Let \((P_i, X_i, \epsilon_i)\) be IID, jointly normal, with positive variances, and \(E(P_i) = E(X_i) = E(\epsilon_i) = 0\). Suppose \(P_i\) and \(X_i\) are correlated, as are \(P_i\) and \(\epsilon_i\); however, \(X_i\) and \(\epsilon_i\) are uncorrelated, i.e., \(X_i \perp \epsilon_i\), viz., \(E(X_i \epsilon_i) = 0\). Thus, \(P_i\) is “endogenous” and \(X_i\) is “exogenous.” (For jointly normal variables, uncorrelated and independent are synonymous.) Let \(a, b\) be real parameters, and \(Q_i = aP_i + bX_i + \epsilon_i\). We think of \(Q_i, P_i, X_i\) as observable, \(\epsilon_i\) as unobservable.

Claim. The parameters \(a, b\) cannot be identified from the joint distribution of \(Q_i, P_i, X_i\).

Let \(\alpha = \text{cov}(X_i, P_i)/\text{var}(X_i)\), so that \(\delta_i = P_i - \alpha X_i \perp X_i\). Check that \(\delta_i \neq 0\)—otherwise, \(P_i\) would be exogenous. Let \(c\) be a real number. Check that

\[
Q_i = (a - c)P_i + (b + \alpha c)X_i + (c \delta_i + \epsilon_i)
\]

and \(X_i \perp c \delta_i + \epsilon_i\). Thus, \((a, b)\) and \((a - c, b + \alpha c)\) lead to the same joint distribution for the observables, \(Q_i, P_i, X_i\). Matters would be otherwise, of course, if \(\epsilon_i\) were observable—but it isn’t, so it is legitimate to change the disturbance term along with the parameters.

The extension to \(p\)-dimensional \(X_i\) is easy. Suppose \(X_i\) is \(p \times 1\), and \(C = \text{cov}(X_i)\) is full rank; \(C\) is a \(p \times p\) matrix. Let \(D = \text{cov}(X_i, Y_i)\), viewed as a \(p \times 1\)-vector. We continue to assume that \((P_i, X_i, \epsilon_i)\) are IID and jointly normal, with expectation 0; that \(P_i\) and \(\epsilon_i\) have positive variance, that \(P_i\) and \(X_i\) are correlated \((D \neq 0)\), as are \(P_i\) and \(\epsilon_i\); that \(X_i \perp \epsilon_i\). Let \(a\) be scalar whilst \(b\) is \(p \times 1\). Let \(\alpha = C^{-1}D\). The rest of the construction is the same: \(Q_i = aP_i + X_i b + \epsilon_i\).

Take II

Let’s redo this from a slightly different perspective. Again, units are IID. For a typical unit, the response variable is \(Y\), a scalar. The \(1 \times p\) vector of explanatory variables is \(X\), which may be endogenous. There is \(1 \times q\) vector of variables \(Z\), which are proposed for use as instruments, with \(q \geq p \geq 1\). The (unobservable) disturbance term is \(\epsilon\). The variables \(Z, X, Y\) are assumed to be jointly normal, with expectation 0. Let \(\Gamma\) be the variance-covariance matrix of \(Z, X, Y\); this is assumed to have rank \(q + p + 1\), and the \(q \times p\) matrix \(M = E(Z'X)\) is assumed to have rank \(p\). Notice that \(\Gamma\) determines—and is determined by—the joint distribution of the observables \(Z, X, Y\). The matrix \(M\) is a sub-matrix of \(\Gamma\).

Let \(\alpha = E(Z'\epsilon)\); this is a \(q \times 1\) vector of nuisance parameters. Let \(\beta\) be \(p \times 1\) with

\[
Y = X\beta + \epsilon
\]
(1)

This \(\beta\) is a parameter vector.

Claim. \(\Gamma\) does not determine \(\alpha\) or \(\beta\).

Choose any \(\beta\) whatsoever; then simply define \(\epsilon = Y - X\beta\). Thus, \(\Gamma\) does not determine \(\beta\). Let \(N = E(Z'Y)\), a \(q \times 1\) sub-matrix of \(\Gamma\). Let \(H\) be the column space of \(M\) translated by \(N\); this
is a p-dimensional hyperplane in R^q. Plainly, $\alpha = E(Z'\epsilon) = E(Z'Y) - M\beta = N - M\beta$ is in H. Because M has rank p, as β runs through all p vectors, α runs through all of H; thus, α cannot be determined from Γ, which completes the proof.

Interestingly, if $0_{q \times 1} \notin H$—i.e., α cannot be $0_{q \times 1}$—then Z cannot be exogenous. If $0_{q \times 1} \in H$, then Z can be exogenous, but need not be so. After all, H is p-dimensional, and $0_{q \times 1}$ is but a single point. In short, additional information is needed to determine exogeneity, beyond the joint distribution of the observables.

Corollary. Γ can determine that $\alpha \neq 0$; however, Γ cannot determine that $\alpha = 0$.

To get a specific example where Γ determines that $\alpha \neq 0$, take $q = 2$ and $p = 1$. Let $X = \theta_1 Z_1 + \theta_2 Z_2 + U$ and $Y = \psi_1 Z_1 + \psi_2 Z_2 + X + U + V$. Here, Z_1, Z_2, U, V are independent standard normal variables, $\theta_1, \theta_2, \psi_1, \psi_2$ are free parameters. Since

$$Y = (\theta_1 + \psi_1)Z_1 + (\theta_2 + \psi_2)Z_2 + 2U + V$$

we have

$$M = E(Z'X) = \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix}, \quad N = E(Z'Y) = \begin{pmatrix} \theta_1 + \psi_1 \\ \theta_2 + \psi_2 \end{pmatrix}$$

Thus, N is in the column space of M—i.e., N is proportional to M—only if (ψ_1, ψ_2) is proportional to (θ_1, θ_2). On the other hand, suppose in equation (1) that the “structural parameter” is $\beta = 1$, and $\epsilon = U + V$. Then X is indeed endogenous, being correlated with ϵ. But Z_1 and Z_2 can be used as instruments only when $\psi_1 = \psi_2 = 0$; otherwise, the “exclusion restrictions” are violated, i.e., Z_1 and Z_2 should appear in the equation.