Consider random variables which are orthogonal, with mean 0 and variance 1 , and uniformly bounded fourth moments. The CLT need not hold-i.e., the sum need not be asymptotically normal-because independence is not assumed. (The CLT, being a theorem, remains true.) We present several examples, normalizing the sum $S_{n}=X_{1}+\cdots X_{n}$ by \sqrt{n}, or by

$$
D_{n}=\sqrt{\sum_{j=1}^{n} X_{j}^{2}}
$$

The examples are relevant to general forms of the OLS model $Y=M \beta+\epsilon$ that require only $\operatorname{cov}(\epsilon \mid M)=\sigma^{2} I_{n \times n}$ rather than IID errors; normalization by D_{n} is akin to normalizing regression statistics by $\hat{\sigma}$. The punchline: the usual asymptotics need not hold for the OLS estimator $\hat{\beta}$, without the assumption of IID errors given M. (We write M for the design matrix to avoid confusion with the random variables X_{j}.)
(*) Conditions. The X_{j} have $E\left(X_{j}\right)=0$ and $E\left(X_{j}^{2}\right)=1$. Furthermore $E\left(X_{j}^{4}\right)$ is uniformly bounded, and $E\left(X_{j} X_{k}\right)=0$ for $j \neq k$.

Example 1. Let Z and $\left\{Y_{j}\right\}$ be independent. Suppose the Y_{j} are independent, $E\left(Y_{j}\right)=0$, $E\left(Z^{2}\right)=E\left(Y_{j}^{2}\right)=1$. Finally, suppose $E\left(Z^{4}\right)$ and $E\left(Y_{j}^{4}\right)$ are finite. Let $X_{j}=Z Y_{j}$. These random variables satisfy the conditions $(*)$, but S_{n} / \sqrt{n} isn't asymptotically normal: the limiting distribution is normal, multiplied by Z. Normalizing by D_{n} does give asymptotic normality, because Z cancels.

Example 2. Let $U_{j}=0$ or $\sqrt{2}$ be a sequence of random variables constructed as follows. With probability $1 / 2$, the sequence consists of a long block of 0 's, followed by a very long block of $\sqrt{2}$'s, followed by a very very long block of 0 's, etc. With the remaining probability $1 / 2$, the 0 's and $\sqrt{2}$'s are interchanged. The Y_{j} are IID ± 1 with probability $1 / 2$, independent of $\left\{U_{j}\right\}$. Let $X_{j}=U_{j} Y_{j}$. Again, these random variables satisfy the conditions (*). Clearly, $\max _{j} U_{j}^{2}=2$ and $D_{n}^{2} \rightarrow \infty$, so $\max _{j \leq n} U_{j}^{2}=o\left(D_{n}^{2}\right)$. Furthermore, $\operatorname{var}\left(S_{n} \mid U\right)=D_{n}^{2}$. Thus, S_{n} / D_{n} is asymptotically normal. With rapidly increasing block length, D_{n}^{2} / n oscillates between $0+$ and $2-$. So S_{n} / \sqrt{n} isn't asymptotically normal.

Our next example involves $\xi_{j}=\sin (j \theta)$, where θ is uniform on the circle $[0,2 \pi)$ and j is an integer, the main interest is $j=1,2, \ldots$. If $z_{j}=\exp (i j \theta)$ with $i=\sqrt{-1}$ and $\exp (z)=e^{z}$, then ξ_{j} is the imaginary part of $z_{j}=\cos (j \theta)+i \sin (j \theta)$. The next lemma follows by computing moments.

Lemma 2. The z_{j} all have the same distribution; furthermore, for each j, as $n \rightarrow \infty$, the joint distribution of z_{n} and z_{j} converges weak-star, the two variables becoming independent.

Lemma 3.

