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Abstract

If there are many independent, identically distributed observations governed by a smooth,
finite-dimensional statistical model, the Bayes estimate and the maximum likelihood estimate will
be close. Furthermore, the posterior distribution of the parameter vector around the posterior mean
will be close to the distribution of the maximum likelihood estimate around truth. Thus, Bayesian
confidence sets have good frequentist coverage properties, and conversely. However, even for the
simplest infinite-dimensional models, such results do not hold. The object here is to give some
examples.

1. Introduction

With a large sample from a smooth, finite-dimensional statistical model, the Bayes estimate
and the maximum likelihood estimate will be close. Furthermore, the posterior distribution of
the parameter vector around the posterior mean must be close to the distribution of the maximum
likelihood estimate around truth: both are asymptotically normal with mean 0, and both have the
same asymptotic covariance matrix. That isthe content of the Bernstein-von Misestheorem. Thus,
a Bayesian 95%-confidence set must have frequentist coverage of about 95%, and conversely. In
particular, Bayesians and frequentists are free to use each others' confidence sets. (Bayesians may
view this as an advantage of their approach, since Bayesian confidence sets are relatively easy to
obtain by simulation.) However, even for the simplest infinite-dimensional models, the Bernstein-
von Mises theorem does not hold (Cox, 1993). The object here is to give some examples, which
may help to clarify Cox’s arguments.

The sad lesson for inference is this. If frequentist coverage probabilities are wanted in an
infinite-dimensional problem, then frequentist coverage probabilities must be computed. Bayesians
too need to proceed with caution in the infinite-dimensional case, unless they are convinced of the
finedetailsof their priors. Indeed, the consistency of their estimates and the coverage probability of
their confidence sets depend on the details of their priors. | suggest that similar conclusions apply
to models with a finite—but large—number of parameters. The data swamp the prior only when
the sample size is large relative to the number of parameters.

* This paper was presented as part of my Wald Lecturesin 1998.
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The examplesin Cox (1993) involve continuous-time stochastic processes. Basically, thereis
an unknown smooth function, observed subject to random error at n points; thefunctionisestimated
using Bayesian techniques with a Gaussian prior. The examples here involve only sequences of
independent normal variables, so that calculations can be done more or less explicitly. (Section 3
bel ow indicateshow Cox’sexamplesconnect withours.) Thesetupisan extension of Lindley-Smith
(1973) to infinitely many dimensions, and the model can be stated as follows.

Q) Yi=p8+efori=1,2,.... Thee; areindependent, identically distributed normal random
variables, with mean 0 and positive variance 0,2 — 0, while )", B2 < oco.

In principle, the variables Y; and ¢; in (1) need another subscript, n. For each n, the data
consist of an infinite sequence {Y;, 1, Yy,.2, ...} with Y,,; = Bi + €,.;. Intuitively, n stands for
sample size. In the leading special case, {Y,.1, Yx.2, . . .} equals the mean of n observations on a
parameter vector of infinite length. The parameter vector 8 does not depend on the sample size,
but the law of the sampling error ¢, ; certainly does. The theorems only involve the distribution of
{eni 11 =1,2,...}, which are taken to be independent, identically distributed random variables,
having mean 0 and variance o> — 0. Thejoint distribution of the doubly-infinite array {e, ; : n =
1,2,...,i =1,2,...} does not seem to matter for the results presented here. For finer estimates,
however, assumptions would be needed on the doubly-infinite array. The subscript n will usually
be omitted in what follows, to ease the notation.

TheMLEfor 8 is, of course, Y. Wealso consider aBayesian analysisof (1), with thefollowing
prior:

(2) The p; are independent normal variables, with mean 0 and variance 2, where 2 > 0 and
> t? < co. The f’sareindependent of the€’s.

If (2) holds, then > ,31.2 < oo amost surely. It isof some importance that there are two variance
scales, an “objective” one for the €’s and a “subjective” one for the g’s. The leading special
case has onz = 1/n and Tiz = 1/i2, corresponding to the average of n independent observations
on one sequence of B;’s, the prior being specified by the choice of t;’'s. Most of the inferential
difficulties already appear when i is restricted to the finite—but growing—rangei = 1, ..., \/n.
lain Johnstone has suggested a variation on this setup which makes the calculations easier: set
tiz = 1/nfori = 1,...,n; now the prior too depends on n. Further examples with interesting
behavior can beobtained by setting Tiz = A,/nfori =1,...,n;when A, growswithn, Johnstone's
example seems to have different asymptotics from ours.

Given (1) and (2), the posterior is readily computed, as in Proposition 1. Indeed, from the
Bayesian perspective, Y; has conditional mean g; and conditional variance o2 given g; uncondi-
tionally, however, ¥; has mean 0 and variance 0,2 + t2. Furthermore, cov(Y;, ;) = t?.

Proposition 1. For the Bayesian. Assume (1-2). Given the data Y, the 8’s are independent
and normal. Moreover,

@ Bi = E{Bi|Y} = wy ¥y, With wy; = t2/(02 + T2).

(b) i — Bi =1 —wy)Bi —wyie; LY.
() var(Bi|Y} = vai, wherev,; = 017/ (07 + 1) = (1)o7 + 1/tP) L.

In effect, the proposition defines aregular conditional distribution Qy (dB) for the parameter
vector S given the data Y. If we consider only a finite number of 8’s, say 1, ..., Bk, the Qy-
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distributionof {8; — B; 1i = 1, ..., k} isasymptotically the same as the frequentist distribution of
{Y;—pB; :i =1,...,k},namely, thesearek independent normal variableswith mean 0 and variance
an_ For the frequentist and the Bayesian, 3,~ —Y; = op(0,). Inother words, the difference between
the MLE and the Bayes estimate is small compared to the randomness in either. Consequently,
the posterior distribution of 8 around 8 is essentially the same as the frequentist distribution of 3
around S. That is (avery specia case of) the Bernstein-von Mises theorem. For a brief history of
this theorem, see Lehmann (1991, p. 482); for itstechnical details, see LeCam and Yang (1990) or
Prakasa Rao (1987).

