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1. Introduction

Selection bias is a pervasive issue in social science. Three research topics illustrate the point.

(i) What are the returns to education? College graduates earn more than high school gradu-
ates, but the difference could be due to factors—like intelligence and family background—
that lead some persons to get a college degree while others stop after high school.

(ii) Are job training programs effective? If people who take the training are relatively am-
bitious and well organized, any direct comparison is likely to over-estimate program
effectiveness, because participants are more likely to find employment anyway. (See
references below.)

(iii) Do boot camps for prisoners prevent recidivism? Possibly, but prisoners who want to go
straight are more likely to participate, and less likely to find themselves in jail again—even
if boot camp has no effect.

These questions could be settled by experiment, but experimentation in such contexts is expensive
at best, impractical or unethical at worst. Investigators rely, therefore, on observational (non-
experimental) data, with attendant difficulties of confounding.

In brief, comparisons can be made between a treatment group and a control group that does
not get the treatment. But there are likely to be differences between the groups, other than the
treatment. Such differences are called “confounding factors.” Differences on the response variable
of interest (income, employment, recidivism) may be due to treatment, or confounding factors, or
both. Confounding is especially troublesome when subjects select themselves into one group or
another, rather than being assigned to different regimes by the investigator. Self-selection is the
hallmark of an observational study; assignment by the investigator is the hallmark of an experiment.

This article will review one of the most popular models for selection bias. The model, due
to Heckman, will be illustrated on the relationship between admissions tests and college grades.
Causal inference will be mentioned. There will be some pointers to the literature on selection bias,
including critiques and alternative models. The intention-to-treat principle for clinical trials will be
discussed, by way of counterpoint.

Model-based corrections for selection bias turn out to depend strongly on the assumptions
built into the model. Thus, caution is in order. Sensitivity analysis is highly recommended: try
different models with different assumptions. Alternative research designs should also be considered:
stronger designs may permit data analysis with weaker assumptions.

2. Admissions data

In the US, many colleges and universities require applicants to take the SAT (Scholastic
Achievement Test). Admission is based in part on SAT scores and in part on other evidence—high
school GPA (grade point average), essays, recommendations, interviews by admissions officers.
Figure 1 shows a somewhat hypothetical scatter diagram. Each student is represented by a dot. The
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response variable is first-year college GPA, plotted on the vertical axis. The explanatory variable
is the SAT score, plotted on the horizontal axis. The correlation between the two variables is about
0.5, which is fairly realistic. The “regression line,” which slopes across the diagram from lower left
to upper right, estimates the average GPA at each level of SAT. GPAs are between 0 and 4. If the
college requires two SATs, the combined score will be between 400 and 1600, as in the diagram.

The data in Figure 1 would be available only for a college that takes all comers. If the college
rejects applicants with an SAT below 800, we get a truncated scatter diagram, as in Figure 2.
Truncation reduces the correlation coefficient. The reduction is called “attenuation due to restriction
of range.” The slope of the regression line, however, is largely unaffected. Selecting on values of
the explanatory variable need not bias the slope of the regression line. Truncation has one impact
on correlation and quite another on slope.

Figure 1. No selection Figure 2. Selection on X
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Figure 3. Selection on Y
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Suppose now that the admissions office selects students who will get good grades despite low
SAT scores. (This is hypothetical; there is little empirical evidence to suggest that admissions
offices have that ability, beyond using high school GPA—which, like the SAT, is a good predictor
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of college GPA—to help guide the decisions.) We might get a scatter diagram like the one shown in
Figure 3. The correlation is much reduced. Correspondingly, the regression line is much shallower
than the line at the top left. This kind of selection impacts correlation and slope in similar ways.

Selecting on the response variable—or more generally on variables correlated with the error
term in the regression—is likely to bias the slope of the line. If we have a valid model for the
selection process—and that is a big if—the bias can be corrected; details are given, below. For
educational policy analysis, the scatter diagrams have a clear message. Highly selective institutions
cannot expect to see any substantial correlation between (i) variables that drive admissions decisions
and (ii) measures of student performance—a point that often gets lost in debates over “high-stakes
testing.”

3. Association versus causation

In the admissions example, there is no implication that SAT scores cause GPA. In many other
examples, selection models are used to draw causal inferences from observational data. This raises
additional questions; see, for instance, Heckman (1989, 2000), Briggs (2004), or Freedman (2005).
Briggs discusses the effect of coaching programs on SAT scores. As the admissions example shows,
however, selection bias is a problem even when causation is not in the picture.

4. Some pointers to the literature

Heckman (1976, 1978, 1979) proposed formal statistical models for dealing with selection bias.
However, the model—like other such models—is rather sensitive to specification error (Briggs 2004,
Breen 1996, Copas and Li 1997, Hartman 1991, Lalonde 1986, Nawata 1993, 1994, Stolzenberg
and Relles 1990, Vella 1998, Zuehlke and Zeman 1991). Estimates may be more stable if the
selection equation includes some explanatory variables that can be excluded a priori from the
response equation.

