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Abstract

The Markov moment problem is to characterize sequences so, s1, s2, . . . admitting the repre-
sentation s, = folx"f(x)dx, where f(x) is a probability density on [0,1] and 0 < f(x) < ¢
for amost al x. There are well-known characterizations through complex systems of non-linear
inequalitieson {s, }. Necessary and sufficient linear conditions are the following: so = 1, and

0<(-1"/ (j) A" si <c/(n+1)

foraln =0,1,...and j = 0,1,...,n. Here, A istheforward difference operator. This result
is due to Hausdorff. We give a new proof with some ancillary results, for example, characterizing
monotone densities. Then we make the connection to de Finetti’s theorem, with characterizations
of the mixing measure.

Introduction

We begin by reviewing the Hausdorff moment problem. Then we take up the Markov moment
problem, with a solution due to Hausdorff (1923). Although this work was discussed in an earlier
generation of texts (Shohat and Tamarkin, 1943, pp. 98-101; Widder, 1946, pp. 109-12; Hardy,
1949, pp. 272-3), it seems less well known today than the one due to the Russian school. Next,
we sketch some generalizations and the connection to de Finetti’s theorem. We close with some
historical notes, including a brief statement of the Russian work. We believe that our Theorem 4
is new, along with the local theorems, the applications to Bayesian statistics (Theorems 8 and 9),
and the characterization of measures with monotone densities (Theorem 10). Many of the results
in this paper can be seen as answers to one facet or another of the following question: what canyou
learn about a measure from the moments, and how isit to be done?

The Hausdorff moment problem

Let 5o, s1, 52, ... be asequence of real numbers. When is there a probability measure v on
the unit interval such that s, isthe nth moment of ©? In other words, we seek the necessary and
sufficient conditions on {s,,} for there to exist a probability 1 with

1
sn:f x" n(dx) for n=0,1,....
0

Thisisthe Hausdorff moment problem.
To state Hausdorff’s solution, let Az, = 1,11 — 1, be the forward difference operator. Define
an auxiliary sequence as

(1) Snj = (—1)" (’;) A"

forn=0,1,...and j =0,1,...,n. Byconvention, A%; =s;. Thus,
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Sj.j = Sis
si+1,j = (J +D(sj — sj41),
itz = 3G+ DG + 2 (sj42 — 25541 + 57),

and so forth. The reason for introducing the binomial coefficients will be discussed later.

Theorem 1. Given a sequence so, s1, ... of real numbers, define the auxiliary sequence by
equation (1). There exists a probability measure . on [0, 1] such that {s, } isthe moment sequence
of wifandonlyifso =1,and 0 < s, ; for all n and j. Then p isunique.

Thistheoremisdueto Hausdorff (1921), but Feller (1971, pp. 224-28) may be more accessible;
the proof will not be repeated here. The “Hausdorff moment condition” isthat 0 < s, ; for all n
and j.

The Markov moment problem

The“Markov moment problem” isto characterize momentsof probabilitiesthat have uniformly
bounded densities, which constrains i in Theorem 1 to have the form u(dx) = f(x) dx, where
f <cae Of coursg, f > 0ae. and fol fdx =1,s0c > 1. Hausdorff’s solution is presented as
Theorem 2.

Theorem 2. Given a positivereal number ¢, and a sequence so, s1, . . . of real numbers, define
the auxiliary sequence by equation (1). There exists a probability measure n on [0, 1] such that
(i) {s,} isthe moment sequence of 1, and
(ii) w isabsolutely continuous, and
(il1) du/dx isalmost everywhere bounded above by c,

ifandonlyifso =1,and0 <s, ; <c/(n+ 1) forall n and j. Then u isunique.
Our proof will use the following lemma.

Lemma 1. Suppose {s,} is the moment sequence of the probability « on [0, 1]; define the
auxiliary sequence by (1). Then

n 1 .
(@ 50 = ( ) [+ = uan.
J/Jo

(b) If 1« is Lebesgue measure, thens, = 1/(n + 1).
(c) If  isLebesgue measure, then s, j = s, , = s, = 1/(n + 1).

Proof. Claim (@). Inductiononn = j, j +1,....
Claim (b). Integration.
Claim (c). Thisjust depends on the betaintegral (Feller, 1971, p. 47):

['(e)I(B)

for positiverea «, B.
Tatp OF o P

1
2 / Y1 - x)ftax =
0



Remarks. (i) Property (b) characterizes Lebesgue measure, in view of the uniqueness part of

Theorem 1. Likewise, s, j = sy, forallnand j =0, ..., nisacharacterization, asin (c). Indeed,
" n . .
> ( .>xf(1 —x)" =1
j=o0 ™

for al x in the unit interval—after al, [x + (1 — x)]” = 1. Lemma laimplies

n
Z Sn,j =1
j=0

If thes, ; areequal foral j =0,1,...,n,eachmustbel/(n +1),80s, = sy, = 1/(n + 1)
foralln =0, 1, ....Inessence, this characterization of the uniform distribution on [0, 1] isdueto
Bayes (1764): see Stigler (1986, pp. 128-9).

(i) Without the binomial coefficientsin (1), the upper bound on s, ; in Theorem 2 would be
more cumbersometo state. A deeper justification may be given by formulas (1.8) and (3.7) in Feller
(1971, pp. 221, 225).

(iii) The condition so = 1 may be dropped in Theorems 1 and 2; then u is a finite positive
measure, of total mass sg. Indeed, Z;?:O sn,j = so for any sequence {s,}; this can be proved
directly, or see (1.9) in Feller (1971, p. 221).

Proof of Theorem 2. Suppose conditions (i), (ii), and (iii) hold true. The conditionson s follow
from Lemma 1. Conversely, suppose the conditionson s hold true. Theorem 1 shows the existence
(and uniqueness) of a probability measure © whose moment sequence is {s,}. What remains to
be seen is that u is absolutely continuous, having a density bounded by c. If g is anon-negative
continuous function on [0, 1], its nth approximating Bernstein polynomial is by definition

n ] n . iy

B = Z T =x)" .

n,g(x) Z g(l’l) <]>x (1 X)

j=0

We claim that L 1

| Brsrn@n < [ By

0 0

Indeed, theleft sideis 3, g(j/n)sn,; by Lemmala, and theright sideis}; g(j/n)[c/(n + 1)] by
Lemma 1c; finally, use the condition thet s, ; < ¢/(n + 1).

Of course, B, , convergesto g uniformly asn — oo: seeFeller (1971, pp. 222-4), or Lorentz
(1966) for a more detailed discussion. So, for al non-negative continuous g,

1 1
©) /o gx) p(dx) < c/o g(x)dx.

Let G bethe set of Borel measurable functions g on [0, 1] with0 < ¢ < 1. Let G consist of the
g € G forwhich (3) holds. Then G1 containsall the continuous functionsin G and is closed under
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pointwise limits, so G1 = G. Put g = 14, the indicator function of a Borel set A, to conclude
that w(A) < cA(A), where X is Lebesgue measure. Now . is absolutely continuous; denote the
Radon-Nikodym derivativedu/dx by f. LetA ={x :0<x <1& f(x) > c}. If A(A) > 0, then

U(A) = / f(x)dx > cA(A).
A

But we have aready seen that w(A) < cA(A). This contradiction shows that A(A) = 0, proving
Theorem 2.

