii) $E\left(\hat{\sigma}^{2} \mid X\right)=\sigma^{2}$, where $\hat{\sigma}^{2}=\|e\|^{2} /(n-p)$.

