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Abstract

This paper (which is mainly expository) sets up graphical models for causation, having a bit
less than the usual complement of hypothetical counterfactuals. Assuming the invariance of error
distributions may be essential for causal inference, but the errors themselves need not be invariant.
Graphs can be interpreted using conditional distributions, so that we can better address connections
between the mathematical framework and causality in the world. The identification problem is
posed in terms of conditionals. As will be seen, causal relationships cannot be inferred from a data
set by running regressions unless there is substantial prior knowledge about the mechanisms that
generated the data. The idea can be made more precise in several ways. There are few successful
applications of graphical models, mainly because few causal pathways can be excluded on a priori
grounds. The invariance conditions themselves remain to be assessed.

1. Introduction

In this paper, I review the logical basis for inferring causation from regression equations,
proceeding by example. The starting point is a simple regression; next is a path model, and then
simultaneous equations (for supply and demand). After that come nonlinear graphical models.
The key to making a causal inference from nonexperimental data by regression is some kind of
invariance, exogeneity being a further issue. Parameters need to be invariant to interventions: this
well-known condition will be stated here with a little more precision than is customary. Invariance is
also needed for (i) errors or (ii) error distributions, a topic that has attracted less attention. Invariance
for distributions is a weaker assumption than invariance for errors. I will focus on invariance of error
distributions in stochastic models for individual behavior, eliminating the need to assume sampling
from an ill-defined super-population.

With graphical models, the essential mathematical features can be formulated in terms of
conditional distributions (“Markov kernels”). To make causal inferences from nonexperimental
data using such techniques, the kernels need to be invariant to intervention. The number of plausible
examples is at best quite limited, in part because of sampling error, in part because of measurement
error, but more fundamentally because few causal pathways can be excluded on a priori grounds.
The invariance condition itself remains to be assessed.

Many readers will “know” that causal mechanisms can be inferred from nonexperimental
data by running regressions. I ask from such readers an unusual boon—the suspension of belief.
(Suspension of disbelief is all too readily at hand, but that is another topic.) There is a complex chain
of assumptions and reasoning that leads from the data via regression to causation. One objective
in the present essay to is explicate this logic. Please bear with me: what seems obvious at first may
become less obvious on closer consideration, and properly so.
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2. A first example: simple regression

X −→ Y

Figure 1. Linear regression

Figure 1 is the easiest place to start. In order to make causal inferences from simple regression,
it is now conventional (at least for a small group of mathematical modelers) to assume something
like the setup in equation (1) below. I will try to explain the key features in the formalism, and then
offer an alternative. As will become clearer, the equation makes very strong invariance assumptions,
which cannot be tested from the data on X and Y .

(1) Yi,x = a + bx + δi .

The subscript i indexes the individuals in a study, or the occasions in a repeated-measures design,
and so forth. A treatment may be applied at various levels x. The expected response a + bx is by
assumption linear in x, with intercept a and slope b; these parameters are the same for all subjects
and all levels of treatment. When treatment at level x is applied to subject i, the response Yi,x

deviates from the expected by a “random error” or “disturbance” δi . This presumably reflects the
impact of chance. For some readers, it may be more natural to think of a + δi in (1) as a random
intercept; others may classify Yi,x as a “potential outcome:” more about that will be said later.

In this paper, as is commonplace in statistics, random variables like δi are functions on a
probability space �. Informally, chance comes in when Nature chooses a point at random from �,
which fixes the value of δi . The choice is made once and once only: Nature does not re-randomize
if x is changed in (1). More technically, Yi,x is a function of x and δi , but δi does not vary with x.
(The formalism is compact, which has certain advantages; on the other hand, it is easy to lose track
of the ideas.)

