An example where OLS is biased and the conventional variance estimator is wrong

Let $\left(X_{i}, Y_{i}\right)$ be IID for $i=1, \ldots, n$ with $\mathrm{E}\left\{X_{i}\right\}=\mathrm{E}\left\{Y_{i}\right\}=0$. Let b minimize $\mathrm{E}\left\{\left(Y_{i}-X_{i}\right)^{2}\right\}$, so

$$
\begin{equation*}
b=\mathrm{E}\left\{X_{i} Y_{i}\right\} / \mathrm{E}\left\{X_{i}^{2}\right\} \tag{1}
\end{equation*}
$$

This is a parameter to be estimated, and the OLS estimator is

$$
\begin{equation*}
\hat{b}_{n}=\sum_{i=1}^{n} X_{i} Y_{i} / \sum_{i=1}^{n} X_{i}^{2} \tag{2}
\end{equation*}
$$

This problem does not fit into the usual OLS framework. To see why, let $\epsilon_{i}=Y_{i}-b X_{i}$. The ϵ_{i} are IID with mean 0 and $\epsilon_{i} \perp X_{i}$, which is all to the good. But ϵ_{i} and X_{i} will generally be dependent, so $\mathrm{E}\left\{\epsilon_{i} \mid X_{i}\right\}$ will generally not be 0 , and $\operatorname{var}\left\{\epsilon_{i} \mid X_{i}\right\}$ will generally not be constant. Hence, \hat{b}_{n} may be biased, and the conventional formula for var \hat{b}_{n} may be seriously in error.

In the following special case, calculations can be done quite explicitly. Suppose $X_{i} \sim \mathrm{~N}(0,1)$ and $Y_{i}=X_{i}^{3}$. Then

$$
\begin{gather*}
\hat{b}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{4} / \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \tag{3}\\
\mathrm{E}\left\{\hat{b}_{n} \mid X_{1}, \ldots, X_{n}\right\}=\hat{b}_{n} \tag{4}\\
\operatorname{var}\left\{\hat{b}_{n} \mid X_{1}, \ldots, X_{n}\right\}=0 \tag{5}
\end{gather*}
$$

For the variance estimator, define the residuals as

$$
\begin{equation*}
e_{i}=Y_{i}-\hat{b}_{n} X_{i} \tag{6}
\end{equation*}
$$

Now $\sum_{i=1}^{n} e_{i} X_{i}=0$, but $\sum_{i=1}^{n} e_{i} \neq 0$ because there is no intercept in the regression. (None is needed, since the random variables are known to have expectation 0 .) The usual estimate for the variance of \hat{b}_{n} given X_{1}, \ldots, X_{n} is

$$
\begin{equation*}
\widehat{\operatorname{var}} \hat{b}_{n}=\frac{1}{n-1} \sum_{i=1}^{n} e_{i}^{2} / \sum_{i=1}^{n} X_{i}^{2} \tag{7}
\end{equation*}
$$

To determine the asymptotic behavior, we need some moments. The odd moments of X_{i} vanish by symmetry. For the even moments, integration by parts shows that

$$
\begin{equation*}
\mathrm{E}\left\{X_{i}^{2}\right\}=1, \quad \mathrm{E}\left\{X_{i}^{4}\right\}=3, \quad \mathrm{E}\left\{X_{i}^{6}\right\}=5 \times 3=15, \quad \mathrm{E}\left\{X_{i}^{8}\right\}=7 \times 15=105 \tag{8}
\end{equation*}
$$

The regression parameter b in (1) is now easily computed, as

$$
\begin{equation*}
b=\mathrm{E}\left\{X_{i}^{4}\right\} / \mathrm{E}\left\{X_{i}^{2}\right\}=3 \tag{9}
\end{equation*}
$$

By (4) and the strong law of large numbers, \hat{b}_{n} is consistent:

$$
\begin{equation*}
\hat{b}_{n} \rightarrow 3 \text { a.e. as } n \rightarrow \infty \tag{10}
\end{equation*}
$$

We turn now to the variance estimator in (7). The denominator is asymptotic to n, since $\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \rightarrow 1$. For the numerator,