If we consider the full infinite-dimensional distribution, matters are quite different. To

simplify the calculations, we assume

(33 anz:l/n,
(3b) riZ%A/i“aSi—>oo,for0<A<ooand1<a<oo,

wheres; ~ t; if s;/t; — lands; ~ t; if 5;/t; convergesto apositive, finite limit. As noted above,
condition (3a) obtainsif, for instance, the data are obtained by averaging n 11D observationson f.
Thejoint distribution in n does not matter here. More general 2 and o2 are considered |ater.

Theorem 1 below gives the Bayesian analysis; Theorem 2, the frequentist. Theorems 3 and 4
draw the implications. There is an ¢> consistency result in Theorem 5. Section 2 has some
complements and details. Section 3 makes the connection with stochastic processes. We focus on
one infinite-dimensional functional—the square of the £, norm. To state Theorem 1, let

@) T8, Y) =B —BI*=)_(Bi — B>
i=1

For the frequentist, B € ¢2 by assumption and 7,, < oo a.e. by Proposition 1(b); likewise for the
Bayesian. On the other hand, Y ¢ ¢2, dueto the action of ¢.

Theorem 1. For the Bayesian. Assume (1)—(3). In particular, B israndom. Then
T, =C, ++/D,Z,, Where

00 00
Cn = Z Ui &~ n Ve with € = Al/“/o
i=1

1+ u“du’

o0 00 1
D, =2) v2 ~n V2D with D:2A1/“/ —— _du.
' ;vm ' o @t u2™
The v,; are defined in Proposition 1(c); the random variable Z, has mean O, variance 1, and
convergesin law to N(0,1) asn — oo.

Proof. According to Proposition 1, given Y, 7, isdistributed as ) ; vm-snzi, the &,; being for

each n independent N(0,1) variablesasi varies. (Randomnessin 7;, isdriven by randomnessin §.)
Thus, E{T,|Y} = C,, which can be estimated as follows:

> 1 S | © 1
Yo NAY — ~ Af dx = Al/“n_1+1/“/ d
= ] An + ¢ o An—+ x“ o 1+ u“

u.



To get the last equality, set x = (An)Y%u. Thisargument is heuristic but rigorizable. A variant on
the ideais given by Lemma 2 in Section 2; see Remark (iii) there for details.

Moreover, var snzl. = 2,sovar{T,|Y} = D,. Thistoo can be estimated by Lemma 2. Asymp-
totic normality followsfrom Lemma3, with v,; for c,;; the condition that max; v, = o(}_; vm)l/2
followsfrom Lemma 2: see Remark (ii) there.  QED

Remarks.

(i) Proposition 1 showsthat 7, isindependent of Y. For theBayesian, thepredictivedistribution
of T,, coincides with its distribution given the data: the data are needed only to determine .

(i) /D, << C, because n=1t@/20) - =141/ |f for instance @ = 1/2, then E{T,} ~
1/n/? but the randomness in 7), is of order 1/n%/4. (Wewrite x,, << y, if x,/y, — 0.)

(iii) Fix § > 0 and B € £,. The posterior massin a -ball around 3 tendsto 1 asn — oo, for
amost all data sets generated by (1). Indeed, E{T},,} ~ n~1Y* — 0andvar T, ~ n=2t1/% w0

1 1
P{IT, — E(Ty)| > 8} = 0(%%—1/0‘)

which sumsif for instances, ~ 1/n%* and2—1/a —2/a’ > 1. Thus, posterior mass concentrates
around $ in the weak-star topology generated by the ¢, norm, for amost all data generated by the
model. Frequentist consistency for the Bayesian will follow—once we show that 3 is consistent,
asin Theorem 5.

(iv) A law of the iterated logarithm is available for 7, — E(T,,), as one sees by looking at

In
> vih -1
i=I,

with 1,,, J, chosen so that T ~8/n and ty ~ 1/(én). Thiswould require some appropriate joint
distribution for the ¢’s across n. Compare Cox (1993, pp.913ff).

We pursue now the frequentist analysis of the Bayes estimates. From this perspective, g isan
unknown parameter, not subject to random variation. However, some results can be proved only
for “most” B—and the natural (if slightly confusing) measure to use is that defined by (2).

Theorem 2. For the frequentist. Assume (1) and (3) but not (2), so 8 is fixed but unknown.
Then

) Tu(B.€) = Co +VFaUn(B) + VG (B)Va(B. €),

where C, isasin Theorem 1, while V,, (8, -) hasmean 0 and variance 1. If g isdistributed according

to (2), then U, (B) hasmean O, variance 1, and convergesinlaw to N(0,1) asn — oco. Furthermore,
2+1/ 1/ N

6 F,~n" “F, with F =2A+¢ ——du,

(6) n~n fo At ) u
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. © 2u*+1
7 G,(B) ~n~?tYeG, with G = 2A1/“/ "~ du,
(7 (B) ~n wi MLl
and
(8) V. (B, -) convergesin law to N(O,1).

Displays (7) and (8) hold asn — oo, for amost all 8’s generated by (2).

Thistheorem is proved like Theorem 1. Tedious details, along with explicit formulae for F,,
G,, U,,and V,, are postponed to Section 2. The theorem describes the asymptotic behavior of the
Bayesian pivot, 7, = || — B2, from afrequentist perspective. For this purpose, the frequentist
agrees to use the samejoint distribution for 8 and Y asthe Bayesian. Of course, the Bayesian will
compute L(T,|Y). Thefrequentist cannot go that far, but considers £(7;,|8). Among other things,
the frequentist has agreed to ignore bad behavior for an exceptional null set of g's—relative to
the prior (2). There are results on minimax rates for Bayes estimates, suggesting that 8’s exist for
which the rate of convergence is slower than n=2t1/% so the Bayesian null set may in some other
sense be quite large. See Zhao (1997) or Brown, Low, and Zhao (1998); also see Section 4 below,
and compare Theorem 3.1 in Cox (1993).