The δi are assumed to be independent and identically distributed. The common “error dis-
tribution” D is unknown but its mean is assumed to be 0. Nothing in the equation is observ-
able. To generate the data, Nature is assumed to choose {Xi : i = 1, . . . , n} independently of
{δi : i = 1, . . . , n}, showing us

(Xi, Yi),

where
Yi = Yi,Xi

= a + bXi + δi

for i = 1, . . . , n.
Notice that x could have been anything: the model features multiple parallel universes, all

of which remain counterfactual hypotheticals—because, of course, we did no intervening at all.
Instead, we passively observed Xi and Yi . (If we had done the experiment, none of these interesting
issues would be worth discussing.) Nature obligingly randomizes for us. She chooses Xi at random
from some distribution, independently of δi , and sets Yi = a + bXi + δi as required by (1).

“Exogeneity” is the assumed independence between the Xi and the errors δi . Almost as a
bookkeeping matter, your response Yi is computed from your Xi and error term δi : nobody else’s
X and δ get into the act, precluding interactions across subjects. According to the model, δi exists—
incorruptible and unchanging—in all the multiple unrealized counterfactual hypothetical universes,
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as well as in the one real factual observed universe. This is a remarkably strong assumption: all is
flux, except a, b and δi .

An alternative setup will be presented next—more like standard regression—to weaken the
invariance assumption. We start with parameters a, b and an error distribution D . The last is
unknown, but has mean 0. Nature chooses {Xi : i = 1, . . . , n} at random from some n-dimensional
distribution. Given the X’s, the Y ’s are assumed to be conditionally independent, and the random
errors

Yi − a − bXi

are assumed have common distribution D . In other words, the Y ’s are built up from the X’s as
follows: Nature computes the linear function a+bXi , then adds some noise drawn at random from
D to get Yi . We get to see the pairs (Xi, Yi) for i = 1, . . . , n.

In this alternative formulation, there is a fixed error distribution D but there are no context-free
random errors: errors may be functions of treatment levels among other things. The alternative has
both a causal and an associational interpretation. (i) Assuming invariance of error distributions to
interventions leads to the causal interpretation. (ii) Mere insensitivity to x when we condition on
Xi = x gives the associational interpetation—the probability distribution of Yi − a − bXi given
Xi = x is the same for all x. This can at least in principle be tested against the data; invariance to
interventions cannot, unless interventions were part of the design.

The key difference between equation (1) and the alternative is this. In (1), the errors themselves
are invariant: in the alternative, only the error distribution is invariant. In (1), inference is to the
numerical value that Yi would have had, if Xi had been set to x. In the alternative formulation,
causal inference can only be to the probability distribution that Yi would have had. With either
setup, the inference is about specific individuals, indexed by i; inference at the level of individuals
is possible because—by assumption—parameters a, b are the same for all individuals. The two
formulations of invariance, with the restrictions on the X’s, express different ideas of exogeneity.
The second set of assumptions is weaker than the first, and seems generally more plausible.

An example to consider is Hooke’s law. The stretch of a spring is proportional to the load: a is
length under no load and b is stretchiness. The disturbance term would represent measurement error.
We could run an experiment to determine a and b. Or, we could passively observe the behavior of
springs and weights. If heavier weights are attracted to bigger errors, there are problems. Otherwise,
passive observation might give the right answer. Moreover, we can with more or less power test
the hypothesis that the random errors Yi − a − bXi are independent and identically distributed. By
contrast, consider the hypothesis that Yi − a − bXi itself would have been the same if Xi had been
7 rather 3. Even in an experiment, testing that seems distinctly unpromising.