Lalonde (1986) and Fraker and Maynard (1987) contrast the effects of job training programs, as
estimated from observational data, with results from experiments. Heckman and Hotz (1989) try to
reconcile the estimates. Other methods for handling selection bias include weighting (Scharfstein,
Rotnitzky, and Robins 1999), and modeling based on conditional independence assumptions (Little
and Rubin 2002). In the health sciences, selection effects are often handled using proportional-
hazard models (Lawless 2003).

Scharfstein, Rotnitzky, and Robins (1999) quantify the (substantial) extent to which inferences
depend on unidentifiable parameters; also see Robins (1999) and Manski (1995). There is a lively
discussion from various perspectives in Wainer (1989).

5. Intention to treat

Randomized controlled experiments generally give the best evidence on causation, because
they minimize problems created by confounding and self-selection. However, experiments on
people cannot be immune from difficulty. By way of example, consider the first randomized
controlled experiment on mammography, that is, screening for breast cancer by x-rays (Shapiro et
al 1988). This trial started in the 1960s, when mammography was very unusual. Some women
were randomized to screening, and others (the controls) were randomized to usual medical care
without screening. There was, however, “crossover:” many women assigned to screening declined
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to be screened. Subjects who cross over are very different from compliers, which raises the issue
of selection bias—even in an experimental setting.

The mammography experiment was therefore analyzed according to the “intention-to-treat”
principle: deaths from breast cancer among those assigned to treatment—whether or not they
accepted—were counted in the treatment arm. Similarly, deaths among women assigned to the
control condition would have been charged to the control arm, even if these women sought out
screening. Intention-to-treat gives an unbiased estimate for the effect of assignment, and (in many
situations) a conservative estimate for the effect of treatment. Intention-to-treat is the standard
analysis for clinical trials.

Despite occasional bursts of controversy, the experiments gave solid evidence for the efficacy
of mammography: screening cuts the death rate from breast cancer by a factor of about two. See
International Agency for Research on Cancer (2002), Health Council of the Netherlands (2002),
Freedman, Petitti, and Robins (2004).

When there is crossover from the treatment arm to the control arm, and little if any crossover
in the other direction, there are robust estimates for the effect of treatment on the treated (Freedman,
Petitti, and Robins, 2004, p. 73). When there is crossover in both directions, estimating the effect
of treatment on the treated requires additional modeling assumptions. Under some circumstances,
econometric techniques like instrumental-variables regression may be helpful.

Intention-to-treat, and related analyses, may be useful alternatives for handling selection ef-
fects, because they are relatively simple, and depend on minimal assumptions about selection mech-
anisms. Such techniques are best applied to natural experiments, and data collection is likely to be
expensive. On the other hand, with a strong research design, causal inference can be persuasive.
There is an informative survey in Angrist and Krueger (2001).

6. A formal model

In the admissions study discussed earlier, GPA is observed only for subjects in the sample—the
ones who go to the college where the study is done. We present Heckman’s model in that context.
Subjects are indexed by i. Let Ci = 1 if subject i is in the sample, else Ci = 0. Let Xi be the
SAT score for subject i, and let Yi be the GPA. Assume that Xi is observed for all subjects (e.g., all
applicants) but Yi is observed only if Ci = 1. The model has two equations:

Yi = a + bXi + σUi, (1)

Ci = 1 if c + dXi + Vi > 0, else Ci = 0. (2)

The pairs (Ui, Vi) are assumed to be independent and identically distributed across subjects i,
and independent of theX’s. The common distribution of (Ui, Vi) is assumed to be bivariate normal,
with expected values equal to 0 and variances equal to 1; the correlation is ρ. The parameters in
the model are a, b, c, d, σ, ρ. The Ui and Vi are “latent” (unobserved) variables, which represent
unmeasured characteristics of the subjects.

Equation (1) is the “response equation:” it explains how Yi is related to Xi . The error term is
σUi , with expectation 0 and variance σ 2. Equation (2) is the “selection equation:” it explains how
subjects come to be in the sample. This equation involves the latent variable Vi . The two equations
are connected by the correlation ρ between Ui and Vi .
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The response equation may look like an ordinary regression equation, but there is a crucial
difference. The variable Yi is observed only for i in the sample. If i is in the sample, then Ui has a
non-zero conditional expectation: E(Ui |Ci = 1) �= 0, and E(Ui |Ci = 1) depends on i. Ordinary
least squares therefore gives biased estimates for a and b.

Using the two equations together leads to estimates that, with large samples, are nearly unbi-
ased. This works because equation (2) assumes a very particular mechanism for selection into the
sample: i is selected if c+ dXi + Vi > 0. Correspondingly, the expected value of Ui changes in a
very special way, controlled by the correlation ρ between Ui and Vi . If ρ = 0, then selection bias
is not an issue after all, and the second equation is unnecessary. Further details on the model and
estimation procedures will be found in the next section.

