What is the Error Term in a Regression Equation?
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It is often said that the error term in aregression equation represents the effect of the variables
that were omitted from the equation. Thisisunsatisfactory, evenin simple contexts, asthefollowing
discussion should indicate. Suppose subjects are 11D, and all variables are jointly normal with
expectation 0. Suppose the explanatory variables have variance 1. The explanatory variables may
becorrelated amongst themsel ves, but any p of them haveanon-singular p-dimensional distribution.
The parameters«; arereal. Let

o0
@ Y, = ZanU
j=1
Foreach p =1, 2,..., consider the regression model
p
2 Y; :Zanij+€i(P)
j=1
where
o
©) €(p) = Z o X
Jj=r+1

Theo; areidentifiable. If the X;; areindependent for j =1, 2, ..., the standard assumptions
hold, and¢; (p) doesindeed represent the effect on Y; of theomitted variables{X;; : j = p+1,...},
at least in an algebraic sense. On the other hand, if the X;; are dependent, the matter is problematic.
If wetake (1-3) aswritten, then ¢; (p) representsthe effect on Y; of the omitted variables—but €; (p)
is correlated with the explanatory variables. The standard assumptions fail, and fitting (2) to data
fori = 1,...,n will estimate the wrong parameters. If €;(p) is replaced by €; (p)*, namely, the
part of €; (p) independent of X;1, ..., X;,, wehave abonafide regression model, but with different
a’s.

There is no easy way out of the difficulty. The conventiona interpretation for error terms
needs to be reconsidered. At aminimum, something like thiswould need to be said: the error term
represents the combined effect of the omitted variables, assuming that

(i) the combined effect of the omitted variables is independent of each variable included in
the equation,
(ii) the combined effect of the omitted variables isindependent across subjects,
(iii) the combined effect of the omitted variables has expectation O.

Thisisdistinctly harder to swallow. Pratt and Schlaifer have a discussion in great depth.
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Some technical details

If the «; vanish for all but finitely many j, there are no technical issues. The inferential issue
remains, provided thelargest j witho; # Oisan unknown parameter. Suppose next that o; # O for
infinitely many j. Summability and identifiability must be demonstrated. To avoid interesting but
unnecessary probabilistic complications, suppose Zj loj| < oo. Fixi. Suppose aso that part of
each X;; : j =1,2,...isindependent of all the other X;;, and has L, norm at least > 0. More
specifically, let X;- be X;; netof {X;x 1k =1,..., pwithk # j}. Thus, we assume ||X$|| > 7,
where ||-|| isthe L2 norm. See below for definitions and some theory.

Now |le; (p)|l < Z}’iﬁl loej | is small, so the sum on the right hand side of (1) convergesin

Lp. Fix jand pwithl < j < p. Theregressionof ¢; (p) on{X;1, ..., X;,} hasasmall coefficient
on X;;, because
(i) €i(p) issmal,
(ii) we get the coefficient by regressing €; (p) on Xt and
(i) 1X;51 = n.
In more formal terms, by Lemma 2 below, aregression of ¥; on X;1, ..., X;, inthe random-

variable domain gives a coefficient on X;; of cov(Xl.#, Y)/var(Xl%). This coefficient is;, with an
error that is at most
cov(Xjj. ei(p) _ IX5llllei ()]

o0
-1 -1
< <n el <n jj] = O
var(X;) X512 ’ 2

Jj=p+1
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as p — oo. That provesidentifiability.

A mistake to avoid

Some may concludefrom theforgoing that bigger modelsare better. Perhaps, but (i) eventually
we run out of data, and (ii) there is aways the ugly possibility of inadvertently including an
endogenous variable. Also see exercise 15 on page 105 of Statistical Models for information on
standard errorsin the presence of misspecification. Kitchen-sink models have their problems too.

Regression in the domain of random variables

Changing notation, let g be a positive integer. Let U, ..., U,, V bejointly normal random
variables, each having expectation 0. Let C;; = cov(U;, U;). Thisisasymmetric g x g matrix,
assumed to be positive definite. Let D; = cov(U;, V). Take D = (D1, ..., D) asaq x 1 vector.
Let B= C~1D,whichisasoagq x 1lvector. Let V- =V — (Us, ..., U,) x B, ascalar random
variable.

Lemmal. (i) V+ isnormal with expectation 0, and (i) V- L (U, ..., U,) inthe sense that
cov(U;j, V) = E(U;V+) = 0foreach j = 1, ..., g. Inparticular, (iii) VX and (U, ..., U,) are
independent.

For the proof, assertion (i) isimmediate. For (ii), we need only check that

q q
cov(Uj, V) = cov(Uj, (Un....,Ug) x B) =Y _cov(Uj, Up) By = Y _ Cjx By
k=1 i=1



i.e, D =CB. But B=C~1D by construction, completing the proof.

Inshort, (Uy, ..., U,) x Bistheregressionof V on Uy, ..., Uy, the coefficient on U; is B;;
and V1 isthepart of V independent of Uy, . .., U,. Thisisaso“V netof Uy, ..., U,;.” Normality
isrelevant only to convert orthogonality into independence. Without normality, (Us, ..., U,) x B
isthelinear projection of V onto Uy, ..., Uy, i.e., thelinear combination of Uy, ..., U, closest to
V in Lo—because V -+ isorthogonal to Uy, . . ., U,. Thesimplest special casehasg = 1. Thenthe
regression coefficient takes a form that may be more familiar, cov(Uy, V) /var(Uy).

Lemma 2. The regression of V. on U = (Uy, ..., U,) can be computed by the following
stepwise procedure, with U = (U, . .., Uy).
(i) RegressV onUy, ..., U,. Leta bethe (g —1) x 1 vector of regression coefficients. Let
V=UaadV%t=V -V,
(i) RegressUyon Uy, ..., U,. Let B bethe (g — 1) x 1 vector of regression coefficients.
Let Uy = UB and Uit = Uy — U1
(iii) RegressV on UlL. Let ¢ bethe regression coefficient, a scalar.
The g x 1 vector of regression coefficientsof V on Uy, ..., U, isthen

(ajfy)

Proof. SinceV = V + VX and V L Uj-, whether we regress V on Ui~ or V- on U{-, the
coefficient on U~ will bethe same, viz., y. Soe = V- — Uity L Ui Plainly,e L Ua, ..., U,
because e isalinear combination of V- and Uj-. Thus,

V=V+Vt
(5 =V+Ufy+e
=Ua+ (Uy—UPB)y +¢
=Ury +U(a — By)

_ 14
_<a—ﬂy)U+€

withe L U, asrequired. To clarify the notation, U is1 x ¢ and U is 1 x (¢ — 1); both are random
vectors; V, V1, U1, Ui, e are dl scalar random variables. If Uy, ..., U,, V are taken asjointly
normal, these derived quantities are jointly normal too. The quantities «, 8, y are parameters not
estimates, being computed from the joint distribution not from data. Exercise 17 on page 34 of
Satistical Models coversregression in the datadomain using amethod exactly likethat in Lemma2,
although the notation is little different.

References

Freedman DA (2005). Satistical Models: Theory and Practice. Cambridge University Press.

Pratt J, Schlaifer R (1984). On the Nature and Discovery of Structure. Journal of the American
Satistical Association 79: 9-21.



Pratt J, Schlaifer R (1988). Onthelnterpretation and Observation of Laws. Journal of Econometrics
39: 23-52.

Notes for Statistics 215
Department of Statistics

UC Berkeley, CA 94720-3860
November, 2005