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} e_{i}^{2}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{2}-\hat{b}_{n}^{2} \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \rightarrow 15-3^{2}=6 \tag{11}
\end{equation*}
$$

Since $n /(n-1) \rightarrow 1$,

$$
\begin{equation*}
\widehat{\operatorname{var}} \hat{b}_{n} \approx 6 / n \text { a.e., } \tag{12}
\end{equation*}
$$

in the sense that the ratio approaches 1 .
How far is \hat{b}_{n} from b ? The answer is given by the following proposition.
Proposition. Suppose X_{i} are IID $\mathrm{N}(0,1)$ and $Y_{i}=X_{i}^{3}$. The OLS estimator \hat{b}_{n} is defined by (3). Then $\hat{b}_{n}=3+U_{n}+V_{n}+W_{n}$, where $\mathrm{E}\left\{U_{n}\right\}=0, U_{n}$ is asymptotically $\mathrm{N}(0,42 / n), \mathrm{E}\left\{V_{n}\right\}=-6 / n$, and W_{n} is of order $1 / n^{3 / 2}$.

Here, U_{n}, V_{n}, and W_{n} will be computed as explicit functions of X_{1}, \ldots, X_{n}. Given X_{1}, \ldots, X_{n}, the conditional bias in the OLS estimator is essentially U_{n}, which varies from one set of X 's to another, (almost) following the normal distribution. The mean is 0 , so the unconditional bias is about $-6 / n$. The asymptotic distribution of U_{n} can be stated more rigorously as follows: $\sqrt{42 / n} U_{n} \rightarrow$ $\mathrm{N}(0,1)$ in law. The assertion about W_{n} is usually stated as follows: $W_{n}=O_{P}\left(1 / n^{3 / 2}\right)$, meaning that for any small positive δ, there is a large finite L with $P\left\{\left|W_{n}\right|<L / n^{3 / 2}\right\}>1-\delta$. The argument will only be sketched, i.e., remainder terms will be dropped rather than estimated carefully; \doteq means "approximately equal."

Define ξ_{n} and ζ_{n} as follows:

$$
\begin{equation*}
\xi_{n}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}^{2}-1\right), \quad \zeta_{n}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}^{4}-3\right) \tag{13}
\end{equation*}
$$

Now

$$
\begin{equation*}
\hat{b}_{n}=\frac{3+\zeta_{n}}{1+\xi_{n}} \doteq\left(3+\zeta_{n}\right)\left(1-\xi_{n}+\xi_{n}^{2}\right) \doteq 3+\left(\zeta_{n}-3 \xi_{n}\right)+3 \xi_{n}^{2}-\xi_{n} \zeta_{n} \tag{14}
\end{equation*}
$$

The approximation in (14) is the "delta method"; cubic terms are ignored. In the proposition,

$$
\begin{equation*}
U_{n}=\zeta_{n}-3 \xi_{n}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}^{4}-3 X_{i}^{2}\right), \quad V_{n}=3 \xi_{n}^{2}-\xi_{n} \zeta_{n} \tag{15}
\end{equation*}
$$

The remainder term W_{n} is

$$
\hat{b}_{n}-3-\left(\zeta_{n}-3 \xi_{n}\right)-3 \xi_{n}^{2}+\xi_{n} \zeta_{n}
$$

The asymptotic normality of U_{n} follows from the central limit theorem; and $\mathrm{E}\left(U_{n}\right)=0$ by (8). Moreover,

$$
n \operatorname{var} U_{n}=\operatorname{var}\left\{X_{i}^{4}-3 X_{i}^{2}\right\}=\mathrm{E}\left\{\left(X_{i}^{4}-3 X_{i}^{2}\right)^{2}\right\}=E\left\{X_{i}^{8}-6 X_{i}^{6}+9 X_{i}^{4}\right\}=105-90+27=42
$$