What happens without invariance? The answer will be obvious. If intervention changes the
intercept a, the slope b, or the mean of the error distribution, the impact of the intervention becomes
difficult to determine. If the variance of the error term is changed, the usual confidence intervals lose
their meaning. How would any of this be possible? Suppose, for instance, that—unbeknownst to
the statistician—X and Y are both the effects of a common cause operating through linear statistical
laws like (1); errors are independent and normal: and Nature has randomized the common cause to
have a normal distribution. The scatter diagram will look lovely, a regression line is easily fitted,
and the straightforward causal interpretation will be wrong.
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3. Conditionals
Let us assume (informally) that the regression in Figure 1 is causal. What the Yi’s would have

been if we had intervened and set Xi to xi—this too isn’t quite mathematics, but does correspond
to either of two formal objects. One object is generated by equation (1): the random variables
Yi = a + bxi + δi for i = 1, . . . , n. The second object is this: n independent Y ’s, the ith being
distributed as a + bxi plus a random draw from the error distribution D . One object is defined in
terms of random variables; the other, in terms of conditional distributions. There is a similar choice
for the examples presented below.

So far, I have been discussing linear statistical laws. In Figure 1, for example, if we set X = x,
then the conditional distribution of Y is a + bx, plus some random noise with distribution D .
Call this conditional distribution Kx(dy). On the one hand, Kx may just represent the conditional
distribution of Y given X = x, a rather dry statistical idea. On the other hand, Kx may represent
the result of a hypothetical intervention: the distribution that Y would have had, if only we had
intervened and set X to x. This is the more exciting causal interpretation. Data analysis on X and Y

cannot decide whether the causal interpretation is viable. Instead, to make causal inferences from
a system of regression equations, causation is assumed from the beginning. As Cartwright (1989)
says, “No causes in, no causes out.” This view contrasts rather sharply with rhetoric that one finds
elsewhere.

Of course, solid arguments for causation have been made from observational data, but fitting
regressions is only one aspect of the activity (Freedman, 1999). Replication seems to be critical,
with good study designs and many different kinds of evidence. Also see Freedman (1997, pp.120–
21), noting the difference between conditional probabilities that arise from selection of subjects
with X = x, and conditional probabilities arising from an intervention that sets X to x. The data
structures may look the same, but the implications can be worlds apart.

4. A second example: two linear regressions

Y Z
 

X

Figure 2. A linear path model.

The discussion can now be extended to path diagrams, with similar conclusions. Figure 2
involves three variables, and is a cameo version of applied statistics. If we are interested in the
effect of Y on Z, then X confounds the relationship. Some adjustment is needed to avoid biased
estimates, and regression is often used. The diagram unpacks into two response schedules:

Yi,x = a + bx + δi(2a)
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Zi,x,y = c + dx + ey + εi .(2b)

We assume that δ1, . . . , δn, ε1, . . . , εn are all independent. The δ’s have a common distribution D .
The ε’s have another common distribution F . These two distributions are unknown, but are assumed
to have mean 0. Again, nothing in (2) is observable.

To generate the data, Nature chooses {Xi : i = 1, . . . , n} independently of {δi, εi : i =
1, . . . , n}. We observe

(Xi, Yi, Zi)

for i = 1, . . . , n, where

Yi = Yi,Xi
= a + bXi + δi

Zi = Zi,Xi,Yi
= c + dXi + eYi + εi .

Basically, this is a recursive system with two equations. The X’s are “exogenous,” that is, indepen-
dent of the δ’s and ε’s. According to the model, Nature plugs the X’s into (2a) to compute the Y ’s.
In turn, those very X’s and Y ’s get plugged into (2b) to generate the Z’s. That is the recursive step.
In other words, Yi is computed as a linear function of Xi , with intercept a and slope b, plus the error
term δi . Then Zi is computed as a linear function of Xi and Yi . The intercept is c, the coefficient on
Xi is d, the coefficient on Yi is e; at the end, the error εi is tagged on. Again, the δ’s and ε’s remain
the same no matter what x’s and y’s go into (2); so do the parameters a, b, c, d, e. (Interactions
across subjects are precluded because, for instance, subject i’s response Yi is computed from Xi

and δi rather than Xj and δj .)
The proposed alternative involves not random errors but their distributions D and F . These

distributions are unknown but have mean 0. We still have the parameters a, b, c, d, e. To generate
the data, we assume that Nature chooses X1, . . . , Xn at random from some n-dimensional distri-
bution. Given the X’s, the Y ’s are assumed to be conditionally independent: Yi is generated by
computing a+bXi , then adding some independent noise distributed according to D . Given the X’s
and Y ’s, the Z’s are assumed to be conditionally independent: Zi is generated as c + dXi + eYi ,
with independent additive noise distributed according to F . The exogeneity assumption is the
independence between the X’s and the errors.

