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Consider random variables which are orthogonal, with mean 0 and variance 1, and uniformly
bounded fourth moments. The CLT need not hold—i.e., the sum need not be asymptotically
normal—because independence is not assumed. (The CLT, being a theorem, remains true.) We
present several examples, normalizing the sum Sn = X1 + · · ·Xn by

√
n, or by

Dn =
√√√√ n∑
j=1

X2
j .

The examples are relevant to general forms of the OLS model Y = Mβ + ε that require only
cov(ε|M) = σ 2In×n rather than IID errors; normalization by Dn is akin to normalizing regression
statistics by σ̂ . The punchline: the usual asymptotics need not hold for the OLS estimator β̂, without
the assumption of IID errors givenM . (We writeM for the design matrix to avoid confusion with
the random variables Xj .)

(∗) Conditions. The Xj have E(Xj ) = 0 and E(X2
j ) = 1. Furthermore E(X4

j ) is uniformly
bounded, and E(XjXk) = 0 for j 	= k.

Example 1. Let Z and {Yj } be independent. Suppose the Yj are independent, E(Yj ) = 0,
E(Z2) = E(Y 2

j ) = 1. Finally, supposeE(Z4) andE(Y 4
j ) are finite. LetXj = ZYj . These random

variables satisfy the conditions (∗), but Sn/
√
n isn’t asymptotically normal: the limiting distribution

is normal, multiplied byZ. Normalizing byDn does give asymptotic normality, becauseZ cancels.

Example 2. Let Uj = 0 or
√

2 be a sequence of random variables constructed as follows.
With probability 1/2, the sequence consists of a long block of 0’s, followed by a very long block
of

√
2’s, followed by a very very long block of 0’s, etc. With the remaining probability 1/2, the

0’s and
√

2’s are interchanged. The Yj are IID ±1 with probability 1/2, independent of {Uj }. Let
Xj = UjYj . Again, these random variables satisfy the conditions (∗). Clearly, maxj U2

j = 2 and

D2
n → ∞, so maxj≤n U2

j = o(D2
n). Furthermore, var(Sn|U) = D2

n. Thus, Sn/Dn is asymptotically

normal. With rapidly increasing block length, D2
n/n oscillates between 0+ and 2−. So Sn/

√
n

isn’t asymptotically normal.

Our next example involves ξj = sin(jθ), where θ is uniform on the circle [0, 2π) and j is
an integer; the main interest is j = 1, 2, . . . . If zj = exp(ijθ) with i = √−1 and exp(z) = ez,
then ξj is the imaginary part of zj = cos(jθ) + i sin(jθ). The next lemma follows by computing
moments.

Lemma 2. The zj all have the same distribution; furthermore, for each j , as n→ ∞, the joint
distribution of zn and zj converges weak-star, the two variables becoming independent.
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Lemma 3.

(i) E(ξj ) = 0; in fact, all odd moments vanish.

(ii) E(ξ2
j ) = 1/2 and E(ξ4

j ) = 3/8.

(iii) E(ξj ξk) = 0 for j 	= k.
(iv)

∑n
j=1 cos(jθ) is the real part of

�n(θ) = e(n+1)iθ − eiθ
eiθ − 1

,

and
∑n
j=1 sin(jθ) is the imaginary part.

(v)
∑n
j=1 sin2(jθ) = 1

2 (n− qn) where qn = ∑n
j=1 cos(2jθ) is the real part of �n(2θ).

Example 3. Let Xj = √
2ξj . Conditions (∗) are satisfied. However, Sn converges in distri-

bution, and D2
n is of order n. Whether we normalize Sn by

√
n or Dn—or not at all—there is no

asymptotic normality.

Sourav Chatterjee suggested that examples could be based on U -statistics. For � = 1, 2, . . . ,
let the U� be IID, with P(U� = ±1) = 1/2. Let

Qn =
∑

1≤j 	=k≤n
UjUk =

( n∑
�=1

U�

)2 −
( n∑
�=1

U2
�

)

whose distribution is asymptotic to n(χ2
1 − 1). Note thatQn+1 −Qn = 2

( ∑n
�=1 U�

)
Un+1.

