Statistics 215

An example where OLS is biased and the conventional variance estimator is wrong

Let (X_i, Y_i) be IID for i = 1, ..., n with $E\{X_i\} = E\{Y_i\} = 0$. Let b minimize $E\{(Y_i - X_i)^2\}$, so

$$b = \mathbf{E}\{X_i Y_i\} / \mathbf{E}\{X_i^2\}$$
⁽¹⁾

This is a parameter to be estimated, and the OLS estimator is

$$\hat{b}_n = \sum_{i=1}^n X_i Y_i / \sum_{i=1}^n X_i^2$$
(2)

This problem does not fit into the usual OLS framework. To see why, let $\epsilon_i = Y_i - bX_i$. The ϵ_i are IID with mean 0 and $\epsilon_i \perp X_i$, which is all to the good. But ϵ_i and X_i will generally be dependent, so $E\{\epsilon_i | X_i\}$ will generally not be 0, and $var\{\epsilon_i | X_i\}$ will generally not be constant. Hence, \hat{b}_n may be biased, and the conventional formula for var \hat{b}_n may be seriously in error.

In the following special case, calculations can be done quite explicitly. Suppose $X_i \sim N(0, 1)$ and $Y_i = X_i^3$. Then

$$\hat{b}_n = \frac{1}{n} \sum_{i=1}^n X_i^4 / \frac{1}{n} \sum_{i=1}^n X_i^2$$
(3)

$$\mathbf{E}\{\hat{b}_n|X_1,\ldots,X_n\} = \hat{b}_n \tag{4}$$

$$\operatorname{var}\{\hat{b}_n|X_1,\ldots,X_n\} = 0 \tag{5}$$

For the variance estimator, define the residuals as

$$e_i = Y_i - \hat{b}_n X_i \tag{6}$$

Now $\sum_{i=1}^{n} e_i X_i = 0$, but $\sum_{i=1}^{n} e_i \neq 0$ because there is no intercept in the regression. (None is needed, since the random variables are known to have expectation 0.) The usual estimate for the variance of \hat{b}_n given X_1, \ldots, X_n is

$$\widehat{\operatorname{var}}\,\hat{b}_n = \frac{1}{n-1} \sum_{i=1}^n e_i^2 \Big/ \sum_{i=1}^n X_i^2 \tag{7}$$

To determine the asymptotic behavior, we need some moments. The odd moments of X_i vanish by symmetry. For the even moments, integration by parts shows that

$$E\{X_i^2\} = 1, \quad E\{X_i^4\} = 3, \quad E\{X_i^6\} = 5 \times 3 = 15, \quad E\{X_i^8\} = 7 \times 15 = 105$$
 (8)

The regression parameter b in (1) is now easily computed, as

$$b = \mathbf{E}\{X_i^4\} / \mathbf{E}\{X_i^2\} = 3$$
(9)

By (4) and the strong law of large numbers, \hat{b}_n is consistent:

$$\hat{b}_n \to 3 \text{ a.e. as } n \to \infty$$
 (10)

We turn now to the variance estimator in (7). The denominator is asymptotic to *n*, since $\frac{1}{n} \sum_{i=1}^{n} X_i^2 \to 1$. For the numerator,

$$\frac{1}{n}\sum_{i=1}^{n}e_{i}^{2} = \frac{1}{n}\sum_{i=1}^{n}Y_{i}^{2} - \hat{b}_{n}^{2}\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} \to 15 - 3^{2} = 6$$
(11)

Since $n/(n-1) \rightarrow 1$,

$$\widehat{\operatorname{var}} \hat{b}_n \approx 6/n \, \text{ a.e.},$$
 (12)

in the sense that the ratio approaches 1.

How far is \hat{b}_n from b? The answer is given by the following proposition.

Proposition. Suppose X_i are IID N(0,1) and $Y_i = X_i^3$. The OLS estimator \hat{b}_n is defined by (3). Then $\hat{b}_n = 3 + U_n + V_n + W_n$, where $E\{U_n\} = 0$, U_n is asymptotically N(0, 42/n), $E\{V_n\} = -6/n$, and W_n is of order $1/n^{3/2}$.

Here, U_n , V_n , and W_n will be computed as explicit functions of X_1, \ldots, X_n . Given X_1, \ldots, X_n , the conditional bias in the OLS estimator is essentially U_n , which varies from one set of X's to another, (almost) following the normal distribution. The mean is 0, so the unconditional bias is about -6/n. The asymptotic distribution of U_n can be stated more rigorously as follows: $\sqrt{42/n}U_n \rightarrow$ N(0, 1) in law. The assertion about W_n is usually stated as follows: $W_n = O_P(1/n^{3/2})$, meaning that for any small positive δ , there is a large finite L with $P\{|W_n| < L/n^{3/2}\} > 1-\delta$. The argument will only be sketched, i.e., remainder terms will be dropped rather than estimated carefully; \doteq means "approximately equal."