This completes the discussion of U_{n}. For V_{n}, cross-product terms in

$$
\xi_{n}^{2}=\frac{1}{n^{2}} \sum_{j, k=1}^{n}\left(X_{j}^{2}-1\right)\left(X_{k}^{2}-1\right)
$$

or

$$
\xi_{n} \zeta_{n}=\frac{1}{n^{2}} \sum_{j, k=1}^{n}\left(X_{j}^{2}-1\right)\left(X_{k}^{4}-3\right)
$$

have mean 0 , so

$$
\begin{gathered}
3 \mathrm{E}\left\{\xi_{n}^{2}\right\}=\frac{3}{n} \mathrm{E}\left\{\left(X_{i}^{2}-1\right)^{2}\right\}=\frac{6}{n} \\
\mathrm{E}\left\{\xi_{n} \zeta_{n}\right\}=\frac{1}{n} \mathrm{E}\left\{\left(X_{i}^{2}-1\right)\left(X_{i}^{4}-3\right)\right\}=\frac{1}{n} \mathrm{E}\left\{X_{i}^{6}-3\right\}=\frac{12}{n}
\end{gathered}
$$

and $\mathrm{E}\left\{V_{n}\right\}=-6 / n$. This completes the discussion of V_{n} and the outline of the proof.
Remark. var $V_{n} \approx 120 / n^{2}$. Thus, V_{n} is around $-6 / n$, give or take $\sqrt{120} / n$ or so. On the other hand, U_{n} is around 0 , give or take $\sqrt{42} / \sqrt{n}$ or so. In telegraphic form, the argument for var V_{n} is as follows. We have shown that $\mathrm{E}\left\{V_{n}\right\}=-6 / n$, and will show that $\mathrm{E}\left\{V_{n}^{2}\right\}=\left(156 / n^{2}\right)+O\left(1 / n^{3}\right)$. Indeed,

$$
V_{n}=-\xi_{n}\left(\zeta_{n}-3 \xi_{n}\right)=\frac{1}{n^{2}} \sum_{j=1}^{n}\left(X_{j}^{2}-1\right) \sum_{k=1}^{n}\left(X_{k}^{4}-3 X_{k}^{2}\right)
$$

so that

$$
\begin{aligned}
V_{n}^{2} & =\frac{1}{n^{4}} \sum_{j_{1}=1}^{n}\left(X_{j_{1}}^{2}-1\right) \sum_{j_{2}=1}^{n}\left(X_{j_{2}}^{2}-1\right) \sum_{k_{1}=1}^{n}\left(X_{k_{1}}^{4}-3 X_{k_{1}}^{2}\right) \sum_{k_{2}=1}^{n}\left(X_{k_{2}}^{4}-3 X_{k_{2}}^{2}\right) \\
& =\frac{1}{n^{4}} \sum_{j_{1}, j_{2}, k_{1}, k_{2}=1}^{n}\left(X_{j_{1}}^{2}-1\right)\left(X_{j_{2}}^{2}-1\right)\left(X_{k_{1}}^{4}-3 X_{k_{1}}^{2}\right)\left(X_{k_{2}}^{4}-3 X_{k_{2}}^{2}\right)
\end{aligned}
$$

Most of the terms have expectation zero, i.e., terms with 4 different indices, terms with 2 indices the same and 2 different, terms with 3 indices the same and 1 different. There are n terms with $j_{1}=j_{2}=k_{1}=k_{2}$, which contribute $O\left(1 / n^{3}\right)$ to $\mathrm{E}\left\{V_{n}^{2}\right\}$. There are $n(n-1)$ terms with $j_{1}=$ $j_{2} \neq k_{1}=k_{2}$; each is $\mathrm{E}\left\{\left(X_{i}^{2}-1\right)^{2}\right\} \mathrm{E}\left\{\left(X_{i}^{4}-3 X_{i}^{2}\right)^{2}\right\}=84$. Likewise, there are $n(n-1)$ terms with $j_{1}=k_{1} \neq j_{2}=k_{2}$; each is $\left[\mathrm{E}\left\{X_{i}^{6}-3 X_{i}^{4}\right\}\right]^{2}=36$. Finally, there are $n(n-1)$ terms with $j_{1}=k_{2} \neq j_{2}=k_{1}$; each is 36 , as before. Thus,

$$
\mathrm{E}\left\{V_{n}^{2}\right\}=\frac{84+36+36}{n^{2}}+O\left(\frac{1}{n^{3}}\right)
$$

as required.