As before, the second setup assumes less invariance than the first: it is error distributions that
are invariant, not error terms; the inference is to distributions rather than specific numerical values.
Either way, there are unbiased estimates for the parameters a, b, c, d, e ; the error distributions D
and F are identifiable: parameters and error distributions are constant in both formulations. As
before, the second setup may be used to describe conditional distributions of random variables. If
those conditional distributions admit a causal interpretation, then causal inferences can made from
observational data. In other words, regression succeeds in determining the effect of Y on Z if we
know (i) X is the confounder and (ii) the statistical relationships are linear and causal.

What can go wrong? Omitted variables are a problem, as discussed before. Assuming the
wrong causal order is another issue. For example, suppose equation (2) is correct; the errors are
independent and normally distributed; moreover, the exogenous variable X has been randomized to
have a normal distribution. However, the unfortunate statistician regresses (i) Y on Z, then (ii) X
on Y and Z. Diagnostics will indicate success: the distribution of residuals will not depend on the
explanatory variables. But causal inferences will be all wrong. The list of problem areas can easily
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be extended beyond omitted variables and causal orderings to include functional form, stochastic
specification, measurement. . . .

The issue boils down to this. Does the conditional distribution of Y given X represent mere
association, or does it represent the distribution Y would have had if we had intervened and set the
values of X? There is similar question for the distribution of Z given X and Y . These questions
cannot be answered just by fitting the equations and doing data analysis on X, Y, and Z; additional
information is needed. From this perspective, the equations are “structural” if the conditional
distributions inferred from the equations tell us the likely impact of interventions, thereby allowing
a causal rather than an associational interpretation. The take-home message will be clear: you cannot
infer a causal relationship from a data set by running regressions—unless there is substantial prior
knowledge about the mechanisms that generated the data.

5. Simultaneous equations

Similar considerations apply to models with simultaneous equations. The invariance assump-
tions will be familiar to many readers. Changing pace, I will discuss hypothetical supply and
demand equations for butter in the state of Wisconsin. The endogenous variables are Q and P , the
quantity and price of butter. The exogenous variables in the supply equation are the agricultural
wage rate W and the price H of hay. The exogenous variables in the demand equation are the prices
M of margarine and B of bread (substitutes and complements). For the moment, “exogeneity”
just means “externally determined.” Annual data for the previous twenty years are available on the
exogeneous variables, and on the quantity of Wisconsin butter sold each year as well as its price.
Linearity is assumed, with the usual stochastics.

The model can be set up formally with two linear equations in two unknowns, Q and P :

Q = a0 + a1P + a2W + a3H + δt ,(3a) Supply

Q = b0 + b1P + b2M + b3B + εt .(3b) Demand

On the right hand side, there are parameters (the a’s and b’s). There are also error terms (δt , εt )

which are assumed to be independent and identically distributed for t = 1, . . . , 20. The common
two-dimensional “error distribution” C for (δt , εt ) is unknown, but is assumed to have mean 0.

Each equation describes a thought experiment. In the first, we set P,W,H,M,B and observe
how much butter comes to market: by assumption,M andB have no effect on supply, whileP,W,H

have additive linear effects. In the second we set P,W,H,M,B and observe how much butter is
sold: W and H have no effect on demand, while P,M,B have additive linear effects. In short,
we have linear supply and demand schedules. Again, the error terms themselves are invariant to all
interventions, as are the parameters. Since this is a hypothetical, there is no need to worry about
the EEC, NAFTA, or the economics.