Example 1. Let f(x) = 1/(2\/x) on (0, 1]. Thisdensity is unbounded, but its nth moment
iss, =1/2n+1) < 1/(n+1). Thus, the simple condition s,, < ¢/(n + 1) is not sufficient to

make the density bounded: auxiliary conditions are needed. For our f, (n + 1)s,,; isunbounded.
Indeed, s,,, ; can be computed explicitly, using Lemma laand the formulafor the betaintegral (2):

sni==| . X (1—-x)""7—dx
2\ o VX

_}<n)r(j+%)r(n—j+1)
AV, L'+ 3)

AT+ Tm+1)
C2rG+)Tm+3)

By Stirling’sformula, log '(x) = (x — 3) log(x +k) —x + O(1) asx getslarge, for any constant k.
Hence
log(n +1) +logT(n + 1) —log'(n + 3) = log(n + 1) + O (D).

So
|Imn_>Oo (n + 1)Sn,j =00
for any fixed j. The boundedness condition of Theorem 2 is not satisfied.

Example 2. The moments of the “Cantor measure” may be of interest in connection with
Theorem 2. The Cantor measureisthe distribution of 2 Z}’il X;/3/,the X; being independent and
identically distributed, X; = O with probability 1/2 and X; = 1 with probability 1/2. This measure
isuniform on the Cantor set, and is therefore purely singular. For n > 2, the nth moment is

N TP

2 n nlog32'
Indeed, the Cantor measure assigns mass 2~ totheinterval [1— 37, 1], s0s,, > 27" (1 —37")"
for any positive integer m. Now choose m withlogzn < m < 1+ logzn. In particular,
lim(n + 1)s, = cc.

See Grabner and Prodinger (1996) for more detailed estimates.



Lp densities

Theorem 2 characterizes the moment sequences of probabilities with L, densities on [0, 1].
The next result (also due to Hausdorff) characterizes L, densitiesfor p > 1. To state the theorem,
define

n

4 on=|—
n—i—lj:O

[(n + 1)Sn,j]p}:!-/p

Theorem 3. Given real numbers p > 1and 0 < ¢ < oo, and a sequence s, s1, . . . Of real
numbers, define the auxiliary sequence by equation (1), and ¢,, by (4). There exists a probability
measure w on [0, 1] such that

(i) {s.} isthe moment sequence of «, and
(i1) w isabsolutely continuous, and
(iii) du/dx isin L, with p-normat most c,

ifandonlyifso =1,and0 < s, ; forall » and j, and ¢, < c.

So far, absolute continuity is defined relative to L ebesgue measure, but L ebesgue measure can
be replaced by any other probability v on [0, 1]. To avoid trivial complications, suppose v assigns
positive mass to the open unit interval (0, 1). Let #, be the moment sequence of v, and ¢, ; the
corresponding auxiliary sequence defined by (1) with ¢, in place of s,,. Lemma la confirms that
t.,j > 0. Replace the definition (4) by

n

(5) ¢, = { Z tn,j(Sn,j)P}l./P

j=0 fn.j

Theorem 4. Let v be a probability on [0, 1], assigning positive mass to (0, 1). Given real
numbers p > 1and 0 < ¢ < oo, and a sequence so, s1, . . . Of real numbers, define the auxiliary
sequence by equation (1), and ¢, by (5) rather than (4). There exists a probability measure . on
[0, 1] such that

(i) {s,} 1sthe moment sequence of 1, and
(i) u << v,and

(iif) dp/dvisin L, with p-normat most c,

ifandonlyif so =1,and0 < s, ; forall n and j,and ¢, < c.

In (iii), the p-norm of dyu/dv isrelativeto v, i.e., ( [(du/dv)? dv)l./p Theorem 3 isaspecial
case of Theorem 4; our proof of the latter depends on the connection with de Finetti’s theorem,
which is explained next. Let X1, X», ... be random variables taking only the values 0 and 1.
The sequence is “exchangeable” if the joint distribution is invariant under finite permutations, for
example,

P{X1=1,X0=0,X3=1}=P{X1=0,Xo=1, X3=1}.

Either the random variables can be permuted, or the values.
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Theorem 5. Let eq,e2,... be 0 or 1. The 0-1 valued random variables X1, Xo, ... are
exchangeable if and only if there is a probability measure 1 on [0, 1] such that

1
(6) P{X;=e fori=1...,n)= / 6% (1 — 0)" "> 1 (dp),
0

for all n and ¢;. Then w isunique.

This theorem is due to de Finetti (1931,1937); for a review, see Hewitt and Savage (1955).
The “if” part is straightforward. Necessity is more subtle because 1 must be constructed, but
Hausdorff’s theorem can be used (Feller, 1971, pp. 228-9). The proof of Theorem 5 will not be
detailed here. Before applying the theorem, we explain how the auxiliary sequence (1) connects
to (6). Suppose the X; are exchangeable, and S, = X1 + X2 + --- + X,,. Let s, be the moment
sequence of w in Theorem 5, and define s, ; by (1). Fix n and j with0 < j < n. Fix some
particular finite sequence ey, eo, .. ., e, of 0sand 1swhose sumis j. Then

1
P{S, = j} = C)P{X,- —eifori=1,...,n) = (”)/ (1= x)" pdx).
j illo
By Lemma 1a,

(7 P{Sy = j}=sn;-
The notation is flawed, in that s,, isamoment of i rather than avalue of S,,.

Proof of Theorem 4. If so = 1and 0 < s, ; for al n and j, there is a probability x on
[0, 1] whose moment sequenceis {s, }. For therest, the“if” and “only if” assertions can be proved
together: the issue is to determine from the moments whether . is absolutely continuous with
respecttov, anddu/dv € L,(v). We begin by constructing an exchangeable sequence X1, Xo, ...
of 0-1 valued random variables that satisfy (6): write P, for P. Define P, in the analogous way.
LetS, = X1+---+ X,. Let F, bethefield generated by X1, ..., X,, and ¥ theo-field generated
by al the X's, so ¥, + ¥. Let H, betherandom variable whosevalueis P,{S, = j}/P.{S, = j}
on the set {S, = j}. Then H, isthe Radon-Nikodym derivative of P, with respect to P,, both
restricted to %,,. Thus, H, isamartingalerelativeto P,, and ¢, isthe p-norm of H, relativeto P,.
By Jensen’'sinequality,

(8) ¢, In (5) are non-decreasing.

From this point on, we use the standard martingale theory for differentiating measures. The key
martingale fact is Theorem 4.1 on pp. 319-20 in Doob (1953); the application to differentiating
measures is summarized in Freedman (1983, pp. 345-6): for more discussion, see Hewitt and
Stromberg (1969, pp. 369-75). We conclude that

9 H, - Hy ae. [P, + P)],
with
(10) Hoo =dP,/dP,
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for thefull o-field #: thelimit isinfinite on the part of the space where P,, is singular with respect
to P,. Moreover,

(12) en = [Ex(HDIYP 4 [E,(HEYP,

where E, denotes expectation relativeto P,. In particular, if sup, ¢, < ¢ < oo, then Hy, € L,(v)
and || Hxllp, < c. On the other hand, if ¢, is unbounded, then Hy, ¢ L,(v). The next (and last)
step in the proof is perhaps worth isolating as a proposition, which writes H for Hy.

Proposition 1. Let L = lim, S, /n, which exists a.e. relativeto P, + P,. Leth = du/dv,
and H = d P, /d P,, with the understanding that 7 = oo on the part of the unit interval where . is
singular with respect to v; similarly for H onits domain. Then

(i) P.L™!=p.
(i) P,L71=v.
(iii) H = h(L) a.e relativeto P, + P,.