Define ξ_n and ζ_n as follows:

$$\xi_n = \frac{1}{n} \sum_{i=1}^n (X_i^2 - 1), \quad \zeta_n = \frac{1}{n} \sum_{i=1}^n (X_i^4 - 3).$$
(13)

Now

$$\hat{b}_n = \frac{3+\zeta_n}{1+\xi_n} \doteq (3+\zeta_n)(1-\xi_n+\xi_n^2) \doteq 3+(\zeta_n-3\xi_n)+3\xi_n^2-\xi_n\zeta_n.$$
(14)

The approximation in (14) is the "delta method"; cubic terms are ignored. In the proposition,

$$U_n = \zeta_n - 3\xi_n = \frac{1}{n} \sum_{i=1}^n (X_i^4 - 3X_i^2), \quad V_n = 3\xi_n^2 - \xi_n \zeta_n$$
(15)

The remainder term W_n is

$$\hat{b}_n-3-(\zeta_n-3\xi_n)-3\xi_n^2+\xi_n\zeta_n.$$

The asymptotic normality of U_n follows from the central limit theorem; and $E(U_n) = 0$ by (8). Moreover,

$$n \operatorname{var} U_n = \operatorname{var} \{X_i^4 - 3X_i^2\} = \mathbb{E}\{(X_i^4 - 3X_i^2)^2\} = \mathbb{E}\{X_i^8 - 6X_i^6 + 9X_i^4\} = 105 - 90 + 27 = 42.$$

This completes the discussion of U_n . For V_n , cross-product terms in

$$\xi_n^2 = \frac{1}{n^2} \sum_{j,k=1}^n (X_j^2 - 1)(X_k^2 - 1)$$

or

$$\xi_n \zeta_n = \frac{1}{n^2} \sum_{j,k=1}^n (X_j^2 - 1)(X_k^4 - 3)$$

have mean 0, so

$$3E\{\xi_n^2\} = \frac{3}{n}E\{(X_i^2 - 1)^2\} = \frac{6}{n}$$
$$E\{\xi_n\zeta_n\} = \frac{1}{n}E\{(X_i^2 - 1)(X_i^4 - 3)\} = \frac{1}{n}E\{X_i^6 - 3\} = \frac{12}{n}$$

and $E\{V_n\} = -6/n$. This completes the discussion of V_n and the outline of the proof.

Remark. var $V_n \approx 120/n^2$. Thus, V_n is around -6/n, give or take $\sqrt{120}/n$ or so. On the other hand, U_n is around 0, give or take $\sqrt{42}/\sqrt{n}$ or so. In telegraphic form, the argument for var V_n is as follows. We have shown that $E\{V_n\} = -6/n$, and will show that $E\{V_n^2\} = (156/n^2) + O(1/n^3)$. Indeed,

$$V_n = -\xi_n(\zeta_n - 3\xi_n) = \frac{1}{n^2} \sum_{j=1}^n (X_j^2 - 1) \sum_{k=1}^n (X_k^4 - 3X_k^2)$$

so that

$$V_n^2 = \frac{1}{n^4} \sum_{j_1=1}^n (X_{j_1}^2 - 1) \sum_{j_2=1}^n (X_{j_2}^2 - 1) \sum_{k_1=1}^n (X_{k_1}^4 - 3X_{k_1}^2) \sum_{k_2=1}^n (X_{k_2}^4 - 3X_{k_2}^2)$$
$$= \frac{1}{n^4} \sum_{j_1, j_2, k_1, k_2=1}^n (X_{j_1}^2 - 1) (X_{j_2}^2 - 1) (X_{k_1}^4 - 3X_{k_1}^2) (X_{k_2}^4 - 3X_{k_2}^2)$$

Most of the terms have expectation zero, i.e., terms with 4 different indices, terms with 2 indices the same and 2 different, terms with 3 indices the same and 1 different. There are *n* terms with $j_1 = j_2 = k_1 = k_2$, which contribute $O(1/n^3)$ to $E\{V_n^2\}$. There are n(n-1) terms with $j_1 = j_2 \neq k_1 = k_2$; each is $E\{(X_i^2 - 1)^2\}E\{(X_i^4 - 3X_i^2)^2\} = 84$. Likewise, there are n(n-1) terms with $j_1 = k_1 \neq j_2 = k_2$; each is $\left[E\{X_i^6 - 3X_i^4\}\right]^2 = 36$. Finally, there are n(n-1) terms with $j_1 = k_2 \neq j_2 = k_1$; each is 36, as before. Thus,

$$\mathrm{E}\{V_n^2\} = \frac{84 + 36 + 36}{n^2} + O\left(\frac{1}{n^3}\right),$$

as required.