A third gedanken experiment is described by taking equations (3a) and (3b) together. Any
values of the exogenous variables W,H,M,B —perhaps within certain ranges—can be substituted
in on the right, and the two equations solved together for the two unknowns Q and P , giving us the
transacted quantity and price in a free market, denoted

(4) QW,H,M,B and PW,H,M,B.

Since δ and ε turn up in the formulas for both Q and P , the random variables in (4) are correlated—
barring some rare parameter combinations—with the error terms. The correlation is “simultaneity.”

6



So far, we have three thought experiments expressing various assumptions, but no data: nothing
so far is observable. We assume that Nature generates data for us by choosing Wt,Ht ,Mt , Bt for
t = 1, . . . , 20, at random from some high-dimensional distribution, independently of the δ’s and
ε’s. This independence is the exogeneity assumption, which gives the concept a more technical
shape. For each t , we get to see the values of the exogenous variables

Wt,Ht ,Mt , Bt ,

and the corresponding endogenous variables computed by solving (3ab) together, namely,

Qt = QWt,Ht ,Mt ,Bt and Pt = PWt ,Ht ,Mt ,Bt .

Of course, we do not get to see the parameters or the disturbance terms. A regression of Qt on Pt

and the exogenous variables leads to “simultaneity bias,” because Pt is correlated with the error
term; hence two-stage least squares and related techniques. With such estimators, enough data, and
the assumptions detailed above, we can (almost) recover the supply and demand schedules (3ab)
from the free market data—using the exogenous variables supplied by Nature.

The other approach, sketched above for Figures 2 and 3, suggests that we start from the
parameters and the error distribution C. If we were to set P,W,H,M,B, then Nature would
be assumed to choose the errors in (3) from C: farmers would respond according to the supply
equation (3a), and consumers according to the demand equation (3b). If we were to set only
W,H,M,B and allow the free market to operate, then quantity and price would in this parable be
computed by solving the pair of equations (3ab).

The notation for the error terms in (3) is a bit simplistic now, since these terms may be
functions of W,H,M,B. Allowing the errors to be functions of P may make sense if (3a) and (3b)
are considered in isolation; but if the two equations are considered together, this extra generality
would lead to a morass. To generate data, we assume that Nature chooses the exogenous variables
at random from some multidimensional distribution. The market quantities and prices are still
computed by solving the pair of equations (3ab) for Q and P , with independent additive errors for
each period drawn from C; the usual statistical computations can still be carried out.

In this setup, it is not the error terms that are invariant, but their distribution. Of course, param-
eters are taken to be invariant. The exogeneity assumption is the independence of {Wt,Ht ,Mt , Bt :
t = 1, 2 . . .} and the error terms. The inference is for instance to the probability distribution of
butter supply, if we were to intervene in the market by setting price as well as the exogenous vari-
ables. By contrast, with assumed invariance for the error terms themselves, the inference is to the
numerical quantity of butter that would be supplied.

I have presented the second approach with a causal interpretation; an associational interpre-
tation is also possible, although less interesting. The exposition may seem heavy-handed, because
I have tried to underline the critical invariance assumptions that need to be made in order to draw
causal conclusions from nonexperimental data: parameters are invariant to interventions, and so
are errors or their distributions. Exogeneity is another concern. In a real example, as opposed to a
butter hypothetical, real questions would have to be asked about these assumptions. Why are the
equations “structural,” in the sense that the required invariance assumptions hold true?

Obviously, there is some tension here. We want to use regression to draw causal inferences
from nonexperimental data. To do that, we need to know that certain parameters and certain
distributions would remain invariant if we were to intervene. That invariance can seldom if ever
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be demonstrated by intervention. What then is the source of the knowledge? “Economic theory”
seems like a natural answer, but an incomplete one. Theory has to be anchored in reality. Sooner
or later, invariance needs empirical demonstration, which is easier said than done.