Contrary to experience with the finite-dimensional case, thereisaradical difference between
the asymptotic behavior of L(T;,|Y) and the asymptotic behavior of L(T,|8)—even if we ignore
the null set of bad B8’s. Our next main result is Theorem 3, which shows that the Bernstein-von
Mises theorem does not apply in the infinite-dimensional context. There will be two reasons.

(i) For the frequentist, the variance of B is driven by e, that is, by the last term in (5). And
this variance is smaller than the Bayes variance. See Theorem 3.

(i) The middle term in (5) wobbles on the scale of interest, namely, n=1tY/ () sp the
frequentist distribution of 7;, is offset from the Bayesian distribution by arbitrarily large
amounts. This a consequence of “Bayes bias.”

Corollary 1 demonstrates the wobble, the proof being deferred to Section 2.
Corollary 1. Assume (1) and (3). Then

limsupU,(B) = oo and ”,m)iogf U,(B) = -0

n—oo

for amost all g drawn from (2).

Theorem 3. For the frequentist. Assume (1) and (3). The Bayesian posterior is computed
from (2), and the frequentist conclusions apply to aimost al g drawn from (2). The asymptotic
variances D and G are defined in Theorems 1 and 2.

(& G < D. Inparticular, the asymptotic frequentist variance is smaller than the asymptotic
Bayes variance.

(b) There is amost surely a sequence of n’s tending to infinity such that the frequentist
distribution of 7;, is centered to the right of the Bayes distribution by arbitrarily large
multiples of n= 111/ and likewise to the left.
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Proof. The inequality in (a) is elementary: 2u® + 1 < (1 + u®)2. Then use Corollary 1 to
proveclam (b). QED

Thefirst part of the theorem— G < D —already shows that the conclusions of the Bernstein-
von Mises theorem do not hold. More particularly, F + G = D. A posteriori, the Bayesian sees
ascentered at B, 50 A = B — B iscentered at 0, and || A||? is the squared length of a noise vector.
For the frequentist, on the other hand, 3 isbiased, A isnot centered at 0, some of || A||2 comes from
bias and some from randomness. In effect, some Bayesian randomness is reinterpreted as bias.
This effect is harder to see in a finite number of dimensions. For results showing that the Bayes
bias term matters when rates of convergence are slower than 1/.,/n, see Brown and Liu (1993) or
Pfanzagl (1998).

The second part of Theorem 3 shows that for certain random times, the posterior distribution
of B around B is nearly orthogonal to the frequentist distribution of 8 around B: recall that two
probabilities 1 and v are “othogonal” if thereisa set A with u(A) = 1 and v(A) = 0. This
is perhaps a more poignant version of the failure in the conclusions of the Bernstein-von Mises
theorem.

We now sharpen the orthogonality result. Consider the random variables

Wai = (Bi — Bi)/omi: i =1,2,....

Let ,, stand for the Bayesian distribution of W,1, W,2, .... This is the posterior distribution,
centered and standardized; the randomness is in the parameters, not the data. (From the Bayesian
perspective, the W’s are independent of the data.) Technically, =, is a probability on R*°, the
space of sequences of real numbers. Let ¢, g be the frequentist distribution for the same random
variables, with the signs reversed:

W, =B —B)/Jomi:i=12....

Now, g isfixed and the randomness isin the data. Again, ¢, g isaprobability on R°°. Thereisa
third distribution to consider: v, (8), the law of

Wr/;/z =i —Bi)/Jmi:i=1,2,....

For the frequentist, ¢ isthelaw of the Bayes estimates, centered at the true parameters; ¢ isthelaw
of the MLE, aso centered at truth. For mathematical convenience, all three laws are standardized
using the Bayesian variance; this common standardization cannot affect the orthogonality.

Theorem 4. For the neutral observer. Assume (1). The Bayesian posterior is computed
from (2). Condition (3) is not needed.

(@) For the Bayesian, 7, makes the coordinates independent N(0O,1) variables.

(b) For the frequentist, ¢, g makes the coordinates independent normal variables. The ith
variable has mean — (1 — wy;)Bi/ /v and variance wy,;.

(c) For the frequentist, v, g makes the coordinates independent normal variables. The ith
variable has mean 0 and variance 1/ wy,; .

6



(d) Foranynandany 8, B* € €2, the probabilitiesr, , ¢, g and v, g« are pairwise orthog-
onal.

Claims (a), (b) and (c) are immediate from Proposition 1. The proof of (d) is deferred to
Section 2, but the ideais ssmple: athough the three probabilities merge on any fixed number of
coordinates, the scales are radically different at oo. The curious centering for ¢ cannot undo the
scaling. In the frequentist vision of things, the MLE and the Bayes estimate are radically different.
Moreover, the Bayesian a posteriori distribution for the parameters around the Bayes estimate is
radically different from the frequentist distribution of the MLE around truth—or the frequentist
distribution of the Bayes estimate around truth.

The last result in this section establishes the frequentist consistency of the Bayes estimates:
the chance that g iscloseto g in £, tendsto 1 asn getslarge. Thistheorem can be proved for any
B e lr.

Theorem 5. Assume (1). The Bayes estimate computed from (2) is consistent for all g in ¢2,
namely, |3 — 8112 — 0in probability. If (3) holds, convergence a.e. will obtain.

Proof. To begin with, by Proposition 1(b),

9 1B — BII? <22<1 wni) 2B +22wn, €.

i=1

But w,; — lasn — 0 for eachi. By dominated convergence, the first sum on the right in (9)
tendsto 0. The expection of the second sumis

> oft?
(10) — 1
; (07 + Tiz)z l

Again, thisgoesto zero by dominated convergence: Tiz sumsin i, whilethe coefficients are bounded

above by 1/2 because ab/(a + b)? < 1/2. This proves convergence in probability, and we turn to
the a.e. result.
The variance of the second sum on theright in (9) is 8¢,,, where

(11) o Z (02 . T2)4

If (3) holds, g, ~ 1/n?>~Y* by Lemma 2 in Section 2, and " ¢, < oo; convergence a.e. follows
from the Borel-Cantelli lemma.  QED



2. Complements and details

Lemmal. Letl <a <00, 1 <b <oo, and 0 < ¢ < oo. Supposeab > ¢+ 1. Let
fw) =u/(L+u®b. Leth > 0. Then

}Ili_r)rb ;f(ih)h =/0 f(u)du.