(i) $E\left(\xi_{j}\right)=0$; in fact, all odd moments vanish.
(ii) $E\left(\xi_{j}^{2}\right)=1 / 2$ and $E\left(\xi_{j}^{4}\right)=3 / 8$.
(iii) $E\left(\xi_{j} \xi_{k}\right)=0$ for $j \neq k$.
(iv) $\sum_{j=1}^{n} \cos (j \theta)$ is the real part of

$$
\Psi_{n}(\theta)=\frac{e^{(n+1) i \theta}-e^{i \theta}}{e^{i \theta}-1}
$$

and $\sum_{j=1}^{n} \sin (j \theta)$ is the imaginary part.
(v) $\sum_{j=1}^{n} \sin ^{2}(j \theta)=\frac{1}{2}\left(n-q_{n}\right)$ where $q_{n}=\sum_{j=1}^{n} \cos (2 j \theta)$ is the real part of $\Psi_{n}(2 \theta)$.

Example 3. Let $X_{j}=\sqrt{2} \xi_{j}$. Conditions $(*)$ are satisfied. However, S_{n} converges in distribution, and D_{n}^{2} is of order n. Whether we normalize S_{n} by \sqrt{n} or D_{n}-or not at all-there is no asymptotic normality.

Sourav Chatterjee suggested that examples could be based on U-statistics. For $\ell=1,2, \ldots$, let the U_{ℓ} be IID, with $P\left(U_{\ell}= \pm 1\right)=1 / 2$. Let

$$
Q_{n}=\sum_{1 \leq j \neq k \leq n} U_{j} U_{k}=\left(\sum_{\ell=1}^{n} U_{\ell}\right)^{2}-\left(\sum_{\ell=1}^{n} U_{\ell}^{2}\right)
$$

whose distribution is asymptotic to $n\left(\chi_{1}^{2}-1\right)$. Note that $Q_{n+1}-Q_{n}=2\left(\sum_{\ell=1}^{n} U_{\ell}\right) U_{n+1}$.
Example 4. Let $T_{j}=\sum_{\ell=1}^{j} U_{\ell} / \sqrt{j}$ and let $X_{j+1}=T_{j} U_{j+1}$ for $j=1,2, \ldots$ Let $X_{1}=U_{1}$. Conditions $(*)$ are easily verified; for the rest, we rely on simulations. To begin with, S_{n} is very skewed to the right, so cannot be asymptotically normal. On the other hand, S_{n} / D_{n}-although not far from normal-has a negative mean. We can replace T_{j} by $f\left(T_{j}\right)$ for suitable functions f, although var $f\left(T_{j}\right)$ may then depend a little on j and n. If $f(x)=x^{6}$, then S_{n} itself has a much longer tail than the normal; indeed, S_{n} is roughly like a symmetrized \log normal variable. By contrast, S_{n} / D_{n} is short-tailed and bimodal. (Numerator and denominator are somewhat dependent.) Neither S_{n} / \sqrt{n} nor S_{n} / D_{n} is asymptotically normal.

Back-of-the-envelope arguments suggest

$$
\begin{gather*}
\frac{1}{\sqrt{n}} \sum_{j=1}^{n} f\left(\frac{1}{\sqrt{j}} \sum_{\ell=1}^{j} U_{\ell}\right) U_{j+1} \rightarrow \int_{0}^{1} f\left(B_{t} / \sqrt{t}\right) d B_{t} \tag{1}\\
\frac{1}{n} D_{n}^{2}=\frac{1}{n} \sum_{j=1}^{n} f\left(\frac{1}{\sqrt{j}} \sum_{\ell=1}^{j} U_{\ell}\right)^{2} \rightarrow \int_{0}^{1} f\left(B_{t} / \sqrt{t}\right)^{2} d t \tag{2}
\end{gather*}
$$

where B is Brownian motion. Because the summands are uncorrelated,

$$
\begin{equation*}
\operatorname{var}\left\{\frac{1}{\sqrt{n}} \sum_{j=1}^{n / K} f\left(\frac{1}{\sqrt{j}} \sum_{\ell=1}^{j} U_{\ell}\right) U_{j+1}\right\}=\frac{1}{n} \sum_{j=1}^{n / K} \operatorname{var}\left\{f\left(\frac{1}{\sqrt{j}} \sum_{\ell=1}^{j} U_{\ell}\right)\right\}=O\left(\frac{1}{K}\right) \tag{3}
\end{equation*}
$$

