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It is often said that the error term in a regression equation represents the effect of the variables
that were omitted from the equation. This is unsatisfactory, even in simple contexts, as the following
discussion should indicate. Suppose subjects are IID, and all variables are jointly normal with
expectation 0. Suppose the explanatory variables have variance 1. The explanatory variables may
be correlated amongst themselves, but anyp of them have a non-singularp-dimensional distribution.
The parameters αj are real. Let

(1) Yi =
∞∑

j=1

αjXij

For each p = 1, 2, . . . , consider the regression model

(2) Yi =
p∑

j=1

αjXij + εi(p)

where

(3) εi(p) =
∞∑

j=p+1

αjXij

The αj are identifiable. If the Xij are independent for j = 1, 2, . . . , the standard assumptions
hold, and εi(p) does indeed represent the effect on Yi of the omitted variables {Xij : j = p+1, . . .},
at least in an algebraic sense. On the other hand, if the Xij are dependent, the matter is problematic.
If we take (1–3) as written, then εi(p) represents the effect on Yi of the omitted variables—but εi(p)

is correlated with the explanatory variables. The standard assumptions fail, and fitting (2) to data
for i = 1, . . . , n will estimate the wrong parameters. If εi(p) is replaced by εi(p)⊥, namely, the
part of εi(p) independent of Xi1, . . . , Xip, we have a bona fide regression model, but with different
α’s.

There is no easy way out of the difficulty. The conventional interpretation for error terms
needs to be reconsidered. At a minimum, something like this would need to be said: the error term
represents the combined effect of the omitted variables, assuming that

(i) the combined effect of the omitted variables is independent of each variable included in
the equation,

(ii) the combined effect of the omitted variables is independent across subjects,
(iii) the combined effect of the omitted variables has expectation 0.

This is distinctly harder to swallow. Pratt and Schlaifer have a discussion in great depth.
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Some technical details

If the αj vanish for all but finitely many j , there are no technical issues. The inferential issue
remains, provided the largest j with αj �= 0 is an unknown parameter. Suppose next that αj �= 0 for
infinitely many j . Summability and identifiability must be demonstrated. To avoid interesting but
unnecessary probabilistic complications, suppose

∑
j |αj | < ∞. Fix i. Suppose also that part of

each Xij : j = 1, 2, . . . is independent of all the other Xik , and has L2 norm at least η > 0. More
specifically, let X⊥

ij be Xij net of {Xik : k = 1, . . . , p with k �= j}. Thus, we assume ‖X⊥
ij‖ ≥ η,

where ‖·‖ is the L2 norm. See below for definitions and some theory.
Now ‖εi(p)‖ ≤ ∑∞

j=p+1 |αj | is small, so the sum on the right hand side of (1) converges in
L2. Fix j and p with 1 ≤ j ≤ p. The regression of εi(p) on {Xi1, . . . , Xip} has a small coefficient
on Xij , because

(i) εi(p) is small,
(ii) we get the coefficient by regressing εi(p) on X⊥

ij , and

(iii) ‖X⊥
ij‖ ≥ η.

In more formal terms, by Lemma 2 below, a regression of Yi on Xi1, . . . , Xip in the random-
variable domain gives a coefficient on Xij of cov(X⊥

ij , Y )/var(X⊥
ij ). This coefficient is αj , with an

error that is at most

(4)
cov

(
X⊥

ij , εi(p)
)

var(X⊥
ij )

≤ ‖X⊥
ij‖‖εi(p)‖
‖X⊥

ij‖2
≤ η−1‖εi(p)‖ ≤ η−1

∞∑
j=p+1

|αj | → 0

as p → ∞. That proves identifiability.

A mistake to avoid

Some may conclude from the forgoing that bigger models are better. Perhaps, but (i) eventually
we run out of data, and (ii) there is always the ugly possibility of inadvertently including an
endogenous variable. Also see exercise 15 on page 105 of Statistical Models for information on
standard errors in the presence of misspecification. Kitchen-sink models have their problems too.