Proof. Let L bealarge, positive real number. Of course,

L/h

lim Zf(zh)h _f f ) du

IIm / f(u)du =

Abbreviate y = ab — ¢ > 1, and let C,, be a suitable positive constant depending only on y. We
let h — Ofirst,andthen L — oo. Since f(u) < u™Y,

0 o0
Y flah <k Y 1Y < C YV (/L)Y Tt =C, /LY
i=L/h i=L/h

whichissmall for large L. QED

Lemma2. Letl <a <00, 1 <b <oo, and 0 < c¢ < oo. Supposeab > ¢+ 1. Let

v — 00. Lets; ~i%ands; ~i¢. Let g, = .~ o)/ . Let i1 be apositive integer.
as t; as i€ o0 uc
a lim —— = |im —_— = ——du;
@A Z ()P oo™ Z (yn + )P fo 1+ u)?
=11 =11
I (c/a)—b
b) max; —— ~ .
R L

Proof. For the first equality in (@), an upper bound can be obtained if s; > (1 — €)i“
t; < (A+e)i¢fori > iq; likewise for lower bounds. Set h = y_l/“ and define f asin Lemma 1.
By tedious algebra, g,i¢/(y, + i%)? = hf(ih), and Lemma 1 completes the proof of part (a).
For (b), it is easy to verify that f has a maximum on [0, co). Sothemax in (b) isO(h/g,). But
(c/a)—b
h/gn = ¥n . QED



Remarks.

(i) They inthe proof of Lemmal isunrelated to the y, in the statement of Lemma 2.
(i) Themaxini of t;/(y, + s;)? is smaller than the sum of these terms, by a factor asymp-
totically of order y,/.
(iif) Toestimate C,, in Theorem 1, take y,, = A/anz, c=0,andb = 1;for D,, takeb = 2.
(iv) Lemma 1 can of course be generalized, for instance, to functions convex on (xg, co). In
our applications «, b > 1, but al that seems to be needed hereis «, b > 0.

Lemma 3. Let ¢,; be constants with 0 < ¢2 = 3", ¢2, < oo, and max; |c,;| = o(c,) as
n — oo. Let X,; be random variables which are independent in i for each n and have common
distribution for all n and i. Suppose E{X,;} = 0and E{X2} = 02 < co. Then

1 0.¢]
=Y caiXui = N(O,0?)

1=

inlaw asn — oo.
Proof. Thisisimmediate from Lindeberg'stheorem. QED

Remark. It isenough that the X,,; are uniformly L5, with constant variance.

Lemma4. Let U; beindependent N(0,1) variables. Let ¢; berea numberswithc? = Y, ¢? <
co. Let§ > Owith §c;|/c? < Lforali,andlet V = 3", ¢;(U? — 1). Then

P{V > 8} < exp[—82/(12¢)],

where exp(x) = ¢*. Likewise, P{V < —8} < exp[—682/(12¢?)].
Proof. If U isN(0,1) and A < .2, weclaim

(12) E{exp[A(U? — D]} = < exp(312).

exp(—2)
V1-21

The inequality is strict except at A = 0. To prove the inequality, square both sides and take logs:
we haveto prove f > 0, with (1) = log(1 — 21) + 2 + 612. Now f(0) = f’(0) = 0. And

provided 1 < (1 — 4/1/3)/2 = .21.... Inthisrange, f’ is strictly increasing and f is strictly
convex, decreasing for . < O and increasing for A > 0. So f (1) > O except at A = 0, proving the
inequality in (12).

Next,
(13) Elexp@V)) = [ | E(exploci (U7 — D]} < exp(36%c?),
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provided 6c; < .2for al i. Now
P{V > 8§} < exp(39%c? — 66)

by Chebychev’s inequality. Choose # = §/(6¢2), which satisfies the condition 6¢; < .2 by
assumption. The bound on P{V < —4§} follows, on changing the signsof all thec;.  QED

Proof of Theorem 2. To ease notation, we consider o2 = 1/n and t? = 1/i%, SO w,; =
n/(n+i% andv,; = 1/(n + i*) from Proposition 1. Modifications of the proof for Tiz =A/i%
are obvious, and then Tiz ~ A/i%isquite easy. Recall the definition (4) of T,,. By Proposition 1,

To=) (1—ww)’Bf =2 (L — wp)wpiBici + Z wle?
i=1 i=1
=Cp + Qn(B) + Ru(B, €)
where
1

o= ;(1_1%,') fi +022w"’ :Z(n—i-l"‘)

o0

0u(B) = Y (L —wau)?(B7 — 77)

i=1

e}
Ry(B,€) = ) —2wui(L— wai)Bi€i + whi(ef — o).

i=1

Remark. In the finite-dimensional case, w,; ~ 1 for n large; from either the Bayesian or the
frequentist perspective, only the e2-termsin R, (B, €) contribute to the asymptotic variance of 7,.
In the infinite case, Q,, matters, and so do the Se terms. That is the novelty.

By Proposition 1, C, matches the lead term in Theorem 1. We turn now to Q,,(8). Let
stand for the prior distribution on 3, as defined in (2). Clearly,

o0

(14) Qn<-)—2(+—a)2<; - 1),

where ¢; = ¢;(8) = Vi%B;i. The¢; areindependent N(0,1) variables relative to . In particular,
Ex{Qx()} =0and

- 200

(15) var, 0() =23 m—l+—1)4

which is (by definition) the F, in Theorem 2. Lemma 2 can be used to estimate F;,, proving (6).
The U,(B) in Theorem 2 is defined as Q,,(B)/+/ F,. Of course, U,, has mean 0 and variance 1
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relative to 7. Asymptotic normality follows from Lemma 3. The condition that max; |c,;| = o(cy)
follows, as before, from Lemma 2.