Example 4. Let Tj = ∑j
�=1 U�/

√
j and let Xj+1 = TjUj+1 for j = 1, 2, . . . . Let X1 = U1.

Conditions (∗) are easily verified; for the rest, we rely on simulations. To begin with, Sn is very
skewed to the right, so cannot be asymptotically normal. On the other hand, Sn/Dn—although
not far from normal—has a negative mean. We can replace Tj by f (Tj ) for suitable functions f ,
although varf (Tj )may then depend a little on j andn. Iff (x) = x6, thenSn itself has a much longer
tail than the normal; indeed, Sn is roughly like a symmetrized log normal variable. By contrast,
Sn/Dn is short-tailed and bimodal. (Numerator and denominator are somewhat dependent.) Neither
Sn/

√
n nor Sn/Dn is asymptotically normal.

Back-of-the-envelope arguments suggest

1√
n

n∑
j=1

f
( 1√
j

j∑
�=1

U�

)
Uj+1 →

∫ 1

0
f (Bt/

√
t)dBt (1)

1

n
D2
n = 1

n

n∑
j=1

f
( 1√
j

j∑
�=1

U�

)2 →
∫ 1

0
f (Bt/

√
t)2dt (2)
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where B is Brownian motion. Because the summands are uncorrelated,

var




1√
n

n/K∑
j=1

f
( 1√
j

j∑
�=1

U�

)
Uj+1


 = 1

n

n/K∑
j=1

var


f

( 1√
j

j∑
�=1

U�

)
 = O

(
1

K

)
(3)

Likewise,

E




1

n

n/K∑
j=1

[
f

( 1√
j

j∑
�=1

U�

)]2


 = 1

n

n/K∑
j=1

E




[
f

( 1√
j

j∑
�=1

U�

)]2


 = O

(
1

K

)
(4)

The singularity near 0 therefore seems unimportant.

Example 5. (Chaterjee.) Let the summands be UjUk , with j < k ordered by k and within k
by j . Summands are identically distributed, taking the values ±1 with probability 1/2 each. The
summands have mean 0; the square of each summand is identically 1; summands are orthogonal.
Consider the subsequence mn = n(n+ 1)/2 where the sum Smn is

∑
1≤j<k≤n

UjUk = 1

2

[( n∑
�=1

U�

)2 −
( n∑
�=1

U2
�

)]
∼ 1

2
n(χ2

1 − 1)

We normalize by
√
n(n+ 1)/2

.= n/√2; the limiting distribution is (χ2
1 − 1)/

√
2.

Convergence seems to hold along the full sequence of n’s. More specifically, suppose mn ≤
m ≤ mn+1. The normalizing

√
m ∼ n. The difference between the sum at m and at n(n + 1)/2

is a sum of order n terms, which is OP (
√
n) = OP ( 4

√
m). After division by

√
m, the difference is

OP (1/ 4
√
m).

The distribution of (χ2
1 − 1)/

√
2 has mean 0 and variance 1, but is longer-tailed than N(0,1).

For instance,
P

{
(χ2

1 − 1)/
√

2 > 2.6
} = P {

Z2 > 1 + 2.6
√

2
} = .03,

while P
{|Z| > 2.6

} = .009, where Z is N(0,1). The tail area is off by a factor of 3, and it gets
worse further out. On the other hand, annoyingly,

P
{
(χ2

1 − 1)/
√

2 > 2
} = P

{
|Z| >

√
1 + 2

√
2
}
.= P {|Z| > 1.96} .= .05,

The first probability is one-sided:

P {(χ2
1 − 1)/

√
2 < −2} = P {Z2 < 1 − 2

√
2} = 0,

but the symmetric tail area is very close.

Steve Evans has another construction, which gives a sequence X1, X2, . . . of uncorrelated
random variables having mean 0 and variance 1, with subsequences of

L
{
(X1 + · · · +Xn)/√n

}
close to any distribution with mean 0 and variance 1.

For regression asymptotics assuming independent errors, see

http://www.stat.berkeley.edu/users/census/Ftest.pdf
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