Proof. Only claim (iii) is argued. To begin with, we impose the side condition that © << v.
Let Py be the distribution when ad-coin istossed, so

P@{Xi = € fOI‘i = 1’ ,I’l} — 9261'(1_9)}’1—2@1"

the e; being O or 1. Furthermore,

1 1
P :/ Py n(do), P, =f Py v(d6).
0 0

Forany A € ¥,

1
/h(L)dPV:/ (/ h(L)dPg) v(dO)
A 0 A
1
:/ (/ h(@)dPg) v(dO)
0 A

1
= / Py(A) h(8) v(d0)
0

1
=Ammmum=&ml

The second equality holds because Py(L = 6) = 1 by the strong law of large numbers. The
fourth equality holds by the side condition u << v, withh = du/dv. Thus, k(L) isaversion of
dP,/dP,. Thisprovesclaim (iii) under the side condition, but the general case follows: notice that
H and i depend affinely on 1, then replace i by (e 4+ v)/2. This completes the argument, and the
proof of Theorem 4.

Remarks. (i) Theorem 4 holds as stated when p = oo, if weredefinec,, in (5) as

Cn == max Sn!j/tnyj.
=0,...,n

j=0,...,



ThisisCorollary 3.1 in Knill (1997).

(ii) The case p = 1 is more problematic. We can show that © << v iff the martingale H,,
is uniformly P,-integrable, but this is little more than a restatement of the definition of absolute
continuity, and uniform integrability may not be any easier to check in applications than absolute
continuity.

(iii) The conditions we have considered in Theorems 2—4 are of theform f,, (so, 51, ..., ) <
k., where f, isaspecified continuous function on R"+1, k, isaconstant, and s, s1, . . . asequence
that may—or may not—be the moment sequence of a probability that is being characterized in
some way. No condition of this form can describe the moment sequences of absolute continuous
probabilities, because the set of absolutely continuous probabilitiesis not weak-star closed.

(iv) Theorems 2—4 can be extended in a straightforward way from the unit interval to the unit
cubein R?.

(v) Hausdorff was working with finite signed measures. Theorems 2-5 can be extended to
cover that case, although the interpretation of de Finetti’s theorem for signed priorsremains alittle
mysterious, at least for elderly statisticians; also see Feynman (1987). For multi-dimensional signed
measures, see Knill (1997); for an application to de Finetti’s theorem, see Jaynes (1986).

Local theorems

Theorem 2 can be modified if we desire only that 1« should be absolutely continuous on the
interval [a, b],withO <a < b < 1,anddu/dx < c on[a, b]; off thisinterval, . has no special
features. We begin with the sufficiency part of Theorem 2, only sketching the development.

Theorem 6. Given real numbersa, b, c with0 < a < b < 1 and ¢ > 0, and a sequence
50, 51, . . . of real numbers, define the auxiliary sequence by equation (1). There exists a probability
measure w on [0, 1] such that
(i) {sn} isthe moment sequence of ., and
(i) w isabsolutely continuous on the interval [a, b], and
(i) du/dx isalmost everywhere bounded above by ¢ on the interval [a, b],

ifso=1,and0 < s, forall nand j, and s, ; < ¢/(n + 1) for all n and j witha < j/n < b.
Then p isunique.
Here isageneralization of the sufficiency part of Theorem 4.

Theorem 7. Given a positive real number ¢, and a, b with0 < a < b < 1, and a probability
v on [0, 1] that assigns positive mass to («, b), and a sequence sy, s1, . . . Of real numbers, define
the auxiliary sequences s, ; and 1, ; by applying equation (1) to x and v respectively. Define ¢,
asfollows:

o= Sy )

an<j<bn n.J

There exists a probability measure 1 on [0, 1] such that

(i) {s,} isthe moment sequence of u, and
(ii) w isabsolutely continuous with respect to v on the interval [«, b], and
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(iii) du/dx € L,(v) ontheinterval [a, b], with normat most c,
ifso=1and0 <s, ; forallnand j,and c, < c. Then x isunique.

Proofs are straightforward, using Hausdorff’s theorem to get « and techniques described
earlier in the paper to characterize d . /dx. For example, take Theorem 6. We can prove (3) for all
continuous functions on the interval [a, b], then for al Borel functions g on [a, b] with0 < g < 1.
The balance of the argument is unchanged. The conditions, however, are not necessary, as will be
shown by example.

Example 3. To see why the upper bound in Theorem 6 cannot be a necessary condition, take
a=0andb = 1/2. Let u assign mass 1/2 to [0, 1/2], with density bounded above by c; let
assign the remaining mass /2 to 1/2 + h. Choose n large and even, then 4 > 0 small. Consider
P, {S, =n/2}. Thepart of n on [0, 1/2] contributes at most ¢/(n 4 1) to P, {S, = n/2}. But—if
h = O—the other piece of P, {S, = n/2} isof order 1//n. If h > 0issmall, this other piece can
therefore be much larger than ¢/(n + 1).

For Theorem 6, the necessary and sufficient upper bound condition on s, ; would be s, ; <
c/(n+ 1) + exp(—28°n) forall s with0 < 8 < (b —a)/2anddl n, jwitha+68 < j/n <b —34.
See (3.5) in Diaconis and Freedman (1990). Example 3 indicates why the term exp(—252n) is
needed, and the restrictiontoa + 6 < j/n < b — §. The characterization of L, densities relative
to Lebesgue measure is also relatively straightforward. For other base measures, we do not have
clean results.

Applications to Bayesian statistics

Theorems on moment sequences can be translated in a straightforward way into theorems
characterizing the mixing measure . in Theorem 5. We give two examples. Recall that Py isthe
distribution when a 6-coin is tossed, so

Py{X; =e¢ fori=1...,n}= Qzei(l— 9)”—261',

the e; being O or 1. Furthermore,
1
(13) P, = f Py 11(d6).
0

Theorem 8. Let X; be 0-1 valued random variables on the probability triple (2, ¥, P). Let
¢ be a positive real number. Then {X;} admits the representation

1
P{X;,=e¢fori=1,...,n) =/ 0% (1 —0)""*¢ £(0)do
0

foralnande; =0o0r1,and0 < f < cae, iff
(i) the X; are exchangeable, and
(i) PAS, = j} < cP S, = jlforaln =0,1,...and j = 0,1,...,n, where A is
Lebesgue measureon [0, 1],and S, = X1+ --- + X,.



Then f isunique.
Thisisimmediate from (7) and Theorem 2. The analog of Theorem 4 is as follows.

Theorem 9. Let X; be 0—1-valued random variables on the probability triple (2, ¥, P). Let
v be a probability on [0, 1], assigning positive massto (0, 1). Let p > 1and 0 < ¢ < oo. Then
{X;} admits the representation

1
P{X;=e¢ fori=1,...,n} =/ 6% (1 — 0)"" ¢ £(0) v(db)
0

forallnande; =0or 1,and f € L,(v) hasnormat most c, iff

(i) the X; are exchangeable, and
(i) ¢, <cforaln=0,1,..., where

1/p

. . P{Sn=j}>”

14 n = P{S, = j} |
(e ‘ []ZO { ”(PV{SFJ} }

and S, = X1+ -+ X,.
Then f isunique.

Theorem 9 can be extended to the case p = oo by redefining ¢, asfollows:

cp= M

j=0,...,
There are yet more genera theorems characterizing partially exchangeable processes with L,
densities, in the setting of Diaconis and Freedman (1984): we will explore such resultsin Part I of
this paper. In the abstract setting, the proofs are more transparent (although the setting itself may
seem allittle strange).