Next, we need to consider R,,. Here, the computation is more intricate. We begin with the
sum of the Be terms. Fix any 8 € £2. Asbefore, let ¢;(8) = i%B;. Also let

2/ ni®

(16) kni (B) = —mfz‘

(B).

For motivation, —2w,; (1—wy;)Bi€; = [—2v/ni%/(n+i%)?]¢;i (B)&n, where&,; = /ne; isN(0,1),
S0 ky; isthe coefficient of an N(0,1) variable in the expansion of R,,. In any event,

4ni®
2 _ (N2 —
(17) Km' - En{km(') } - m~
By Lemma 2,
o0 0 .
4ni® 1 x4y~
18 K2=) K2 = ~ / —_du.
(18) n ; ni ; (n-l—ia)A' n2—1/a 0 (1+ua)4 u
We claim that
0
(19) A, (B) = [ka-(ﬁ)z] — K2 =o(1/n®> %) as n — oo,

i=1

for amost all g drawn from (2). Indeed,
o
Ay =) K5 -D.
i=1

Now use Lemma 4, with K2 for ¢;. Lemma 2 shows that max; K2 ~ 1/n? and 3°, K% ~
1/n%Y2_ Fix 8¢ > 0 but small, and use §o/n%~1/¢ for the § of Lemma 4:

P{IA4| > 80/n*7V*} < 2exp( — const. n*/®),

which sumsin n, proving (19). The condition of the lemma holds if §g is small.
We turn now to the sum of the €2 termsin R,,. Recall that &,; = /ne;. Let £,; = n/(n+i%)?.
Then

o0

(20) Ru(B€) = [kni (B)&ni + £ui (€5 — D].

i=1

Here, k,; (B) depends on g while ¢,; is deterministic. And the two seem to be on different scales.
(With more effort, however, the scales can be seen as comparable, for the i’s that matter. In any
case, the total variances are comparable, aswill be seen below.)

11



Lemma 3 does not apply, and a direct appeal must be made to Lindeberg's theorem. First,
however,

, 00 00 1 00 1
21 Ly = £ —d
(21) n ; X]:- (n+ loz)4 n2—1l/a /(; (1+ uot)4 u

The G, (B) of Theorem 2 is defined as

(22) Gn(B) = kaw) +2Zen,,

the factor of 2 being the variance of gnzi — 1. And the V,,(B, ¢) of the theorem is

Ry(B.€)/vGn(B).

Estimates (18), (19) and (21) give a (painful) verification of (7).

Fix 8§ > 0 small. Except for aset of 8’sof measure0, |¢;(8)| < i® for al but finitely many i,
and A, (B) = o(1/n?~Y*) by (19). For the remaining B’s, we claim, V,,(8, -) convergesin law to
N(0,1) asn — oo. Thiswill be demonstrated by verifying the Lindeberg condition. The condition
involves estimating a series of integrals of the form

/ (U + V)?,
|U+V|>2a

where a is a small multiple of the asymptotic standard deviation. Now |U + V| > 2a entails
|U| > aor|V|>a,and (U + V)? < 2(U? + V?), o each integral can be estimated according to
the scheme

1
(23) —/ (U+Vf§/1 U?+/ U?+/ »ﬂ+/ V2,
2 |[U+V|>2a |U|>a |U|<a<|V]| |V|>a [VI<a<|U|

To flesh this out, the variance of R, (B, ) iss? = G,(B) ~ 1/n> Y, Let &; = kni(B)&n;
and £,; = £,; (2 — 1) in (20). We need to show that

Zf (g:m +§nz) —O(S ),
i=1 nz+§m

|>kKsp
with k ageneric small number. In view of (23), we need only show that
Syn =o0(s2) for v=1,2,3,4,

where

Sln—Z/ Szn—Zf

m|>an m|<KYn<|Em
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Sg,,_Z/ m, S4n—2/ n

i |>Ksp ni | <ksp< |$m

We begin with Sy ,. Recall the definition (16) of k,;. For our 8’s, ¢;(8) < i® eventually, so
max; [kqi (8)] = O(1/n*/)

by Lemma2. Now s, ~ 1/ntV@ and |€,i| = |kni (B)&nil > ks, entails |&,;| > const.n?,
where y = (3 — 8)/a, which is positivewhen 0 < § < 3. Consequently, the ith termin Sy, is
bounded by
ki (B)? S
|&,i |>const. nY

from which it isimmediate that Sy, = o(s2). Indeed, for our B’s, 3, ki (8)% ~ 1/n? Y% ~ 52,

The argument for Sz, is similar but easier, because ¢,; = n/(n + i")2 < 1/n. In S2.ns
|Enil > ks, entails|E2 — 1] > const. n¥/ @), hence |&,;| > const. n¥/4®). Theith termin Sy, is

therefore bounded by
i2. / 2.
" |€,i |>const. n1/(4e) Em

from which it isimmediate that Sy, = o(s,f). The argument for Sa , issimilar. We have verified
the Lindeberg condition, proving (8) and so thetheorem.  QED

Remarks.

(i) As shown by Proposition 1(b), theterm /F, U, (B) = Q,(B) in (5) isthe squared norm of
the Bayes hias, centered at its mean relative to the prior defined by (2). It is this deviation which
wobbles on the scale of interest.

(ii) The proof exploits the fact that £2 — 1 is afunction of &. However, the two variables are
uncorrelated: asymptotically, the sum of the Be termsin R, is therefore independent of the sum
of the €2 terms. This would follow from the bivariate form of Lindeberg’s theorem. On the other
hand, (23) is enough to derive the requisite bivariate form of the theorem from the univariate.

