Notes on the Gauss-Markov theorem

DA Freedman 15 November 2004

The OLS regression model is
\[Y = X\beta + \epsilon, \]
where \(Y \) is an \(n \times 1 \) vector of observable random variables, \(X \) is an \(n \times p \) matrix of observable random variables with rank \(p < n \), and \(\epsilon \) is an \(n \times 1 \) vector of unobservable random variables, IID with mean 0 and variance \(\sigma^2 \), independent of \(X \). We can weaken the assumptions on \(\epsilon \), to
\[E(\epsilon | X) = 0_{n \times 1}, \quad \text{cov}(\epsilon | X) = \sigma^2 I_{n \times n}. \tag{*} \]

Vector Version of Gauss-Markov. Assume \((*)\). Suppose \(X \) is fixed (not random). The OLS estimator is BLUE.

The acronym BLUE stands for Best Linear Unbiased Estimator, i.e., the one with the smallest covariance matrix. If \(\hat{\beta} \) is the OLS estimator and \(\tilde{\beta} \) is another linear estimator that is unbiased, then \(\text{cov}(\tilde{\beta}) \geq \text{cov}(\hat{\beta}) \), i.e., \(\text{cov}(\tilde{\beta}) - \text{cov}(\hat{\beta}) \) is a non-negative definite matrix; furthermore, \(\text{cov}(\tilde{\beta}) = \text{cov}(\hat{\beta}) \) implies \(\tilde{\beta} = \hat{\beta} \). That is what the matrix version of the theorem says.

Proof. Recall that \(X \) is fixed. A linear estimator \(\tilde{\beta} \) must be of the form \(MY \), where \(M \) is a \(p \times n \) matrix. Since \(MY = MX\beta + M\epsilon \) and \(E(M\epsilon) = ME(\epsilon) = 0_{n \times 1} \), unbiasedness means that \(MX\beta = \beta \) for all \(\beta \). Thus, \(MX = I_p \times p \), and \(X'M' = I_p \times p \) as well. Furthermore, \(MY = \beta + M\epsilon \).

For \(\hat{\beta}_{\text{OLS}} \), we have \(M = M_0 \) with \(M_0 = (X'X)^{-1}X' \). Let \(\Delta = M - M_0 \). Then
\[
\Delta X = MX - M_0X \\
= MX - (X'X)^{-1}X'X \\
= I_p \times p - I_p \times p = 0_{p \times p}.
\]

So \(\Delta M_0' = \Delta X (X'X)^{-1} = 0_{p \times p} \), and \(M_0\Delta' = 0_{p \times p} \) too. As noted above, \(\text{E}(M\epsilon) = 0 \). And \(E(\epsilon\epsilon') = \sigma^2 I_{n \times n} \). Therefore,
\[
\text{cov}(MY) = \text{cov}(M\epsilon) \\
= E(M\epsilon\epsilon'M) \\
= \sigma^2 MM' \\
= \sigma^2 (M_0 + \Delta)(M_0 + \Delta)' \\
= \sigma^2 (M_0M_0' + \Delta\Delta' + \Delta M_0' + M_0\Delta') \\
= \sigma^2 (M_0M_0' + \Delta\Delta') = \text{cov}(\tilde{\beta}) + \sigma^2 \Delta\Delta' .
\]

Since \(\Delta\Delta' \) is non-negative definite, \(\text{cov}(\tilde{\beta}) \geq \text{cov}(\hat{\beta}) \). Finally, \(\text{cov}(\tilde{\beta}) = \text{cov}(\hat{\beta}) \) implies \(\tilde{\beta} = \hat{\beta} \) because \(\Delta\Delta' = 0_{p \times p} \) implies \(\Delta = 0_{p \times n} \): look at the diagonal of \(\Delta\Delta' \). This completes the proof.
Discussion. *Statistical Models* has the “single-contrast” version of the theorem, which starts with an estimator for the scalar parameter $c' \beta$. The vector version, on the other hand, starts with an estimator for the vector parameter β. The vector version implies the single-contrast version: take the given contrast c; adjoin $p - 1$ linearly independent contrasts; the vector theorem is invariant under linear re-parameterizations of the column space. (The details of this argument, however, may not be entirely transparent.) By a somewhat more direct argument, the single-contrast version implies the vector version: $c' \text{cov}(\hat{\beta}) c \geq \text{var}(c' \hat{\beta}) = c' \text{cov}(\hat{\beta}) c$ for all c, i.e., $\text{cov}(\hat{\beta}) \geq \text{cov}(\hat{\beta})$.