Monotone densities

Insomeapplications, it isdesired to characterize monotone densitiesin termsof their moments,
see, for instance, Diaconis and Kemperman (1996). Theorem 10 gives a result for densities that
are non-decreasing. We will need the following lemma, which expresses a monotone function as a
mixture of the extreme step functions.

Lemma 2. Let F be a non-negative, right-continuous, non-decreasing function on [0, 1);
we allow F(0) > Oand F(1-) = oo. Let fy(x) = 0for0 < x < 6 and fyp(x) = 1/(1—0)
for 6 < x < 1,50 fp isaprobability density for 0 < 6 < 1. Then

F :/ Jov(d9),
[0.1)

where the measure v on [0, 1) isdefined asfollows. v(df) = (1—60) F(d0), with F(d0) assigning
mass F (0) to 0. Finally, the total massin v isfo1 F(x)dx.
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Proof. The calculation will seem trite, but it is easy to get lost if you start at the wrong place.
Let Hp =0on[0,0) and Hy = 1on[#, 1). Then

F(x) = Hy(x) F(df) = fo(x) 1—0)F(do) = Jo(x) v(db).
[0,1) [0,1) [0.1)

To evaluate the massin v, integrate over x € [0, 1). The proof is complete.

Theorem 10. Given a sequence so, s1, . . . of real numbers, define the auxiliary sequence s,,
by equation (1). There exists a probability measure u on [0, 1] such that
(i) {s,} isthe moment sequence of 1, and
(i1) w isabsolutely continuouson [0, 1), and
(iii) du/dx isnon-decreasingon [0, 1),

ifand only if so = 1,and 0 < s, ; for all » and j, and s, ; is nondecreasing in j for all n. The
probability 1 has a possible atomat 1, but {1} = Oiff s, — O.

Proof. Suppose u satisfies conditions (i), (ii), and (iii). Then w is aconvex combination of
point mass at 1, and an absolutely continuous probability on [0, 1] with a non-decreasing density.
If «{1} = 1, itisclear that s, ; is non-decreasing with j. Suppose on the other hand that 1 is
absolutely continuous on [0, 1] and dt/dx isnon-decreasing. Asin Lemma2,

dp/dx :/ fa v(d0).
[0.1)

(In this application, v is a probability measure.)
Sinces,, ; isaffinein u by Lemma 1a, it sufficesto consider the9’sone at atime, i.e., we can
take v to bepoint massat 6. Let 0 < j < n. Weclaimthats, ; < s, j+1,thatis,

1 1
(15) (”) / X/ (L—= )" fy(x)dx < (” ) / L = )" fy (x) dx,
J/) Jo i+1)Jo

which isto say,
1 . 1 ‘
(16) G+D / A=) dx < (n =) / XA — 3" .
o 6
Let G(0) betheright hand side of (16) minus the left hand side, namely,
1 . .
G(9) =/ xI (1= x)" 7 g(x) dx,
6

where
gx)y=m0n—-jx—G+DH(A—x).

G'(0) =0/ (1—6)"1h(),
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where
h@@)=—-g@) =G +DA-0)—m—j)o.

Clearly, h(#) > 0for0<6 < (j+1)/(n+1)andh(@@) <Ofor (j +1)/(n+1) <6 < 1. Thus,
G increases from 0 at 0—see Lemma 1c—to itsmaximum at (j + 1) /(n + 1), and then decreases
toOat 1. Inshort, G > 0 except at 0 and 1, where G vanishes. Thus, (16) holdsfor 0 < 6 < 1,
and (15) must hold for 0 < 6 < 1, completing the proof of the “only if” part of the theorem. The
converse follows from Proposition 2 below, with p,, ; = s, ;. The convergence of ., is discussed
in the remarks following the proposition.

Proposition 2. Let the probability 1, on [0, 1] assign mass p,, ; to j/nfor j =0,1,...,n,
with0 < pyo < pp1 < ... < ppn and Z}Lo pn.j = 1. Suppose u, — p weak-star. Let F be
the distribution function of . Then F is convex on [0, 1], hence absolutely continuous on [0, 1)
with nondecreasing density F’. Thereis a possible atomat 1.

Proof. Take the convolution of w, with the uniform distribution on [—5-, 2], in effect
replacing the point masses with their histogram. The resulting measure has distribution function
F,, which is convex—because F,, is monotone—and still converges weak-star to F. Let D be the
set of discontinuity points of F. Then D U D/2U D/3 U --- is countable. So, there are small
positive & with jh € D for no integer j: after all, jh € D iff h € D/j. Next, F, converges
pointwiseto F onthe h-skeleton i, 24, . .., because F is continuous there. Since F,, is convex on
thisskeleton, sois F. But 4 can bearbitrarily small. Therefore, F isconvex on (0, 1). Inparticular,
F iscontinuouson (0, 1), even absolutely continuous, and itsdensity F’ isincreasing. Suppose by
way of contradiction that O were an atom withmass$ > 0. Forany x, 2 > OwithO < x < 1—#,
we would have u[x, x + h] = lim, F,(x +h) — F,(x) > limsup, F,(h) — F,(0) > §, whichis
impossible; thefirst inequality holdsbecause F,, ismonotone; the second, because po , < 1/(n+1)
S0 F,,(0) — F,(—h) — O while u{0} = §. Thus, F iscontinuous even at 0, with F(0) = 0. This
finishes the proof of Proposition 2, and hence of Theorem 10.

Remarks. (i) Decreasing densities can be characterized in asimilar way, athough the possible
atom moves to 0, and can be excluded by requiring s, 0 — O.

(ii) The existence of the density in Theorem 10 follows from the monotonicity of s, ;, but the
density need not be bounded.

(iii) Why does u,, converge? Hausdorff proved Theorem 1 by showing directly that 1, con-
verges weak-star to the desired u: see Feller (1971, pp. 225-26). For us, it may seem more natural
to prove therelevant law of large numbers. The convergence of w,, would follow, along with Haus-
dorff’s moment theorem, the convergence of the Bernstein polynomials, and de Finetti’s theorem.
In essence, that isthe path followed by de Finetti (1937). Compactness arguments are also feasible.

(iv) Theorem 10 completes Bayes' observation that auniform density correspondsto auniform
distribution for S,,;: the uniform density is non-decreasing and non-increasing, so the resulting
distribution of S, has the same features. Of course, there are familiar arguments that are more
direct: see Lemma 1 and the remarks that follow it.

(V) Suppose u is absolutely continuous on [0, 1), and du/dx is non-decreasing on [0, 1).
Unlessd/dx is constant, s, ; will be strictly increasing with j. Indeed, the inequality in (16) is
strict unless® = 0 or 1; the inequality in (15) is therefore strict unless & = 0, corresponding to a
density that is constant. On the other hand, if © hasan atom at 1, then s, ,—1 < sp.n.
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Historical notes
Hausdorff

Hausdorff’s work on the moment problem was motivated by summability theory (Hausdorff,
1921, 1923). In brief, let S = {s,; :n = 0,1,...,j = 0,...,n} be atriangular matrix of
real numbers. The “S-limit” of a sequence {x;} is lim, > 7_q s, jx;. A summability method S
is“regular” if limx; = xo implies that the S-limit is xo,. Familiar examples include Cesaro’'s
method, wheres, ; = 1/(n + 1), and Euler’s E,, method with

n , .
Sn.j = ( .)p’(l— p)".
J
Hausdorff introduced a more general scheme, defining

n L .
(17) Sn,j = (J)/O p! (A —p)"/ uldp)

where p is afinite signed measure on [0, 1]. For instance, setting u to Lebesgue measure gives
us Cesaro’'s method: see Lemma 1b. If . is point mass at p, we get £,. Among many other
things, Hausdorff showed that a summability method defined by (17) is regular iff {0} = 0 and
w(0, 1] = 1; thisismore or less obvious from (7). However, 1« need not be a probability measure:
its negative part need not vanish. Methods defined by (17) are now called “Hausdorff methods.”
For additional discussion, see Widder (1946) or Hardy (1949).