Proof of Corollary 1. The argument starts from (14), where ¢; (8) = /7 B; is a sequence of
11D N(O,1) variablesthat does not depend on . The F,, in Theorem 2 isthe right hand side of (15),
while U, (8) = Q,(B)/+/F,. Fix apositive integer j. Now {U, > ji.0.} is atail set relative
to the ¢’s, by Lemma 2(b). This set has positive probability, by asymptotic normality; hence, the
probability is1. Likewisefor —oo.  QED

Proof of Theorem 4(d). The two probabilitiesin apair are either equivalent or singular, and
Kakutani’s criterion can be used to decide. See, for instance, Williams (1991). Fix n, and 8 € 5.
By Proposition 1, w,; — 0asi — oo. If we compare = with ¢, the frequentist variance for the
ith variable is neglible relative to the Bayes variance; for equivalence to obtain, the ratio of the
variances would need to tend to 1. Likewise for the other comparisons.

Faster decay rates

Theorem 2 depends on the assumed tail behavior of the prior variances rl.z. In particular, if o
islarge, the wobbly middle term in (5) isrelatively small. Asit turns out, with faster decay rates,

13



thismiddle term isnegligible. So the conclusions of the Bernstein-von Mises theorem apply to our
guadratic functional even with infinitely many parameters. To simplify the notation, we consider
only 62 = 1/n and tiz =e 9,

Lemmab. (a) If o, b > Othen

i 1 _logn
] (n + e%i)b anb

(b) If @, b, c > 0and ab > c then

o0 i

Z -~ —b+c/a
P ( eal)

Proof. Claim (a). The sum to be estimated isn~"S,,, where

0
Z eoli— log(nl/“)]]

l=l 1+

Fix Lo, alarge positive integer. Let L, be the integer part of log(n'/*) — Lo. Eachtermin S, is
bounded above by 1, and each of thefirst L,, termsisbounded below by 1/[1+ exp(—a Lg)]?, which
is rather close to 1. The sum of the first L,, termsin S, is therefore essentially L, ~ log(n/®).
The sum of the remaining termsis bounded above by

o0

1

i=—Lo—1

Letn — oo andthen Lo — oc.
Claim (b). Let L, be the integer part of log(n/*). The sum to be estimated is n=?+¢/2s,,,

where
o0 ocli—log(n®/®)]

Sn:

= [1 + exli-logint 1"
An upper boundon S, is

ecli—La] el

Z[1+ea(l —L,— 1)]b Z [1+e(>[(] 1)]b

14



Similarly, an asymptotic lower bound is

i U=
ajy\b°
Pl (14 e%)

QED

Theorem 6. Assume (1). Instead of (3), supposeo? = 1/n and v; = e~% where0 < a < oo.
The posterior is computed from (2), and frequentist probability statements about 8 are also made
relative to (2). In probability, asn — oo, the frequentist distribution of ||8 — /|2 merges with the
Bayesian distribution.

Proof. Theorem 1 anditsproof gothrough, withC,, ~ (logn)/(an)and D,, ~ (2logn)/(an?).
Theorem 2 aso goes through; now, however, F, = 0(1/n?) istoo small to matter: in the notation
of this section, 0, (8) can be ignored. We turn now to R,(8, €). The sum of the €2 terms has
asymptotic variance (2logn)/(an?), like the Bayesian variance. It remains only to show that the
total frequentist variance of the e termsin R, is O (1/n?), in probability, for g chosen from (2).
Let V,(B) bethe variance of these B¢ terms. Then

ai

00 Ane®i
Va(B) = Z ﬁé’i(ﬁ)z,

i=1

where, asbefore, ¢; (B) = v e% B; areindependent N(0,1) variables. We compute the expected value
and variance of V,,(-), relative to the probability 7 on g defined by (2): E,{V,(-)} = 0(1/n?) and

S 2 2ai
Var, (V) = 30— oqaynd),

ai\8
i (1)
by Lemma5. QED

Remarks.

(1) The statement of Theorem 6 can be clarified as follows. For g € £», let ¢, g be the
frequentist distribution of [T},(8,Y) — C,]/+/Dy: therandomnessisinY. Likewise, let 7, bethe
Bayesian distribution of [7,,(8, Y) — C,]/+/D,. Here, the randomnessisin g, because 7, is—for
the Bayesian—independent of Y. Let p metrize the weak-star topology on probabilitiesin R and
let v be the standard normal distribution. Then p(¢, g, v) — 0 in probability asn — 0, where
“in probability” is relative to the probability on 8’s defined by (2). Furthermore, p (7, v) — O.
Stronger metrics could be used, but that is perhaps not the critical issue here.

(ii) Preliminary calculations suggest that Theorem 6 does not hold a.e—that is, p(¢, 4, v)
does not convergeto O for amost al 8 drawn from (2)—because there are arbitrarily large random
n with V,, ~ logn/n?. In other words, the Bayes bias term shows a limited degree of wobble,
amost surely. Indeed, n2V,, = 3", ;i ¢ Wherec,; = O (1), withamaximumati = L, or L, +1,
where L,, isthe integer part

L, = int[%log%].

15



Asi moves away from L,, the ¢,; decay exponentialy. If K isaconvenient large positive integer,
thei with |i — L,| > K can be ignored, by Lemma 4. Asn increases, there are infinitely many
digoint segments I, = {i : |i — L,| < K}. The ¢’sin these segments are independent, and

P{ Zcm-g‘iz > Clogn}

iel,

is governed by the behavior fori = L, or L,, + 1. Finally, there will ailmost surely be arbitrarily
large i with ¢? ~ logi.

(iii) Thereisanother way to salvage Bernstein-von Mises. Suppose (1)—2)—(3), with onz =1/n
and t? = 1/i2. Instead of the ¢z-norm || 8 — 1%, consider Y, 1| B; — Bil1%/i¥ . If y < 1/2, previous
results apply, but Bayesians and frequentists mergewhen y > 1/2. Of course, Theorem 4 remains
in force: the merging isonly for aparticular functional.

