Notes on the Gauss-Markov theorem

DA Freedman
15 November 2004

The OLS regression model is

$$
Y=X \beta+\epsilon,
$$

where Y is an $n \times 1$ vector of observable random variables, X is an $n \times p$ matrix of observable random variables with rank $p<n$, and ϵ is an $n \times 1$ vector of unobservable random variables, IID with mean 0 and variance σ^{2}, independent of X. We can weaken the assumptions on ϵ, to

$$
\begin{equation*}
E(\epsilon \mid X)=0_{n \times 1}, \quad \operatorname{cov}(\epsilon \mid X)=\sigma^{2} I_{n \times n} . \tag{*}
\end{equation*}
$$

Vector Version of Gauss-Markov. Assume (*). Suppose X is fixed (not random). The OLS estimator is BLUE.

The acronym BLUE stands for Best Linear Unbiased Estimator, i.e., the one with the smallest covariance matrix. If $\hat{\beta}$ is the OLS estimator and $\tilde{\beta}$ is another linear estimator that is unbiased, then $\operatorname{cov}(\tilde{\beta}) \geq \operatorname{cov}(\hat{\beta})$, i.e., $\operatorname{cov}(\tilde{\beta})-\operatorname{cov}(\hat{\beta})$ is a non-negative definite matrix; furthermore, $\operatorname{cov}(\tilde{\beta})=$ $\operatorname{cov}(\hat{\beta})$ implies $\tilde{\beta}=\hat{\beta}$. That is what the matrix version of the theorem says.

Proof. Recall that X is fixed. A linear estimator $\tilde{\beta}$ must be of the form $M Y$, where M is a $p \times n$ matrix. Since $M Y=M X \beta+M \epsilon$ and $E(M \epsilon)=M E(\epsilon)=0_{n \times 1}$, unbiasedness means that $M X \beta=\beta$ for all β. Thus, $M X=I_{p \times p}$, and $X^{\prime} M^{\prime}=I_{p \times p}$ as well. Furthermore, $M Y=\beta+M \epsilon$.

For $\hat{\beta}_{\text {OLS }}$, we have $M=M_{0}$ with $M_{0}=\left(X^{\prime} X\right)^{-1} X^{\prime}$. Let $\Delta=M-M_{0}$. Then

$$
\begin{aligned}
\Delta X & =M X-M_{0} X \\
& =M X-\left(X^{\prime} X\right)^{-1} X^{\prime} X \\
& =I_{p \times p}-I_{p \times p}=0_{p \times p} .
\end{aligned}
$$

So $\Delta M_{0}^{\prime}=\Delta X\left(X^{\prime} X\right)^{-1}=0_{p \times p}$, and $M_{0} \Delta^{\prime}=0_{p \times p}$ too. As noted above, $E(M \epsilon)=0$. And $E\left(\epsilon \epsilon^{\prime}\right)=\sigma^{2} I_{n \times n}$. Therefore,

$$
\begin{aligned}
\operatorname{cov}(M Y) & =\operatorname{cov}(M \epsilon) \\
& =E\left(M \epsilon \epsilon^{\prime} M^{\prime}\right) \\
& =\sigma^{2} M M^{\prime} \\
& =\sigma^{2}\left(M_{0}+\Delta\right)\left(M_{0}+\Delta\right)^{\prime} \\
& =\sigma^{2}\left(M_{0} M_{0}^{\prime}+\Delta \Delta^{\prime}+\Delta M_{0}^{\prime}+M_{0} \Delta^{\prime}\right) \\
& =\sigma^{2}\left(M_{0} M_{0}^{\prime}+\Delta \Delta^{\prime}\right)=\operatorname{cov}(\hat{\beta})+\sigma^{2} \Delta \Delta^{\prime}
\end{aligned}
$$

Since $\Delta \Delta^{\prime}$ is non-negative definite, $\operatorname{cov}(\tilde{\beta}) \geq \operatorname{cov}(\hat{\beta})$. Finally, $\operatorname{cov}(\tilde{\beta})=\operatorname{cov}(\hat{\beta})$ implies $\tilde{\beta}=\hat{\beta}$ because $\Delta \Delta^{\prime}=0_{p \times p}$ implies $\Delta=0_{p \times n}$: look at the diagonal of $\Delta \Delta^{\prime}$. This completes the proof.

Discussion. Statistical Models has the "single-contrast" version of the theorem, which starts with an estimator for the scalar parameter $c^{\prime} \beta$. The vector version, on the other hand, starts with an estimator for the vector parameter β. The vector version implies the single-contrast version: take the given contrast c; adjoin $p-1$ linearly independent contrasts; the vector theorem is invariant under linear re-parameterizations of the column space. (The details of this argument, however, may not be entirely transparent.) By a somewhat more direct argument, the single-contrast version implies the vector version: $c^{\prime} \operatorname{cov}(\tilde{\beta}) c=\operatorname{var}\left(c^{\prime} \tilde{\beta}\right) \geq \operatorname{var}\left(c^{\prime} \hat{\beta}\right)=c^{\prime} \operatorname{cov}(\hat{\beta}) c$ for all c, i.e., $\operatorname{cov}(\tilde{\beta}) \geq \operatorname{cov}(\hat{\beta})$.

