Notes on the Gauss-Markov theorem

DA Freedman

15 November 2004

The OLS regression model is

$$Y = X\beta + \epsilon,$$

where *Y* is an $n \times 1$ vector of observable random variables, *X* is an $n \times p$ matrix of observable random variables with rank p < n, and ϵ is an $n \times 1$ vector of unobservable random variables, IID with mean 0 and variance σ^2 , independent of *X*. We can weaken the assumptions on ϵ , to

$$E(\epsilon|X) = 0_{n \times 1}, \quad \operatorname{cov}(\epsilon|X) = \sigma^2 I_{n \times n}. \tag{(*)}$$

VECTOR VERSION OF GAUSS-MARKOV. Assume (*). Suppose X is fixed (not random). The OLS estimator is BLUE.

The acronym BLUE stands for Best Linear Unbiased Estimator, i.e., the one with the smallest covariance matrix. If $\hat{\beta}$ is the OLS estimator and $\tilde{\beta}$ is another linear estimator that is unbiased, then $\operatorname{cov}(\tilde{\beta}) \geq \operatorname{cov}(\hat{\beta})$, i.e., $\operatorname{cov}(\tilde{\beta}) - \operatorname{cov}(\hat{\beta})$ is a non-negative definite matrix; furthermore, $\operatorname{cov}(\tilde{\beta}) = \operatorname{cov}(\hat{\beta})$ implies $\tilde{\beta} = \hat{\beta}$. That is what the matrix version of the theorem says.

Proof. Recall that X is fixed. A linear estimator $\tilde{\beta}$ must be of the form MY, where M is a $p \times n$ matrix. Since $MY = MX\beta + M\epsilon$ and $E(M\epsilon) = ME(\epsilon) = 0_{n \times 1}$, unbiasedness means that $MX\beta = \beta$ for all β . Thus, $MX = I_{p \times p}$, and $X'M' = I_{p \times p}$ as well. Furthermore, $MY = \beta + M\epsilon$.

For $\hat{\beta}_{OLS}$, we have $M = M_0$ with $M_0 = (X'X)^{-1}X'$. Let $\Delta = M - M_0$. Then

$$\Delta X = MX - M_0 X$$

= $MX - (X'X)^{-1}X'X$
= $I_{p \times p} - I_{p \times p} = 0_{p \times p}$.

So $\Delta M'_0 = \Delta X (X'X)^{-1} = 0_{p \times p}$, and $M_0 \Delta' = 0_{p \times p}$ too. As noted above, $E(M\epsilon) = 0$. And $E(\epsilon\epsilon') = \sigma^2 I_{n \times n}$. Therefore,

$$cov(MY) = cov(M\epsilon)$$

= $E(M\epsilon\epsilon'M')$
= $\sigma^2 MM'$
= $\sigma^2(M_0 + \Delta)(M_0 + \Delta)'$
= $\sigma^2(M_0M'_0 + \Delta\Delta' + \Delta M'_0 + M_0\Delta')$
= $\sigma^2(M_0M'_0 + \Delta\Delta') = cov(\hat{\beta}) + \sigma^2\Delta\Delta'.$

Since $\Delta \Delta'$ is non-negative definite, $\operatorname{cov}(\hat{\beta}) \ge \operatorname{cov}(\hat{\beta})$. Finally, $\operatorname{cov}(\hat{\beta}) = \operatorname{cov}(\hat{\beta})$ implies $\hat{\beta} = \hat{\beta}$ because $\Delta \Delta' = 0_{p \times p}$ implies $\Delta = 0_{p \times n}$: look at the diagonal of $\Delta \Delta'$. This completes the proof.

Discussion. Statistical Models has the "single-contrast" version of the theorem, which starts with an estimator for the scalar parameter $c'\beta$. The vector version, on the other hand, starts with an estimator for the vector parameter β . The vector version implies the single-contrast version: take the given contrast c; adjoin p - 1 linearly independent contrasts; the vector theorem is invariant under linear re-parameterizations of the column space. (The details of this argument, however, may not be entirely transparent.) By a somewhat more direct argument, the single-contrast version implies the vector version: $c' cov(\hat{\beta})c = var(c'\hat{\beta}) \ge var(c'\hat{\beta}) = c' cov(\hat{\beta})c$ for all c, i.e., $cov(\hat{\beta}) \ge cov(\hat{\beta})$.