(iv) The a.e. consistency results—Theorem 5 and Remark (iii) to Theorem 1—depend on the
behavior of o2. For slow rates of convergence to 0, a.e. consistency will depend on the joint
distribution of the errors across n. A simple example may illustrate the point: suppose U, is
N(O, o?). If 62 = 1/n, then U, — 0 a.e—for any joint distribution. On the other hand, suppose
0?2 = 2ando? = 1/logn for n > 1. If the U, are independent, convergence a.e. fails. If
Uy = Vi+ -+ V,, the V; being independent N(0, t?) variables with 2 + - + 2 = 02,
convergence a.e. will hold.

3. Stochastic processes

The lead example in Cox (1993) is once-integrated Brownian motion on the unit interval,
which is used as a prior on functions 8 in the model y; = B(i/n) + €;, the € being 11D N(0,02)
variables. Eigenvalueexpansionsof the Karhunen-L oevetypetransform such problemsinto discrete
problems. We could not find the el genval ues of integrated Brownian motionintheliterature, and give
an informal account here—with many thanks to David Brillinger, who showed us all theinteresting
tricks. On the equival ence between white-noise problems and non-parametric regression or density
estimation, see Brown and Low (1996) or Nussbaum (1996).

Let B, be standard Brownian motion, so E{B;} = 0 and cov(Bs, B;) = min(s, t). Once-
integrated Brownian motionis X, = f(; By ds. Plainly, E{X,} = 0. Furthermore,

t u t u 1
varX,:Z/ / E{Bqu}dvdu:Zf / vdvdu = =13,
0 Jo 0 Jo 3

ThenforO < s < ¢,

15, 1,
cov(X,, X;) = és + ES (t—y9).

In short, if K(s, 1) = cov(Xy, X;),

1 1
K(s,t)=§s2t—és3 for 0<s <t

1 1
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Let A; be the ith eigenvalue of once-integrated Brownian motion on [0,1], and ¢;(¢) the
corresponding eigenfunction. These eigenfunctions are orthonormal in L2[0, 1],

1
(24) / K (s, t)¢i(s)ds = ri¢i(t)
0

and

Xi =) VhiZidi(0),
i=1

the Z; being 11D N(0,1) variables. Analytically,

K(s,0) =) %ihi(s)i (0).

i=1

For the existence of eigenfunctions and eigenvalues, and the expansion, see Riesz and Nagy (1955,
Section 97).
Our objective isto solve equation (24). Dropping subscripts and rewriting, we get

‘1 2 1 3 ! 1 2 1 3 _
(25) /0 (ES t — és Yo (s)ds +/z (ést — E_St Yp(s)ds = Ao (1).
Successive differentiations with respect to ¢ give
r1 1 1
(26) f Z52%¢(s)ds + f (st — Zt2)p(s) ds = A/ (1)
0 2 . 2
1
(27) / (s —D¢(s)ds = r¢" (1)
t
1
(28) - f ¢(s)ds = 1P (1)
(29) ¢ (1) = 1@ (1).

The boundary conditions—from (25)—28)—are

(30) $0) =0, ¢'0 =0, ¢"()=0, ¢®V=0.

The solution to (29) is

(31) ¢ (1) = Acos(t/2Y*) + B sin(r/2Y*) + C cosh(r/AY*) + D sinh(z /A Y%,
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wheretheconstants A, B, C, D are chosen to satisfy the boundary conditions (30). Since¢ (0) = 0,
we have C = —A; and ¢'(0) = 0 entails D = —B. The remaining two boundary conditions lead
to the following two equations, with § = 1/A1/4:

A(cos6 + coshé) + B(sin® + sinhg) =0
A(—sing 4+ sinh®) 4+ B(cosH + coshH) = 0.

Solve each equation for A/ B in terms of 6 and equate the results, to see that
(sinh6)? — (sing)? = (cosé + cosh6)?,

that is,
(32 cosf coshf = —1.
Plainly, the roots 6; of (32) tend to co. If 6; istheithroot, then; = (2i — L) /2fori =1,2,....

Theorem 7. The ith eigenvalue of once-integrated Brownian motion is A; = 1/91.4, where
0; ~ mi istheith root of the transcendental equation (32). The corresponding eigenfunction is
given by (31), with

A=B, C=-D, A/B=—(sinf +sinh6)/(cosbd + cosho),

while B is chosen so the function has norm 1.

Remark. In short, Tiz ~ 1/i* in Theorems 1-3 corresponds to integrated Brownian motion.
By a more direct calculation, Tiz ~ 1/i? corresponds to Brownian motion itself. In this case, of
course, everything can be written down explicitly: the ith eigenvalue is A; = 1/[(2i — 1)7/2]?,
and the corresponding eigenfunctionis ¢; (1) = A sin(t//A;).

4. The exceptional null set

We consider the structure of the exceptional null set in Theorem 2. To simplify matters, take
(33) 0?=1/n and t?=1/i%

Recall that A, isthe Bayesestimate computed from theprior defined by (2). Accordingto Theorem?2,
for aimost al B drawn from (2), ||3. — 8112 isof order 1/n/2. Thereisawobbly “Bayesbias’ term
VFE.Uy(B), with F, ~ n=3/2, Beingstandard normal, U, (8) = O(+/Togn ) as. Inshort, theBayes
biastermis O (W /n® 4) a.s.; finer results, of course, can be proved. Thereisalso randomness
of order 1/n%/4, due to the €’s. The next theorem shows that for a dense set of exceptional 8’s,
1B, — B2 isof much larger order 1/n”, with randomness of order 1/+/nlt#, where p is asmall
positive number at our disposition.
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Theorem 8. Assume (1) and (33). Let p < 1/2 be any small positive number, and
oo 32 oo 32
Co= /0 —(1—|—u2)2 du and C1= 4/0 —(l+u2)4 du
Let A be any large positive number and let » be any small positive number. For any g* € ¢, there
isaparameter vector 8 € £> with || — 8*|| < r and
(@ EglllBn — BI?} ~ CoA/n?,
(b) varg{ll B, — BI?) ~ C1A/n***.