Some notes on Hausdorff (1923) may be of interest. The auxiliary sequence, with the binomial
coefficients, isintroduced in equation (5) on p. 223; the positivity conditionis(A) on the same page.
The solution to the moment problem is Satz | on p. 226. The condition for an L, density is (C) on
p. 234, and the theorem is Satz I11 on p. 236. The condition for L is (D) on the same page, and
the solution to the Markov moment problemis Satz IV on p. 237. The hitherto-unmentioned Satz 11
on p. 232 characterizes moment sequences of finite signed measures: his necessary and sufficient
condition (B) is, in our notation, sup, Zj sn,j| < oo.

The Russian School

Solutions to the Markov moment problem, and similar results for the half-line and the whole
line, were among the great achievements of the Russian school. Perhaps the history begins with
Chebychev, who gave arigorous proof of the Central Limit Theorem using the method of moments,
with connections to the theory of continued fractions, orthogonal polynomials, and numerical
quadrature. His student Markov formulated the moment problem we have been discussing (along
with many other contributions in other areas).

Let {s,} be a given sequence of rea numbers, and ¢ a given positive real. When iss, =
fol x" f(x)dx for dl n, with f aprobability density bounded above by ¢? To answer this question,
Markov expanded
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asacontinued fraction, and showed that positivity of certain coefficients was a necessary condition.
The condition turned out to be sufficient as well.
Therewerelater devel opments by Ahiezer and Krein (1962), and Krein and Nudelman (1977).

One theorem in Ahiezer and Krein (1962, p. 71) can be stated thisway: s,, = fol x" f(x)dx for dl
n,with0 < f < c ae, iff 1, satisfies Hausdorff’s condition, where ¢, is defined by aformal series
expansion of (18) in powersof 1/z:

1/s0 s1  s2  $3 n 13
(19) exp[;<;+z—2+z—3+z—4+--->]_1+;+Z—2+;+---

Of course, the 1, are polynomial functions of s,, /c. For example,

K s 152 s S0S 1s3
n=— p=—429 =224 000
c c 2c¢ c c 6 c3
In general,
1 n
(20) == Z]‘[lusj_l/c)af(”)

where 7 runs through the permutations of length », and a; () is the number of cyclesin & of
length j. Here, so = [ f: if so = 1, then f isaprobability density.

Sergei Kerov made several remarkable contributionsto thistheory. For instance, (19) setsup a
one-to-one correspondence between the moments {s,,} of adensity bounded by ¢, and the moments
{t,} of anauxiliary measurev on [0, 1]. Given f, Kerov showed how to pick arandom point from v,
by generating a nested sequence of random intervals

[07 1] ) [Xl, Yl] D [XZ, Yz] DREEE

that shrink to apoint. Despite the complexity of (19), Kerov’salgorithmiseleganceitself. At stage
n + 1, pick apoint U at random in [X,, Y,]. Then flip a coin that lands heads with probability
f(U)/c, or tailswith the remaining probability 1 — [ f (U)/c]. If the coin lands heads, X, 11 = U
and Y,+1 = Y,. Butif the coin lands tails, X,,+1 = X,, and Y,,;.1 = U. Probabilities have to be
bounded between 0 and 1: that iswhere the condition 0 < f < ¢ comesin.

Kerov found striking connections between his agorithm and Young tableaux, aswell as eigen-
values of random matrices, and the zeroes of orthogonal polynomials. Recently, expansions con-
nected to the Markov moment problem—Ilike (19) and (20)—have found applications in Bayesian
non-parametric statistics: Cifarelli and Regazzini (1990), Diaconis and Kemperman (1996).
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J
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The Markov Moment Problem and de Finetti's Theorem: Part Il 15 June 2003
by Persi Diaconis and David Freedman

Abstract

This paper gives an abstract version of de Finetti’stheorem that characterizes mixing measures
with L, densities. The general setting is reviewed; after the theorem is proved, it is specialized
to coin tossing and to exponential random variables. Laplace transforms of bounded densities are
characterized, and inversion formulas are discussed.

Introduction

In part | of this paper, we discussed the Hausdorff moment problem on the unit interval,
and explained how such problems can be transated into questions about the prior or “mixing”
measure in Bayesian statistics. Our object here is to give a version of de Finetti’s theorem that
characterizes mixing measures with L, densities, in the general setting described by Diaconis
and Freedman (1984), which covers “partial exchangeability.” We begin by reviewing the setup
and proving genera theorems; then we give some examples, showing how the general theory
specializes to normal variables, coin tossing, and exponential variables. In connection with the
latter, we characterize L aplace transforms of bounded densities and discussinversion formulas. As
will be seen, the abstract theory gives ageneralized procedure for inverting probability transforms.
Finally, thereisabrief literature review. Theorems 2—4 and their corollaries are thought to be new.

The abstract setup can be described as follows. Fori = 1,2, ..., let ; be a Polish space
equipped with the Borel o-field . Let @ = [[72,2; and F = [[2; F. Let X; be theith
coordinate function on €2. The nth “sufficient statistic” 7, is a Borel mapping from [[7_; ©; toa
Polish space W,, equipped with its Borel o-field 8,,. In principle, 7,, does not act on €2, although
Tx(X1, ..., X,) does. Foreachn and € W,, let O, ; be aprobability on ([T/_; @i, [1'_1 Fi)-
Itisassumed that r — Q,; isBorel.

To illustrate the setup, suppose the X; are independent normal random variableswith common
mean 0 and variance 2 > 0. Then Q; would be the real line, W,, would be the set of positive real
numbers, and T, (x1, ..., Xp) = D 14 xl.z. In this example, Q,,; isuniform on the n-tuples of real
numbers (x1, ..., x,) with >°7_; xl.2 = t. Geometrically, this set of n-tuplesis the sphere centered
at 0 having radius +/t. Statistically, Q,; is the conditional distribution of the sample, given the
sufficient statistic.

We return to the abstract setting, and define M, the partially exchangeable probabilities, as
the set of P on (2, ¥) such that for each n, given 7,,(X1, ..., X,,) = ¢, aregular conditional
P-distributionfor X1, ..., X, iS Qn ;. Informaly, Q, ; isthedistribution of the data given that the
sufficient statistic took the value . This does not depend on the parameters, i.e., isthe samefor all
P € M. Said another way, M isthe set of P for which Q,, ; works as advertised. In our normal
example, M will turn out to be the set of probability distributions faced by a textbook Bayesian
statistician, who is going to observe (by assumption) a sequence of independent normal random
variables with mean 0 and variance 02 > 0, and is contemplating all possible prior probabilities
for o2. That isthe content of Theorem 1 below.

We impose the following regularity conditions (which are obvious for the normal, once you
decipher the notation).