Regression in the domain of random variables

Changing notation, let q be a positive integer. Let U1, . . . , Uq, V be jointly normal random
variables, each having expectation 0. Let Cij = cov(Ui, Uj ). This is a symmetric q × q matrix,
assumed to be positive definite. Let Di = cov(Ui, V ). Take D = (D1, . . . , Dq)′ as a q × 1 vector.
Let B = C−1D, which is also a q × 1 vector. Let V ⊥ = V − (U1, . . . , Uq) × B, a scalar random
variable.

Lemma 1. (i) V ⊥ is normal with expectation 0, and (ii) V ⊥ ⊥ (U1, . . . , Uq) in the sense that
cov(Uj , V

⊥) = E(UjV
⊥) = 0 for each j = 1, . . . , q. In particular, (iii) V ⊥ and (U1, . . . , Uq) are

independent.

For the proof, assertion (i) is immediate. For (ii), we need only check that

cov(Uj , V ) = cov
(
Uj , (U1, . . . , Uq) × B

) =
q∑

k=1

cov(Uj , Uk)Bk =
q∑

i=1

CjkBk,
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i.e., D = CB. But B = C−1D by construction, completing the proof.
In short, (U1, . . . , Uq) × B is the regression of V on U1, . . . , Uq ; the coefficient on Ui is Bi ;

and V ⊥ is the part of V independent of U1, . . . , Uq . This is also “V net of U1, . . . , Uq .” Normality
is relevant only to convert orthogonality into independence. Without normality, (U1, . . . , Uq) × B

is the linear projection of V onto U1, . . . , Uq , i.e., the linear combination of U1, . . . , Uq closest to
V in L2—because V ⊥ is orthogonal to U1, . . . , Uq . The simplest special case has q = 1. Then the
regression coefficient takes a form that may be more familiar, cov(U1, V )/var(U1).

Lemma 2. The regression of V on U = (U1, . . . , Uq) can be computed by the following
stepwise procedure, with Ũ = (U2, . . . , Uq).

(i) Regress V on U2, . . . , Uq . Let α be the (q − 1)× 1 vector of regression coefficients. Let
V̂ = Ũα and V ⊥ = V − V̂ .

(ii) Regress U1 on U2, . . . , Uq . Let β be the (q − 1) × 1 vector of regression coefficients.
Let Û1 = Ũβ and U⊥

1 = U1 − Û1.

(iii) Regress V on U⊥
1 . Let γ be the regression coefficient, a scalar.

The q × 1 vector of regression coefficients of V on U1, . . . , Uq is then

(
γ

α − βγ

)

Proof. Since V = V̂ + V ⊥ and V̂ ⊥ U⊥
1 , whether we regress V on U⊥

1 or V ⊥ on U⊥
1 , the

coefficient on U⊥
1 will be the same, viz., γ . So ε = V ⊥ − U⊥

1 γ ⊥ U⊥
1 . Plainly, ε ⊥ U2, . . . , Uq ,

because ε is a linear combination of V ⊥ and U⊥
1 . Thus,

V = V̂ + V ⊥

= V̂ + U⊥
1 γ + ε(5)

= Ũα + (U1 − Ũβ)γ + ε

= U1γ + Ũ (α − βγ )

=
(

γ

α − βγ

)
U + ε

with ε ⊥ U , as required. To clarify the notation, U is 1 × q and Ũ is 1 × (q − 1); both are random
vectors; V̂ , V ⊥, Û1, U

⊥
1 , ε are all scalar random variables. If U1, . . . , Uq, V are taken as jointly

normal, these derived quantities are jointly normal too. The quantities α, β, γ are parameters not
estimates, being computed from the joint distribution not from data. Exercise 17 on page 34 of
Statistical Models covers regression in the data domain using a method exactly like that in Lemma 2,
although the notation is little different.
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