6. Nonlinear models: Figure 1 revisited

Graphical models can be set up with nonlinear versions of equation (1), as in Pearl (1995,
2000). The specification would be something like Yi,x = f (x, δi), where f is a fairly general
(unknown) function. The interpretation is this: if the treatment level were set to x, the response by
subject i would be Yi,x . The same questions about interventions and counterfactual hypotheticals
would then have to be considered. Instead of rehashing such isues, I will indicate how to formulate
the models using conditional distributions (“Markov kernels”), so that the graphs can be interpreted
either distributionally or causally. In the nonlinear case, Kx—the conditional distribution of Y

given that X = x—depends on x in some fashion more complicated than linearity with additive
noise. For example, if X, Y are discrete, then K can be visualized as the matrix of conditional
probabilities P(Y = y|X = x). For any particular x, Kx is a row in this matrix.

Inferences will be to conditional distributions, rather than specific numerical values. There will
be some interesting new questions about identifiability. And the plausibility of causal interpretations
can be assessed separately, as will be shown later. I will organize most of the discussion around
two examples used by Pearl (1995); also see Pearl (2000, pp.66–68 and 83–85). But first, consider
Figure 1. In the nonlinear case, the exogenous variables have to be assumed independent and
identically distributed in order to make sense out of the mathematics; otherwise, there are substantial
extra complications, or we have to impose additional smoothness conditions on the kernel.

Assume now that (Xi, Yi) are independent and distributed like (X, Y ) for i = 1, . . . , n; the
conditional distribution of Yi given Xi = x is Kx , where K is an unknown Markov kernel. With
a large-enough sample, the joint distribution of (X, Y ) can be estimated reasonably well; so can
Kx , at least for x’s that are likely to turn up in the data. If K is only a conditional probability, that
is what we obtain from data analysis. If K admits a causal interpretation—by prior knowledge or
assumption, not by data analysis on the X’s and Y ’s—then we can make a causal inference: What
would the distribution of Yi have been, if we had intervened and set Xi to x? (Answer: Kx .)

7. Technical notes

The conditional distribution of Y given X tells you the conditional probability that Y is in one
set C or another, given that X = x. A Markov kernel K assigns a number Kx(C) to pairs (x, C); the
first element x of the pair is a point; the second, C, is a set. With x fixed, Kx is a probability. With C

fixed, the function that sends x to Kx(C) should satisfy some minimal regularity condition. Below,
I will write Kx(dy) as shorthand for the kernel whose value at (x, C) is Kx(C), where C is any
reasonable set of values for Y . Matters will be arranged so that Kx(C) is the conditional probability
that Y ∈ C given X = x, and perhaps some other information: Kx(C) = P(Y ∈ C|X = x . . .).

Without further restrictions, graphical models are nonparametric, because kernels are infinite-
dimensional “parameters.” Our ability to estimate such things depends on the degree of regularity
that is assumed. With minimal assumptions, you may get minimal performance—but that is a
topic for another day. Even in the linear case, some of the fine points about estimation have been
glossed over. To estimate the model in Figure 1, we would need some variation in X and δ. To get
standard errors, we would assume finite variances for the error terms. Conditions for identifiability
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in the simultaneous-equations setup do not need to be rehearsed here, and I have assumed a unique
solution for (3). Two-stage least squares will have surprising behavior unless variances are assumed
for the errors; some degree of correlation between the exogenous and endogenous variables would
also be needed.

More general specifications can be assumed for the errors. For example, in (1), the δi may
be assumed to be independent, with common variances and uniformly bounded fourth moments;
then the hypothesis of a common distribution can be dropped. In (3), an ARIMA model may be
assumed. And so forth. The big picture does not change, because (i) questions about invariance
remain, and (ii) even an ARIMA model requires some justification.

8. More complicated examples

Y Z W

X
(Unobserved)

Figure 3. A graphical model.