(1) Qn,t{Tn =1} =1

2 If T,(x1,...,x0) = Tp(x1/,...,x,)) then Tp,p1(x1, ..., xp, x) = Tpp1(x1/, ..., x,/, x)
foral x € Q,,41.

(3) Foreachs € W, andt € W1, relativeto Q,+1,, thekernel Q,, ; isaregular conditional
distribution for (X1, ..., X,) given T,,(X1, ..., X,) = s and X,,11 = x. Here, the X;
are viewed as the coordinate functions on ]_[7:11 Q;.

We define the partially exchangeable o-field T as
o0

S = () S
n=1

where = (n) isspannedby 7,, (X1, ..., Xn), Xn+1, Xn+t2, . ... Themaintheorem provedin Diaconis
and Freedman (1984) is the following.

Theorem 1. Conditions (1), (2), and (3) arein force. Then M is convex, and there is a set
G € 3 with the following properties.
(i) P(G)=1foral P e Mgp.
(ii) Foreachw € G, the sequence of probabilities Q,, 7, () convergesweak-star to a limiting
probability Q,, € My, whichis0-1on %.
(ili) Asw rangesover G, the kernels Q,, range over the extreme points of My,.
(iv) Forany P € My, thekernel Q,, isaregular conditional P-distribution for X1, X, ...
given ¥, and

4 P= / Qw P(dw),
G

with P therestrictionof Pto 3. Therepresentation (4) isunique, i.e., P < P. Moreover,
P isextremeiff PisO-1lon X, i.e,

5 Plow:weG& Q,=P}=1

Remarks. (i) The o-field £ may be restricted even further, to the o-field 3 spanned by
w — Q. Then P isreplaced by P, therestriction of P to X, the advantage being that > is a
Borel o-field equivalent to the inseparable X up to sets that have measure O for al P € My,.

(i) In this context, P isthe mixture and P isthe mixing measure. Equation (4) becomes
(6) P= / 0. P(dw).
G

(iii) If weidentify all pointsin the same atom of 3., the resulti ing quotient space X isanalytic.
The quotient of > isthe Borel o-field in % and the quotient 7= of P isa probability on that o-field.
Then

(1) P =/ Qx m(dx).
x
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This may be a more convincing analog to de Finetti’s theorem for coin-tossing. To define Q,,
choose any w in the fiber corresponding to x—it doesn’t matter which—and set O, = Q. Let
XmapwinGtox € X,sothat m = PX~1, i.e, 7 isthe limiting distribution of the random
measures Q, 1, Among other things, the mixing measure has been recovered from the mixture.
Thisisageneralized inversion formula; theapplicationto L aplacetransformswill be detailed bel ow.
Technically, X can berealized asthe image of G under X, and is then an analytic subset of the set
of probabilities on 2; in applications, X will be ahomelier object.

(iv) In our normal example, G can be taken as the set where (X2 + - - + X2)/n converges
to afinite positive limit L. Then Q,, makes the coordinates independent normal random variables,
with variance L(w). The quotient space X in (iii) is (0, co), and the quotient probability = isthe
prior on o2, viz., the distribution of L. Said with less formality, X1, X, ... have an orthogonally
invariant distribution iff they are scale mixtures of independent normal variables with mean 0 and
variance 1. (It isthe distributions that are being mixed, not the random variables; the customary
informal languageis, well, informal.)

In view of Theorem 1(iii) and (5),
(8) Oy lw . weG& Q,=0,)=1fordl o € G,

an equation that will be used later. Condition (1) impliesthatr — Q, ,is1-1. Hence T, and O, T,
span the same o -field, and we may view Q, 7, asthe sufficient statistic instead of 7,,.

Bounded densities

Our first result characterizes mixtures where the mixing measure has a bounded density. It is
the abstract version of Theorem 4 for L, inPart|. Let P; € Mg fori =0, 1, let ng be apositive
integer, and let ¢ be apositive constant. Conditions (1), (2), and (3) arein force; we use the notation
of Theorem 1.

Theorem 2. Let P betherestriction of P to the o -field spanned by X1, X, ..., X, and let
U, =T,(X1, ..., X,) map 2 to W,. The following conditions are equivalent.

(i) PL<cPo.
(i) P1 < cPo.
(iiy P” <cP{" foralln=ng,no+1,....
(iv) PlUn_1 < cPoUn_1 forall n =ng,no+1,....

Proof. Plainly, (i) = (ii) = (iii) = (iv), thefirst implication being immediate from (6). Next,
(iv) = (iii) = (ii) = (i). Thefirst implication results from sufficiency: if P € M, then

9 P = f Q,, PU, ).
Wa

The proof of Theorem 2 is complete. From the present perspective, if condition (iii) holds for
any no, it plainly holdsfor ng = 1; thiswill be helpful in one of the applications below, where the
dependence of the conditionson ng will belesstransparent. Theorem 2 characterizes mixtureswith
bounded densities, and in the next section, we turn to L, densities.
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Lp densities
Theorem 3. Py << Py iff P1 << P, and then d P1/d Py isa version of d P1/d Po.

Proof. If P << Py, then P, << Py by (6). The converse is obvious from the fact that P
restricts P to a smaller o-field. To compute the Radon-Nikodym derivative, suppose P; << Fo.
Letgp = dPl/dPo,andfle € . Then

(10) / 6dPo = f ( / 6 () Qa/(dw)> Po(da).
A G A

But Q,, concentrates on the :-atom containi ng o’ by (8),and ¢ is Y -measurable, so
Quwip =9} =1,

and we may replace ¢ (w) on theright side of (10) by ¢ ('). Thus

/ ¢dPy= / ( / ¢ () Qw/(dw)) Po(dw')
A G A
_ / ( f Qw/(dw))d)(w’) Po(de)
G A

= /G Qo (A) Pr(de)
= P1(A).

Corollary 1. Let ¢ = d P1/d Py, with ¢ = oo on the part of the space where Py is singular
with respect to Py. Define @ in the analogous way for P and P1. Then ® = ¢ a.e. [Po + P1].

Proof. Thisisimmediate from Theorem 3, on replacing Py by %(Po + P1). Inprinciple, ®
need only be ¥ -measurable; in fact, however, @ is >-measurable up to null sets.

Recall that U,, = T,,(X1, ..., X,,). Suppose
(11) PU T << PU T foral n.

Let h, = dP,U,t/d P,U,, aBorel function on W,,. Let

1
(12) &= ( f W drgu; )"
and

(13) H, = h,(Uy,).

Recall that P istherestriction of P tothe o -field spanned by X1, ..., X, sothat P << Py
by (9) and (11); and H, = dP."”/dP{"” is a martingale relative to Py. The proof of the next
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theorem is omitted as a routine application of differentiation theory (Hewitt and Stromberg, 1969,
pp. 369-75).

Theorem 4. Assume (11), and definitions (12-13). Then ¢,, is non-decreasing as n increases.
Moreover, H, convergesa.e. Pp + Py toalimit H, which isinfinite on the part of the space where
Py issingular with respect to Py, and d P1/d P on the part of the space where P; << Pp. Finally,
lime, = ([ HP d Po)Y/?.

Corollary 2. P << Powith an L, density having normat most c iff supc, < c.

Remarks. (i) P1 << Ppiff H, isuniformly Po-integrable; but thisamountsto little more than
restating the definition of absolute continuity.

(i) Corollary 2 isthe abstract version of Theorem 9 in Part |. Theorems 2 and 3 here capture
the reasoning for Theorem 4 in Part |.

