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1) Let x andw be fixed n-vectors with mean 0. Let (δi, εi) be IID pairs of normal random variables,
with expectation 0, varianceσ 2 and τ 2 respectively, and correlationρ �= 0. We consider a regression
model where the design matrix X is n× 2. The first column is fixed. It is x. The second column is
random. It is w + δ. The response variable in the model is

Y = X
(
a

b

)
+ ε.

Suppose
1

n

∑
i=1

x2
i → 1,

1

n

∑
i=1

w2
i → 1,

1

n

∑
i=1

xiwi → r

with −1 < r < 1.

(a) Show that the first column of X is exogenous and the second is endogenous.

(b) Show that
1

n
X′X →

(
1 r

r 1 + σ 2

)
.

Here and below, convergence is almost sure, but you may elect just to demonstrate con-
vergence in probability.

(c) Show that

n(X′X)−1 → 1

1 + σ 2 − r2

(
1 + σ 2 −r

−r 1

)
.

(d) Show that
1

n
X′Y →

(
a + br

ar + b(1 + σ 2)+ cσ 2

)

where c = ρτ/σ .

(e) Show that the OLS estimate â is asymptotically biased downward by

rcσ 2

1 + σ 2 − r2 .

(f) Show that endogeneity bias affects â unless r = 0.

(g) Can endogeneity bias be positive?

2) Consider the model
Y = Xβ + ε

where β is a p × 1 parameter vector. The design matrix X is n × p, random, of full rank, but
endogenous. The εi are IID for i = 1, . . . , n with E(εi) = 0. Happily, E(ε|X) is a linear
combination of the first p0 columns of X, where 1 ≤ p0 < p.
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(a) Why isn’t E(ε|X) = 0?

(b) Show that endogeneity bias affects only the firstp0 components ofβ. Hint: LetE(ε|X) =
Xγ . Then

Y = X(β + γ )+ [
ε − E(ε|X)].

What is E
{
(X′X)−1X′Y

∣∣X}?
(c) Suppose var(ε|X) = σ 2In×n. Can you get an unbiased estimate for σ 2?

(d) If n is large, can you get an approximate 95% confidence interval for βp? You may assume
that p is fixed and X′X/n converges to a p × p matrix that is positive definite.

The big picture. If some regressors are endogenous, OLS estimates—even for the coefficients of
exogenous regressors—are going to be biased. So the bias spreads from the endogenous regressors
to the exogenous ones. Under supplementary conditions, the bias remains localized. Similar
conclusions apply to IVLS. Generally, random errors like δ and ε would not be observable, and
E(ε|X) would be unknown. Thus, conditions for localization of bias are not readily checkable.
Also see

http://www.stat.berkeley.edu/users/census/socident.pdf

What about probits and logits? Let Xi, Zi,Wi be independent N(0, 1) variables for i = 1, . . . , n,
where n is large. Let 0 < ρ < 1. Let Ui = ρXi + √

1 − ρ2Wi . Let a, b, c be real numbers.
Consider a probit model where Ui is the latent variable, and the response variable Yi is defined as
follows:

Yi = 1 if a + bXi + cZi + Ui > 0,

else Yi = 0.

(a) Show that Ui is N(0, 1) and Zi is independent of (Xi, Ui).

(b) Is Xi endogenous or exogenous? What about Zi?

(c) Let  be the standard normal distribution function. Show that

P(Yi = 1|Xi, Zi) =  
(

a√
1 − ρ2

+ b + ρ√
1 − ρ2

Xi + c√
1 − ρ2

Zi

)
.

(d) An investigator fits a probit model to the data by the usual procedure, ignoring fine points
like exogeneity of regressors. Show that the estimated intercept is nearly a/

√
1 − ρ2, the

estimated coefficient ofXi is nearly (b+ρ)/√1 − ρ2, and the estimated coefficent of Zi
is nearly c/

√
1 − ρ2. This will take a fair amount of work; simulation might be easier.

Comments.

(i) If you use glmfit in the MATLAB toolbox, try small values for a, b, c, e.g., ρ = .5, a = .1,
b = .2, c = .3. If you try a = 1, b = 2, c = 3 in release 7.0, you will see the dark side of numerical
maximization; by release 7.4, the algorithm works much better.

(ii) Randomizing Z was just a convenient way to describe the data.
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(iii) The probit is even more sensitive to endogeneity than OLS. In our example, conditioning
onX changed the variance ofU , which made the endogeneity bias spread fromX toZ, even though
Z is independent of X,U .

(iv) The endogeneity problem can easily be put into the response schedule framework. We
make the construction more similar to the OLS example, as follows. Suppose theUi are IIDN(0, 1)
variables, while a, b, c are parameters. The response schedule for the 0–1 variable Y is

Yi,x,z = 1 if a + bx + cz+ Ui > 0 else Yi,x,z = 0 (∗)

Let Wi be another sequence of IID random variables that are N(0, 1) and independent of the Ui .
Let si and zi be sequences of fixed real numbers, with

1

n

n∑
i=1

si → ms,
1

n

n∑
i=1

s2
i → m2,s ,

1

n

n∑
i=1

zi → mz,
1

n

n∑
i=1

z2
i → m2,z,

1

n

n∑
i=1

sizi → ms,z

We require all limits to be finite, and m2,z > m2
z . Let −1 < ρ < 1 be another parameter. To

compute Yi , Nature substitutes Xi = si + ρUi + √
1 − ρ2Wi for x and zi for z in (∗). The

observables are
Yi = Yi,Xi ,zi , Xi, zi

A probit regression of Yi on Xi and zi will produce biased estimates for a, b, c, because

P {Yi = 1|Xi = xi} =  
(
a − ρsi + (b + ρ)xi + czi√

1 − ρ2

)

Taking si ≡ 0 simplifies the calculations. Otherwise, there is another component of variance to
deal with; if si is correlated with zi , that has to be reckoned with as well.

(v) If we ignore small amounts of bias, N(0, 1) latents are not de rigeur in the probit model.
Conditional on the regressors, we really do need the latents to be nearly independent across subjects,
with means that are nearly 0 and variances that are approximately constant. Near-symmetry seems
to be called for, and tails that are not so different from the normal in length. By way of calibration,
if the latent is rectangular rather than normal, but scaled to have mean 0 and variance 1, bias can be
appreciable. The rectangular distribution is far from normal. If the mean of the latent changes across
subjects, even in some way that is unrelated to the regressors, there are likely to be problems: see
above. Haphazard changes in variance may make less of a difference, unless these are substantial:
see below.

(vi) Suppose the 4-tuples (Xi, Zi, σi > 0, ζi) are IID in i. Furthermore, (Xi, Zi), σi > 0,
ζi are independent for each i, with ζi being N(0, 1). Let Yi = 1 if a + bXi + cZi + σiζi > 0,
else Yi = 0. If σi ≡ 1, this is the standard probit model, but we are allowing σi to be random.
We fit a probit, ignoring this additional randomness. Perhaps with additional mild conditions, â is
asymptotic to a/E(σ), and so forth. The situation may be more complicated if σi is dependent on
the regressors.
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