The story behind Figure 3 will be explained below. For the moment, it is an abstract piece
of mathematical art. The diagram corresponds to three kernels: Kx(dy), Ly(dz), and Mx,z(dw).
These kernels describe the joint distribution of the random variables shown in the diagram (X, Y,Z,

W). The conditional distribution of Y given X = x is Kx . The conditional distribution of Z given
X = x and Y = y is Ly : there is no subscript x on L because—by assumption—there is no arrow
from X to Z in the diagram. The conditional distribution of W given X = x, Y = y, Z = z is Mx,z:
there is no subscript y on M because—again by assumption—there is no arrow leading directly
from Y to W in the diagram.

You can think of building up the variables X, Y,Z,W from the kernels and a base distribution
µ for X, in a series of steps:

(i) Chose X at random according to µ(dx).

(ii) Given the value of X from step (i), say X = x, choose Y at random from Kx(dy).

(iii) Given X = x and Y = y, choose Z at random from Ly(dz).

(iv) Given X = x, Y = y, and Z = z, choose W at random from Mx,z(dw).

The recipe is equivalent to the graph.

By assumption, the 4-tuples (Xi, Yi, Zi,Wi) are independent and distributed like (X, Y, Z,W)

for i = 1, . . . , n. There is one more wrinkle: the circle marked “X” in the diagram is open, meaning
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that X is not observed. In other words, Nature hides X1, . . . , Xn but shows us

Y1, . . . , Yn, Z1, . . . , Zn, W1, . . . ,Wn.

That is our data-set.
The base distribution µ and the kernels K,L,M are unknown. However, with many obser-

vations on independent and identically distributed triplets (Yi, Zi,Wi), we can estimate their joint
distribution reasonably well. Moreover—and this should be a little surprising—we can compute
Ly from that joint distribution, as well as

(5a) Mz(dw) =
∫
Mx,z(dw)µ(dx),

where µ is the distribution of the unobserved confounder X. Hence we can also compute

(5b) Ly(dw) =
∫

Mz(dw)Ly(dz).

Here is the idea: L is computable because the relationship between Y and Z is not confounded
by X. Conditional on Y , the relationship between Z and W is not confounded, so Mz in (5a) is
computable. Then (5b) follows.

More specifically, with “P ” for probability, the identity

P(Z ∈ C|Y = y) = P(Z ∈ C|X = x, Y = y) = Ly(C)

can be used to recover L from the joint distribution of Y,Z. Likewise, we can recover M in
(5a) from the joint distribution of Y,Z,W , although the calculation is a little more intricate. Let
Px,y,z = P(• |X = x, Y = y, Z = z) be a regular conditional probability given X, Y,Z. Then

P(W ∈ D|Y = y, Z = z) =
∫
Px,y,z(W ∈ D)P (X ∈ dx|Y = y, Z = z)

=
∫
Mx,z(D)P (X ∈ dx|Y = y),

because
Px,y,z(W ∈ D) = Mx,z(D)

by construction, and X is independent of Z given Y by a side-calculation. We have recovered∫
Mx,z(D)P (X ∈ dx|Y = y) from the joint distribution of Y,Z,W . Hence we can recover

∫ ∫
Mx,z(D)P (X ∈ dx|Y = y)P (Y ∈ dy) =

∫
Mx,z(D)µ(dx)

= Mz(D),

although the distribution µ of X remains unknown, and so does the kernel M .
These may all just be facts about conditional distributions, in which case (5) is little more than

a curiosity. On the other hand, if K,L,M have causal interpretations, then Mz in (5a) tells you
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the effect of setting Z = z on W , averaged over the possible X’s in the population. Similarly, Ly

in (5b) tells you the effect of Y on W : if you intervene and set Y to y, then the distribution of W
will be Ly , on the average over all X and Z in the population. (There may be exceptional null sets,
which are being ignored.) How to estimate M and L in a finite sample is another question, not
discussed here.

A

BU

X
V

W

Y

Figure 4. A graphical model: seven variables, of which five are observed.