Sketch of proof. Letig bealarge positiveinteger. Let g; = g7 fori < igwhile g2 = A/i1+2°
fori > io. By taking ig large, we get || — B*|| to be small. Next we use Proposition 1, with
wni = n/(n +i%). Let B,; betheith coordinate of the Bayes estimate A, so that

(34) Bui — B)? = (1 — wui)?BF — 2(1 — wni)wi Bi€i + wi€}
and
(35) Eg{llBn — BIPY = Y (L —wni)?BF + Y wiEfef).

i

Now Eg{||B, — BII?} = To + T1 + T2, where

io—1 - io—1 i4 5 1
(36) To = ;(1— Wni) B = ; mﬁf = 0(;)
37 T, = 3 1 2,22 o A% . CoA
37) l—gi( —wni)ﬁi_igi;)(n_l_iz)z’\’ PR
(38) Tr = 1§: = Z -0 !

270 ) (n—i—zz)2 (ﬁ)

l:

This proves claim (a). For (b), there are two random termsin (34), with covariance 0. So

varg{ll B, — Bl }—Z4<1 wni) 2w B; vare,+2wmvare

i=1 i=1
1¢ 22,2, 2% 4
i=1 i=1

Asbefore,
1 io—1

1
;Z‘Kl wni)*wy; B = O~

)
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isnegligible, while

; 24(1_ Wni) Wi B = 4A”Z (n +i2)4 ~ nlto

i=ig i=ip

and - N
2 4 2 1 1
ﬁ;wni =2n ;(n+i2)4 ZO(W)
isnegligible. We have not checked details, but asymptotic normality must follow.  QED

The situation is more manageable if we ignore the variances and consider only

(39) dn(B) = EglllBn — BI?).

Asshownin Theorem 5, ¢,,(8) — Oasn — oo forany g € ¢2. However, the rate of convergence
can be arbitrarily slow for most 8’s—if “most” is defined in atopological sense. That isthe content
of the next theorem. The setting is ¢2, which is a complete separable metric space. A Gs isa
countable intersection of open sets. If each of these open setsis dense, so is the intersection: that
isthe “Baire property.” Dense G;’'s are the topological analogs of sets of measure 1, and are large
“in the sense of category”; see Oxtoby (1980) for discussion.

Theorem 9. Assume (1) and (33). Let 0 < a, 1 oo be a sequence of real numbers that is
strictly increasing to oo, no matter how slowly. Then {8 : limsup, a,¢,(8) = oo} isadense Gs.

Proof. By (35), ¢, IS continuous. So

F(N.M) = (){anp, < M)
n=N

isaclosed set of g’s. We will show each F' to be nowhere dense. If so,

oo o0

{B:limsupa,d,(B) < oot = | J | F(N, M)

n—00 M=1N=1

is a countable union of closed nowhere dense sets, and the argument is done.
Toshow F (N, M) isnowheredensg, fix 8* € F(M, N). Wewill approximate 8* by g’swith
lim, a,¢,(B) > M. Let

1 4I/t3
40 = ———d
( ) co A (1_|_u2)3 u

and A = M/co. Take B = pf fori = 1,...,ip — Lwhile B2 = A/a; — A/a;11 for al i > io.
Abbreviate ¢, ; = (1 — wy;)?. By (35),

o0

i o0
C ,' C ’~ 1_C ’.
5 = S0 P8R = S eniff = A 4 4 S R0

a a;
— i—io 10 i=ig i+1
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Let f(x) = x*/(n+x%)?,s0c,; = f(i). Thedependenceof f onn issuppressed in the notation.
Now
) =4nx3/n+x%3 and  f"(x) = 12nx%(n — x2)/(n + x2)*.

Thus, f’ isincreasingon [0, «/n] and f(x +1) — f(x) > f'(x) for0 < x < \/n — 1. Asaresult,

s(n) ... s(n)
A
$u(B) > A LMONS D BNAOL

aj+1

i=ig i=ip

where s(n) isthe greatest integer that does not exceed /n — 1. Whatever ig may be,

s(n)
Y ) = o

i=ig
and limsup, a,¢,(B) > coA = M, asrequired.  QED

The next result characterizes the lim inf. For most B’s in the sense of category, the mean
squared error of the Bayes estimate—al ong a suitable subsequence of n’s—is c1n Y2, where

o0 1
(41) Ccl1 = A (1—|——xz)2dx

Theorem 10. Assume (1) and (33). Define ¢,, by (39) and c1 by (41).
(@ liminf, nt/2¢, = c¢1 on adense Gs.
(b) liminf, n'/2¢,(B) > c1 forany g € £».

Proof. Claim (a). The argument is essentially the same as for Theorem 9. Let
= 1
F(N, M) = nQv{nl/zqsn >c1t o)
These are closed sets, and
1/2 0
(B :liminf n'/%¢, () > c1) = AglNszlnN, M).
To show that F (N, M) isnowhere dense, we approximate 8* € F (M, N) by g’swith

1im "2, (B) = c1.

Let B = g fori =1,...,ip—1and B; = Ofori > ip. We estimate ¢,,(f) using equations
(35-38). Asbefore, To = O(1/n?). But now, 71 = 0 so the dominant term is 7> ~ n~%?¢;. For
claim (b), equations (35) and (38) give the lower bound, withall g; =0. QED
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To summarize, for most 8’s in the sense of measure, the mean squared error of the Bayes
estimate is Cn=Y/2 with C = [;° 1/(1 + u?) du. For most f’s in the sense of category, the rate
(along certain subsequences of n's) is cin~ /2, where ¢1 < C. Along other subsequences, the
rate is much slower than n~1/2 —as much slower as you please. There are genera results on
minimax rates of convergence and consistency of Bayes estimates in Zhao (1997) or Brown, Low,
and Zhao (1998).
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