Other explanatory variables could be entered into (1) and (2), e.g., high school GPA, denoted
by Z:

Yi = a + bXi + cZi + σUi, (3)

Ci = 1 if d + eXi + fZi + Vi > 0, else Ci = 0. (4)

In typical applications, the choice of explanatory variables may seem a little arbitrary. So is the
functional form. Why linearity? Why are the coefficients the same for all subjects? The statistical
assumptions might raise other questions. Why do the latent variables have the same distribution
for all subjects? Why normality? Even the independence assumption may seem questionable in
competitive situations like college admissions: if one applicant gets in, another must be excluded.

7. Mathematical details

Our object here is to sketch Heckman’s two-stage estimation procedure, illustrated on equations
(1) and (2). Recall that (Ui, Vi) were assumed to be bivariate normal with E(Ui) = E(Vi) = 0,
var(Ui) = var(Vi) = 1, and the correlation is ρ; the U ’s and V ’s were assumed to be independent
of the X’s, and independent across subjects.

As a preliminary mathematical fact, there is a random variableWi with the following properties:

(i) Wi is normal with expectation 0 and variance 1,
(ii) Wi is independent of Vi and the X’s,

(iii) Ui = ρVi + √
1 − ρ2Wi .

Indeed, we can set Wi = (Ui − ρVi)/
√

1 − ρ2 and verify (i)-(ii)-(iii). In (ii), for instance, Wi is
independent of the X’s because Wi = (Ui − ρVi)/

√
1 − ρ2, and (Ui, Vi) is independent of the

X’s by assumption. Moreover, Wi is independent of Vi because the correlation between these two
variables is 0, and they are jointly normal. That in turn is because (Ui, Vi) were assumed to be
jointly normal.

We turn now to estimation. Equation (2) is a probit model, which can be estimated by maximum
likelihood. Actually, equations (1) and (2) could be estimated together using maximum likelihood.
However, Heckman suggested estimating (1) on its own, after putting in a new variable Mi to mop
up σE(Ui |Ci = 1):

Yi = a + bXi + qMi + error, where error = σUi − qMi. (5)

Besides the intercept, this equation has two explanatory variables, Xi and Mi . The equation can be
estimated by ordinary least squares, although generalized least squares might be preferable.
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The new explanatory variable needs to be put into a more explicit form. Condition on the X’s,
which can then be treated as constant:

σE(Ui |Ci = 1) = σE(Ui |Vi > −c − dXi)

= σρE(Vi |Vi > −c − dXi)

= σρM(c + dXi), (6)

where
M(v) = φ(v)/�(v), (7)

� being the standard normal distribution function, and φ = �′ its density. “Mills’ ratio” is
�(x)/φ(x), which is the inverse of M .

The normal distribution is relevant because, by assumption, Ui and Vi are standard normal
variables: P(Ui < x) = P(Vi < x) = �(x). The first equality in (6) comes from the selection
equation (2). To get the second equality, substituteUi = ρVi +

√
1 − ρ2Wi , then use properties (i)-

(ii) of Wi : E(Wi |Vi > −c − dXi) = E(Wi) by independence, and E(Wi) = 0. To get the last
equality, we must compute E(Vi |Vi > −v). This is an exercise in calculus, although the signs are
confusing. To begin with,

φ(x) = 1√
2π

e−x2/2, (8)

so xφ(x) is the derivative of −φ(x). Now

E(Vi |Vi > −v) = 1

P(Vi > −v)
∫ ∞

−v
xφ(x)dx

= φ(−v)
P (Vi > −v)

= φ(v)

P (−Vi < v)

= φ(v)

�(v)
= M(v). (9)

We cannot set Mi = M(c+dXi) in (5), because c and d are unknown. Heckman’s estimation
procedure begins by fitting the selection equation (2) to the data, using maximum likelihood. This
gives estimated values c̃ for c and d̃ for d. Next, set Mi = M(c̃ + d̃Xi), and fit

Yi = a + bXi + qMi + error (10)

to the data using least squares. That gives â, b̂, q̂. The estimates of main interest are usually â and
b̂, but q̂ would estimate σρ. When Heckman published his papers, estimating two equations by
maximum likelihood would have been a major-league enterprise: fitting one equation by maximum
likelihood and the other by least squares was a real simplification. Today, computers are much
faster. . . .

Heckman developed models to cover a variety of situations. Variables can be binary (yes/no),
or continuous; the response variables might be observed for all subjects, or just for subjects in the
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sample. In a study that compares incomes for college and high school graduates, the key explanatory
variable is binary, indicating whether the subject did or did not graduate from college. The response
variable (income) is continuous. Both variables are observed for all subjects in the study. Other
control variables could be added to the equations. In the admissions study, the explanatory variable
(SAT) and the response variable (GPA) are continuous; GPA is observed only for subjects in the
sample, as noted above. Other cases will not be discussed here.
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