Examples

Example 1: Cointossing. To make contact with de Finetti’s original result for coin tossing—
Theorem5inPart I—let Q; = {0, 1} and W,, = {0, ..., n}, with the discrete topology on both. Let
T,(x1,...,x3) = x1+---+x,. Informally, 1isheads, Oistails, w € Q2 istherecord of aninfinite
number of coin tosses, X; (w) being the outcome on the ith toss; 7,,(X1, ..., X,) isthe number of
heads in the first n tosses of the coin. For j =0, ..., n, let Q, ; be the uniform distribution on
the (;’) sequences of Os and 1s of length n whose sumis j. It takesonly afew (tedious) minutesto
verify the following:

M consists of all the exchangeable probabilities on (€2, ).
Conditions (1), (2), and (3) are satisfied.

In Theorem 1, the o-field & consists of the Borel sets invariant under finite permutations of
coordinates.

G can be taken asthe set where (X1 + - - - + X,;)/n convergesasn — oo; call thelimit L.

0., isthe probability on & making the coordinates X; independent tosses of a p-coin, where
p = L(w).

The quotient space X in Remark (iii) is the unit interval; the quotient o-field is the Borel
o -field; and the quotient probability is the distribution of L, which is the mixing measure
on [0, 1] in Theorem 5 of Part I.

Theorem 5in part | istherefore aspecial case of Theorem 1 here. Of course, adirect proof iseasier.
But Theorem 1 does provide a unified framework for de Finetti’s theorem and many variations.
Corollary 2 here gives Theorem 9 in Part |, and the present Theorem 2 does L... At least for us,
the abstract setup makes the structure of the proofs easier to see.

Example 2: Exponential random variables. The random variable X > 0 has the exponential
distribution with parameter A if P(X > x) = exp(—Ax) for x > 0. Here, 0 < A < oo. Mixtures
of independent exponentials with a common parameter were characterized by Freedman (1963).
Informally, a sequence of positive random variables is a mixture of exponentials iff the sums are
sufficient statistics, and given the sum, the summands are uniformly distributed over the simplex.
To make the connection with Theorem 1, we take @2; = W,, = (0, oo) with the Bordl o-field.
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Let T,(x1,...,xp) = x1+ -+ x,. FOr0O <t < oo, let 9, be the uniform distribution on
the positive, finite x1, ..., x, whose sumis¢. Let P, be the probability on (2, ) according to
which the coordinates X; are independent exponentials with the common parameter 1. If uisa
probability on (0, c0), let P, = f0°° Py, u(d)), that being the mixture we want to characterize.
Abstractly, P on (2, ) admits the representation P = P, iff P € My, and then u is unique.
The G in Theorem 1 is again the set where (X1 + - - - + X,,)/n convergesto afinite positive limit;
denote the latter by L. And Q,, = P1/1.(,) makesthe X; independent exponentials with common
parameter 1/L(w): theinverse results from the fact that an exponential distribution with parameter
A hasmean 1/A. The quotient space X in Remark (iii) is (0, co), the quotient o -field is the Borel
o-field, and the quotient probability is the distribution of 1/L, namely, u. If u isalowed to have
positive mass at 0, the argument is a little more complicated, because the X; will be infinite with
probability w{0}.

Suppose 1 and v are two probabilities on (0, oo), and ¢ isa positive real number. It isamost
obvious from Theorem 2 that P, < cP, iff u < cv. Inthe next section, we restate the condition
in terms of the Laplace transform, which may be more interesting. We also characterize . with
a bounded density: thisis (alittle) beyond the scope of our previous theorems, since Lebesgue
measure isinfinite on (0, co).

In these examples, the “sufficient statistic” is the sum, and the conditional distribution is
uniform—on {0, 1, ..., n} for the coin and the simplex for the exponential. In other situations,
the sufficient statistic and the conditional will be more complicated: see Diaconis and Freedman
(1984) for more examples and discussion.

Laplace transforms
Let u be aprobability on [0, co). Its Laplace transformis

(14) é(x) = /0 e pu(dh).

We use ) as the variable of integration, in keeping with Example 2, and write ¢,, for ¢ if thereis
any ambiguity. According to acelebrated theorem of Bernstein, Laplace transforms of probabilities
on [0, co) are characterized as being “completely monotone,” and taking the value 1 at x = O;
furthermore, w in (14) isunique. See Widder (1946, pp. 144-163) or Feller (1971, pp. 233, 439).
For these purposes, ¢ on [0, co) is completely monotone if the nth derivative ¢ existson [0, co)
for al n, and these functions alternate in sign, so that (—1)"¢™ > Oforaln = 0,1,.... Of
course, ¢ is continuous because ¢ "1 exists. At 0, continuity and differentiability are from the
right: ¢ may not be defined to the left of 0. By convention, ¢© = ¢.

To avoid technical nuisances, we assume until further notice that {0} = 0. Recall that
X1, ..., X, areindependent exponential random variablesrelativeto Py, withcommon parameter A.
Thedensity of X1 +---+ X, is

n—1

X —AXxyn
(15) X —> me A

forn =1,2,.... Thisisawell known formula (Feller, 1971, p. 11), and is easy to verify directly.
To get the density of the sum relativeto P, we just the integrate (15) with respect to . (dA):

X n—1

n—1 o0
—AXqn — (_1\" X (n)
(16) (n_l)!fo e p(dh) = (-1 s )




forn =1, 2,....Theequality in(16) followsby differentiating (14) under theintegral sign, n times.

Lemmal. Let © and v be two probabilities on (0, o). Let ¢ be a positive constant. Then
w < cviff ()"0 (x) < c(=1)"¢5 (x) for all n = 0,1,... and x > 0. For sufficiency, the
upper bound is needed only for large positive n.

Proof. Combine Theorem 2 and (16), the latter giving the density of the sufficient statistic
with respect to P, or P,. Thisiswhere we use ng in Theorem 2.

Corollary 3. Let v be exponential with parameter . Then u < cv iff
(D" (x) < cnlh/(x + h)"

foralln =0,1,...andx > 0. For sufficiency, the upper bound is needed only for large positiven.
Proof. The Laplacetransformof vis¢,(x) = h/(h+x), SO (—1)"¢,()”) (x) = hn!/(h+x)" 1.

Theorem 5. Let ¢ be a given function on [0, oo), and ¢ a given positive real number. Then ¢
isthe Laplace transform of a probability x on (0, co) such that u is absolutely continuous, with a
density bounded above by ¢, iff ¢ (0) = 1 and

(17) 0< (=1)"p™(x) < ent/x" 1

foraln =0,1,...and x > 0. Furthermore, i is unique. For sufficiency, the upper bound is
needed only for large positive n.

Proof. For uniqueness, (14) determines v according to Bernstein's theorem. Suppose that ¢
isthe Laplace transform of a probability 1« on (0, co) withdu/dx < c; the conditionson ¢ and its
derivatives follow by routine calculus, proving necessity. For sufficiency, u exists by Bernstein's
theorem. Let

(18) V) = f e e u(dh) = $(x + D).
0

Plainly, (—=1)"¢ ™ (x) < ¢cn!/(1 + x)**t1. Corollary 3 shows that e~ (d1) < ce *dx, which
completes the proof.