Likewise,

$$
\begin{equation*}
E\left\{\frac{1}{n} \sum_{j=1}^{n / K}\left[f\left(\frac{1}{\sqrt{j}} \sum_{\ell=1}^{j} U_{\ell}\right)\right]^{2}\right\}=\frac{1}{n} \sum_{j=1}^{n / K} E\left\{\left[f\left(\frac{1}{\sqrt{j}} \sum_{\ell=1}^{j} U_{\ell}\right)\right]^{2}\right\}=O\left(\frac{1}{K}\right) \tag{4}
\end{equation*}
$$

The singularity near 0 therefore seems unimportant.
Example 5. (Chaterjee.) Let the summands be $U_{j} U_{k}$, with $j<k$ ordered by k and within k by j. Summands are identically distributed, taking the values ± 1 with probability $1 / 2$ each. The summands have mean 0 ; the square of each summand is identically 1 ; summands are orthogonal. Consider the subsequence $m_{n}=n(n+1) / 2$ where the sum $S_{m_{n}}$ is

$$
\sum_{1 \leq j<k \leq n} U_{j} U_{k}=\frac{1}{2}\left[\left(\sum_{\ell=1}^{n} U_{\ell}\right)^{2}-\left(\sum_{\ell=1}^{n} U_{\ell}^{2}\right)\right] \sim \frac{1}{2} n\left(\chi_{1}^{2}-1\right)
$$

We normalize by $\sqrt{n(n+1) / 2} \doteq n / \sqrt{2}$; the limiting distribution is $\left(\chi_{1}^{2}-1\right) / \sqrt{2}$.
Convergence seems to hold along the full sequence of n 's. More specifically, suppose $m_{n} \leq$ $m \leq m_{n+1}$. The normalizing $\sqrt{m} \sim n$. The difference between the sum at m and at $n(n+1) / 2$ is a sum of order n terms, which is $O_{P}(\sqrt{n})=O_{P}(\sqrt[4]{m})$. After division by \sqrt{m}, the difference is $O_{P}(1 / \sqrt[4]{m})$.

The distribution of $\left(\chi_{1}^{2}-1\right) / \sqrt{2}$ has mean 0 and variance 1 , but is longer-tailed than $\mathrm{N}(0,1)$. For instance,

$$
P\left\{\left(\chi_{1}^{2}-1\right) / \sqrt{2}>2.6\right\}=P\left\{Z^{2}>1+2.6 \sqrt{2}\right\}=.03
$$

while $P\{|Z|>2.6\}=.009$, where Z is $\mathrm{N}(0,1)$. The tail area is off by a factor of 3 , and it gets worse further out. On the other hand, annoyingly,

$$
P\left\{\left(\chi_{1}^{2}-1\right) / \sqrt{2}>2\right\}=P\{|Z|>\sqrt{1+2 \sqrt{2}}\} \doteq P\{|Z|>1.96\} \doteq .05
$$

The first probability is one-sided:

$$
P\left\{\left(\chi_{1}^{2}-1\right) / \sqrt{2}<-2\right\}=P\left\{Z^{2}<1-2 \sqrt{2}\right\}=0
$$

but the symmetric tail area is very close.
Steve Evans has another construction, which gives a sequence X_{1}, X_{2}, \ldots of uncorrelated random variables having mean 0 and variance 1 , with subsequences of

$$
\mathscr{L}\left\{\left(X_{1}+\cdots+X_{n}\right) / \sqrt{n}\right\}
$$

close to any distribution with mean 0 and variance 1 .
For regression asymptotics assuming independent errors, see
http://www.stat.berkeley.edu/users/census/Ftest.pdf

