Orthogonality Does Not Imply Asymptotic Normality Statistics 215

DA Freedman October 2007

Consider random variables which are orthogonal, with mean 0 and variance 1, and uniformly bounded fourth moments. The CLT need not hold—i.e., the sum need not be asymptotically normal—because independence is not assumed. (The CLT, being a theorem, remains true.) We present several examples, normalizing the sum $S_n = X_1 + \cdots + X_n$ by \sqrt{n} , or by

$$D_n = \sqrt{\sum_{j=1}^n X_j^2}.$$

The examples are relevant to general forms of the OLS model $Y = M\beta + \epsilon$ that require only $\operatorname{cov}(\epsilon|M) = \sigma^2 I_{n \times n}$ rather than IID errors; normalization by D_n is akin to normalizing regression statistics by $\hat{\sigma}$. The punchline: the usual asymptotics need not hold for the OLS estimator $\hat{\beta}$, without the assumption of IID errors given M. (We write M for the design matrix to avoid confusion with the random variables X_i .)

(*) Conditions. The X_j have $E(X_j) = 0$ and $E(X_j^2) = 1$. Furthermore $E(X_j^4)$ is uniformly bounded, and $E(X_j X_k) = 0$ for $j \neq k$.

Example 1. Let Z and $\{Y_j\}$ be independent. Suppose the Y_j are independent, $E(Y_j) = 0$, $E(Z^2) = E(Y_j^2) = 1$. Finally, suppose $E(Z^4)$ and $E(Y_j^4)$ are finite. Let $X_j = ZY_j$. These random variables satisfy the conditions (*), but S_n/\sqrt{n} isn't asymptotically normal: the limiting distribution is normal, multiplied by Z. Normalizing by D_n does give asymptotic normality, because Z cancels.

Example 2. Let $U_j = 0$ or $\sqrt{2}$ be a sequence of random variables constructed as follows. With probability 1/2, the sequence consists of a long block of 0's, followed by a very long block of $\sqrt{2}$'s, followed by a very very long block of 0's, etc. With the remaining probability 1/2, the 0's and $\sqrt{2}$'s are interchanged. The Y_j are IID ± 1 with probability 1/2, independent of $\{U_j\}$. Let $X_j = U_j Y_j$. Again, these random variables satisfy the conditions (*). Clearly, $\max_j U_j^2 = 2$ and $D_n^2 \to \infty$, so $\max_{j \le n} U_j^2 = o(D_n^2)$. Furthermore, $\operatorname{var}(S_n | U) = D_n^2$. Thus, S_n/D_n is asymptotically normal. With rapidly increasing block length, D_n^2/n oscillates between 0+ and 2-. So S_n/\sqrt{n} isn't asymptotically normal.

Our next example involves $\xi_j = \sin(j\theta)$, where θ is uniform on the circle $[0, 2\pi)$ and j is an integer; the main interest is j = 1, 2, ... If $z_j = \exp(ij\theta)$ with $i = \sqrt{-1}$ and $\exp(z) = e^z$, then ξ_j is the imaginary part of $z_j = \cos(j\theta) + i\sin(j\theta)$. The next lemma follows by computing moments.

Lemma 2. The z_j all have the same distribution; furthermore, for each j, as $n \to \infty$, the joint distribution of z_n and z_j converges weak-star, the two variables becoming independent.

Lemma 3.

- (i) $E(\xi_i) = 0$; in fact, all odd moments vanish.
- (ii) $E(\xi_i^2) = 1/2$ and $E(\xi_i^4) = 3/8$.
- (iii) $E(\xi_i \xi_k) = 0$ for $j \neq k$.
- (iv) $\sum_{i=1}^{n} \cos(i\theta)$ is the real part of

$$\Psi_n(\theta) = \frac{e^{(n+1)i\theta} - e^{i\theta}}{e^{i\theta} - 1},$$

and $\sum_{j=1}^{n} \sin(j\theta)$ is the imaginary part.

(v)
$$\sum_{j=1}^{n} \sin^2(j\theta) = \frac{1}{2}(n-q_n)$$
 where $q_n = \sum_{j=1}^{n} \cos(2j\theta)$ is the real part of $\Psi_n(2\theta)$.

Example 3. Let $X_j = \sqrt{2}\xi_j$. Conditions (*) are satisfied. However, S_n converges in distribution, and D_n^2 is of order *n*. Whether we normalize S_n by \sqrt{n} or D_n —or not at all—there is no asymptotic normality.

Sourav Chatterjee suggested that examples could be based on *U*-statistics. For $\ell = 1, 2, ...,$ let the U_{ℓ} be IID, with $P(U_{\ell} = \pm 1) = 1/2$. Let

$$Q_n = \sum_{1 \le j \ne k \le n} U_j U_k = \left(\sum_{\ell=1}^n U_\ell\right)^2 - \left(\sum_{\ell=1}^n U_\ell^2\right)$$

whose distribution is asymptotic to $n(\chi_1^2 - 1)$. Note that $Q_{n+1} - Q_n = 2(\sum_{\ell=1}^n U_\ell)U_{n+1}$.