Essentially this theorem can be found in Widder (1946, p. 315) or Feller (1971, p. 440); aso
see Hirschman and Widder (1955, chap. 7). There are similar—albeit more complicated—results
for L,: see Widder (1946, pp. 288, 312-14). Rather than pursuing this topic, we turn to inversion
formulasfor the Laplace transform (Widder, 1946, p. 288; Feller, 1971, p. 440). These have always
seemed mysterious, at |east to us; thetheory developed heremay help. In Example 2, the P, density
of n/(X1+---+ X,) convergesweak-star to : indeed, n/(X1 + - - - + X,,) convergesa.e. [ P, ] to
A, by the strong law. The density of the denominator X1+ - - - + X,, was computed from the L aplace
transform ¢ of w, in (16). By achange of variables (y = n/x), thedensity of n/(X1 + --- + X},)
isseento be

(19 fal) = (<D [«z%"’(f)} (ﬁ) .
n! y y
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As noted above, f,(y)dy convergesto u(dy) asn grows, which gives the basic inversion formula
(Widder, 1946, p. 288). The convergence is better for smoother w, but weak-star convergence
aways holds. We have assumed {0} = 0. Otherwise, the contribution from O needs to be
assessed separately: the distribution of n/(X1 + --- 4+ X,) picks up an atom at 0, whose mass
is—naturally—u{0}.

Example 3. Let 0 < o < oco. The I'-density A — A% 1e=/T'(«) has Laplace transform
x — 1/(L+x)* for0 < x < oo. Now let £(1) = 1for A near O, while f(A) = 1//[1— 4|
for A near 1, and f (1) = ¢~* for A near co. The definition of £ on (0, co) can be completed so
that f isapositive density, and C, except at 1. It isroutine to show that the Laplace transform ¢
of f isapproximately 1 near 0 and 1/x near oo. Plainly, f isunbounded. In short, the condition
¢(x) < ¢/x does not establish the boundedness of f in Theorem 5. In this example, the upper
boundin (17) will holdforn =0, ..., ng, athough c will depend onng. Asn — oo, however, (19)
suggests that (—1)"¢™ (x)x"*1/n! will be unbounded for x near n, so the upper bound in (17)
fails. We have not verified this directly, but see Widder (1946, p. 288).

Remarks. (i) We think that Widder (1946, p. 288, Definition 6) omitted a factor 1/k! in the
definition of Ly ,; if so, our (19) matches up; otherwise, we cannot verify the calculationsfollowing
his definition.

(i) From the present perspective, Bernstein’ stheorem can be derived from Hausdorff’ssolution
to the little moment problem—Theorem 2 in Part |I. The connection is made by the mapping
A — —log A, which takes the unit interval to the half-line. Bernstein seems to have been unaware
of Hausdorff’s work; Widder confesses to having rediscovered it for a third time (Widder, 1946,
p. 144). With respect to Hausdorff’s solution to Markov’s problem, we might be in fourth place.

Example 4. Normal random variables with mean 0. In connection with Theorem 1, we
considered scale mixtures of normal random variables with common mean 0. There, we used
variance as the parameter; here, it will be more convenient to use the “natural parameter” A =
1/02. See Lehmann (1991, p. 57). Let Q; = (—o0, 00), and let P, on Q = []; ; make the
coordinates X; independent normal random variables, with mean 0 and common variance 1/A. For
any probability . on (0, c0), let P, = [ P, u(d2). When does u have a bounded density with
respect to Lebesgue measure? with respect to Haar measure di /A? The nth sufficient statistic will
betakenas 7, = 3(X2 +--- + X2). Let x — v, ,(x) be the density of T,, with respect to P,,.
By excluding a set of measure O with respect to all P,,, we can assume that our X; never vanish, so
T, >0.Letm =n/2. Forn =1, 2, ..., thedensity of 7,, with respect to P, is

m—1
—AXym

x — e
I'(m)

See (Feller, 1971, pp. 47-48). The density with respect to P, is therefore

m—1 00 m—1

X —Axqm o aym_ X (m)
ron Jo e A" p(dr) = (=1) —(m—l)!¢“ (x)

X — wu,Zm(x) =

form =1,2,..., where ¢, (x) isthe Laplace transform of ., the second equality holds by (16).
NOW x 247y, 2m (x)/m = (—1)mxm+1¢&m) (x)/m!, and Theorem 5 shows

8



(20)  Themixing measure . in Example4 isabsolutely continuouswith adensity bounded above
by c iff ¥, 2m(x) < cm/x? for al positivex andm = 1,2, .. ..

Interestingly, this constrains 7;, only for positive even n: we are not ready for fractional derivatives,
nor is v, o defined. (Among other things, I'(0) = oo and Tp = 0 if it isto be defined at all.) Of
course, if 1 < ¢, then ¢, (x) < c¢/x; but going in, the upper bound is unavailable for the Laplace
transform itself. That iswhy we wanted a version of Theorem 5 that requires the upper bound only
for derivatives.

Of coursg, if ¢ (x) isthe Laplace transform of . (d)), then —¢’(x) isthe Laplace transform of
Au(da), and Theorem 5 can be applied to the latter. Indeed,

m+1 qm

1 m+1 am-i—l
—(— = (=1 m
) = (=D

X
Tw(bu = XY 2m+2(X).

("t
nm:

Consequently,

(21)  pisabsolutely continuouswith adensity bounded aboveby & — ¢/ iff ¥, 2 42(x) < c/x
for al positivex andm =0, 1, ....

Example 2 can be handled in a similar way. This is not surprising, since the sum of m
exponential variablesis distributed as 1/2 times a x 2 variable with 2m degrees of freedom.

(22) Themixing measure . in Example 2 isabsolutely continuouswith adensity bounded above
by c iff the density of the sufficient statistic X1 + - - - + X, is bounded above by cm /x? for
al positivexandm =1, 2, . ...

There is an entertaining geometrical consequence to the connection between the x 2 and the
exponentia distributions. Let X1, Xo, ..., X2,-1, X2, be independent normal random variables,
with mean 0 and variance 1. Then (X? + X3)/2, ..., (X5, _; + X3,)/2 are independent standard
exponential variables. Given X§ + X3+ --- + X3, _; + X3,, we have on the one hand that

X1, X2, ..., Xon—1, Xon
is uniformly distributed over a spherein R%*; on the other hand,
(X2 4+ X3)/2,..., (X5, 1+ X3)/2

isuniformly distributed over asimplex in the positive orthant of R". Consequently,

(23) Pickapoint (x1, x2, ..., x2,—-1, x2,) uniformly at random on the surface of aspherein 2n-
dimensional Euclidean space. Then the point ((x? + x2), ..., (x3,_; +x3)) isuniformly
distributed over the corresponding simplex in the positive orthant of n-dimensional space.

In general, as is well known, the partitioned sum of sgquares has a Dirichlet distribution on the
simplex.
Brief Literature Review

Theproof of Theorem 1isgivenin Diaconisand Freedman (1984). ThisfollowsOxtoby (1952),
who gave amasterful exposition of the Krilov-Bogolioubov theory, presenting stationary processes
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asmixturesof ergodic processes. Similar techniqueswereused by Hunt (1960) to developtheMartin
boundary for transient Markov chains. The Scandinavian school has worked on such problems
from a dlightly different perspective: see Martin-Lof (1974), Lauritzen (1988), or Kallenberg
(1999). There has been an extensive development of such theories in statistical mechanics, see
Ruelle (1984) and Georgii (1988). Aldous (1985) discusses applications to probability theory; and
Schervish (1995), to Bayesian statistics. Many other examples, discussed from the perspective
of semigroups and Choquet theory, will be found in Berg, Christensen, and Ressel (1984); the
connection to de Finetti’s theorem is explained in Ressel (1985). The characterization of mixtures
of normals appearsin Freedman (1963). Itisoften attributed to Schoenberg (1938a): see especially
Theorem 2 on p. 817, also see Schoenberg (1938b). But the trandation is not without difficulty.
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