Comments on standardizing path diagrams: what are the parameters?

Let
\[Y_i = a + bU_i + cV_i + \delta_i \]
and
\[Z_i = \alpha + \beta Y_i + \epsilon_i. \]

Take \(U_i, V_i \) as data, with mean 0, variance 1, and correlation \(r \). The \(\delta_i \) are IID with mean 0 and variance \(\sigma^2 \). The \(\epsilon_i \) are IID with mean 0 and variance \(\tau^2 \), independent of the \(\delta_i \). (See exercise 5C6 in *Statistical Models*.) Let \(s_Y \) be the standard deviation of \(\{Y_1, \ldots, Y_n\} \). If we standardize the \(Y_i \), then (i) we’re dividing by a random variable, \(s_Y \); and (ii), the \(\delta_i \) get dependent. So, what are the parameters?

One solution is to standardize \(Y \) at the population level. First,
\[
E \left[\frac{1}{n} \sum_{i=1}^{n} (Y_i - a)^2 \right] = b^2 + c^2 + 2br + \sigma^2 = \theta^2,
\]
say. So, replace \(Y_i \) by \(\eta_i = (Y_i - a)/\theta \). We have
\[
\eta_i = \frac{b}{\theta} U_i + \frac{c}{\theta} V_i + \frac{\delta_i}{\theta} \tag{3}
\]
Thus \(E(\eta) = 0 \) and \(E(\eta^2) = 1 \), although
\[
E(\eta_i) = \frac{bU_i + cV_i}{\theta} \neq 0 \quad \text{and} \quad E(\eta^2_i) = \frac{(bU_i + cV_i)^2 + \sigma^2}{\theta^2} \neq 1.
\]

Standardization is “on the average,” over the whole population. Note that (3) is a bona fide regression equation, with all the usual assumptions on the errors. Fitting the standardized equation can be viewed as estimating \(b/\theta, c/\theta, \sigma^2/\theta^2 \). The estimates will suffer from ratio estimator bias, due to division by the random \(s_Y \).

The trick for (2) is the same. First, replace \(Z_i \) by
\[
Z^*_i = (Z_i - \alpha - a\beta)/\theta.
\]
We get the regression equation
\[
Z^*_i = \beta \eta_i + \frac{\epsilon_i}{\theta}
\]
Let
\[
\phi^2 = E \left[\frac{1}{n} \sum_{i=1}^{n} Z^*_i^2 \right] = \beta^2 + \frac{\tau^2}{\theta^2}.
\]
Finally, replace Z^*_i by $\zeta_i = Z^*_i / \phi$. When standardized at the population level, (2) becomes

$$\zeta_i = \frac{\beta}{\phi} \eta_i + \frac{\epsilon_i}{\theta \phi}$$

(4)

Again, $E(\zeta_i) \neq 0$ and $E(\zeta_i^2) \neq 1$, so the standardization only applies “on average:” $E(\zeta) = 0$ and $E(\zeta^2) = 1$. But (4) is a legitimate regression equation.

In the leading special case, $U_i, V_i, \delta_i, \epsilon_i$ are IID in i. We can center U_i, V_i at their expected values and divide by the respective standard deviations. The endogenous variables Y_i, Z_i now have expectation 0. Division by the respective SEs achieves standardization—at the population level—for each i. The sample will not be standardized exactly, due to random error. Again, standardizing the sample leads to a minor ratio-estimation bias, with a minor gain on the variance side since intercepts do not need to be estimated.

Also see exercise 5C6 on pp. 84–85 of Statistical Models.