Example 4. Let $T_j = \sum_{\ell=1}^{J} U_\ell / \sqrt{j}$ and let $X_{j+1} = T_j U_{j+1}$ for j = 1, 2, ... Let $X_1 = U_1$. Conditions (*) are easily verified; for the rest, we rely on simulations. To begin with, S_n is very skewed to the right, so cannot be asymptotically normal. On the other hand, S_n/D_n —although not far from normal—has a negative mean. We can replace T_j by $f(T_j)$ for suitable functions f, although var $f(T_j)$ may then depend a little on j and n. If $f(x) = x^6$, then S_n itself has a much longer tail than the normal; indeed, S_n is roughly like a symmetrized log normal variable. By contrast, S_n/D_n is short-tailed and bimodal. (Numerator and denominator are somewhat dependent.) Neither S_n/\sqrt{n} nor S_n/D_n is asymptotically normal.

Back-of-the-envelope arguments suggest

$$\frac{1}{\sqrt{n}} \sum_{j=1}^{n} f\left(\frac{1}{\sqrt{j}} \sum_{\ell=1}^{j} U_{\ell}\right) U_{j+1} \to \int_{0}^{1} f(B_{t}/\sqrt{t}) dB_{t}$$
(1)

$$\frac{1}{n}D_n^2 = \frac{1}{n}\sum_{j=1}^n f\left(\frac{1}{\sqrt{j}}\sum_{\ell=1}^j U_\ell\right)^2 \to \int_0^1 f(B_t/\sqrt{t})^2 dt$$
(2)

where B is Brownian motion. Because the summands are uncorrelated,

$$\operatorname{var}\left\{\frac{1}{\sqrt{n}}\sum_{j=1}^{n/K} f\left(\frac{1}{\sqrt{j}}\sum_{\ell=1}^{j} U_{\ell}\right) U_{j+1}\right\} = \frac{1}{n}\sum_{j=1}^{n/K} \operatorname{var}\left\{f\left(\frac{1}{\sqrt{j}}\sum_{\ell=1}^{j} U_{\ell}\right)\right\} = O\left(\frac{1}{K}\right)$$
(3)

Likewise,

$$E\left\{\frac{1}{n}\sum_{j=1}^{n/K} \left[f\left(\frac{1}{\sqrt{j}}\sum_{\ell=1}^{j}U_{\ell}\right)\right]^{2}\right\} = \frac{1}{n}\sum_{j=1}^{n/K} E\left\{\left[f\left(\frac{1}{\sqrt{j}}\sum_{\ell=1}^{j}U_{\ell}\right)\right]^{2}\right\} = O\left(\frac{1}{K}\right)$$
(4)

The singularity near 0 therefore seems unimportant.

Example 5. (Chaterjee.) Let the summands be U_jU_k , with j < k ordered by k and within k by j. Summands are identically distributed, taking the values ± 1 with probability 1/2 each. The summands have mean 0; the square of each summand is identically 1; summands are orthogonal. Consider the subsequence $m_n = n(n + 1)/2$ where the sum S_{m_n} is

$$\sum_{1 \le j < k \le n} U_j U_k = \frac{1}{2} \left[\left(\sum_{\ell=1}^n U_\ell \right)^2 - \left(\sum_{\ell=1}^n U_\ell^2 \right) \right] \sim \frac{1}{2} n(\chi_1^2 - 1)$$

We normalize by $\sqrt{n(n+1)/2} \doteq n/\sqrt{2}$; the limiting distribution is $(\chi_1^2 - 1)/\sqrt{2}$.

Convergence seems to hold along the full sequence of *n*'s. More specifically, suppose $m_n \le m \le m_{n+1}$. The normalizing $\sqrt{m} \sim n$. The difference between the sum at *m* and at n(n+1)/2 is a sum of order *n* terms, which is $O_P(\sqrt{n}) = O_P(\sqrt[4]{m})$. After division by \sqrt{m} , the difference is $O_P(1/\sqrt[4]{m})$.

The distribution of $(\chi_1^2 - 1)/\sqrt{2}$ has mean 0 and variance 1, but is longer-tailed than N(0,1). For instance,

$$P\{(\chi_1^2 - 1)/\sqrt{2} > 2.6\} = P\{Z^2 > 1 + 2.6\sqrt{2}\} = .03,$$

while $P\{|Z| > 2.6\} = .009$, where Z is N(0,1). The tail area is off by a factor of 3, and it gets worse further out. On the other hand, annoyingly,

$$P\{(\chi_1^2 - 1)/\sqrt{2} > 2\} = P\{|Z| > \sqrt{1 + 2\sqrt{2}}\} \doteq P\{|Z| > 1.96\} \doteq .05,$$

The first probability is one-sided:

$$P\{(\chi_1^2 - 1)/\sqrt{2} < -2\} = P\{Z^2 < 1 - 2\sqrt{2}\} = 0,$$

but the symmetric tail area is very close.

Steve Evans has another construction, which gives a sequence $X_1, X_2, ...$ of uncorrelated random variables having mean 0 and variance 1, with subsequences of

$$\mathcal{L}\left\{(X_1+\cdots+X_n)/\sqrt{n}\right\}$$

close to any distribution with mean 0 and variance 1.

For regression asymptotics assuming independent errors, see

http://www.stat.berkeley.edu/users/census/Ftest.pdf