The next example (Figure 4) is a little more complicated; again, the story behind the figure
is deferred. There are two unobserved variables, A and B. The setup involves six kernels, which
characterize the joint distribution of the random variables (A,B,U,X, V,W, Y ) in the diagram:

Ka(db) = P(B ∈ db|A = a),

La(du) = P(U ∈ du|A = a),

Ma(dx) = P(X ∈ dx|A = a),

Nu,x(dv) = P(V ∈ dv|A = a, B = b,U = u,X = x),

Qb,v(dw) = P(W ∈ dw|A = a, B = b,U = u,X = x, V = v),

Rx,v,w(dy) = P(Y ∈ dy|A = a, B = b,U = u,X = x, V = v,W = w).

Here, P represents “probability”; it seemed more tasteful not to have kernels labeled O or P . There
is no a, b, u among the subscripts on R because there are no arrows going directly from A, B, U
to Y in the diagram; similarly for the other kernels. The issue is to determine the effect of X on
Y , integrating over the unobserved confounders A,B. This is feasible, because conditional on the
observed U,V,W, the relationship between X and Y is not confounded. (If the kernels have causal
interpretations, “effect” is meant literally; if not, figuratively.)

To fix ideas, we can go through the construction of the random variables. There is a base
probability µ for A. First, choose A at random from µ. Given A, choose B,U,X independently at
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random fromKA,LA,MA, respectively. GivenA,B,U,X, chooseV at random fromNU,X. Given
A,B,U,X, V , choose W at random from QB,V . Finally, given A,B,U,X, V,W , choose Y at
random from RX,V,W . The data-set consists of n independent septuples Ai, Bi, Ui, Xi, Vi, Wi, Yi ,
distributed as A,B,U,X, V,W, Y—except that the A’s and B’s are hidden. The “parameters” are
µ and the six kernels. Calculations proceed as for Figure 3. Again, the graph and the description
in terms of kernels are equivalent. Details are (mercifully?) omitted.

9. Parametric nonlinear models

Similar considerations apply to parametric nonlinear models. Take the logit specification, for
example. Let Xi be a p-dimensional random vector, with typical value xi ; the random variable Yi

is 0 or 1. Let β be a p-dimensional vector of parameters. For the p-dimensional data vector x, let
Kx assign mass

eβx
/(

1 + eβx
)

to 1, and the remaining mass to 0. Given X1, . . . , Xn, each being a p-vector, suppose the Yi are
conditionally independent, and

(6) P (Yi = 1|X1 = x1, . . . , Xn = xn) = Kxi .

On the right hand side of (6), the subscript on K is xi : the conditional distribution of Y for a subject
depends only on that subject’s x. If the x1, . . . , xn are reasonably spread out, we can estimate β by
maximum likelihood. (With a smooth, finite-dimensional parametrization, we do not need the Xi

to be independent and identically distributed.)
Of course, this model could be set up in a more strongly invariant form, like (1). Let Ui be

independent (unobservable) random variables with a common logistic distribution: P(Ui < u) =
eu/(1 + eu). Then

(7) Yi,x = 1 ⇐⇒ Ui < βx.

The exogeneity assumption would make the X’s independent of the U ’s, and the observable Yi

would be Yi,Xi
. That is, Yi = 1 if Ui < βXi , else Yi = 0.

This is all familiar territory, except perhaps for (7); so familiar that the critical question may
get lost. Does Kx merely represent the conditional probability that P(Yi = 1|Xi = x), as in (6)?
Or does Kx tell us what the law of Yi would have been, if we had intervened and set Xi to x? Where
would the Ui come from, and why would they be invariant if we manipulated x? Nothing in the
mysteries of Euclidean geometry and likelihood statistics can possibly answer this sort of question:
other kinds of information are needed.

10. Concomitants

Some variables are potentially manipulable; others (“concomitants”) are not. For example,
education and income may be manipulable; age, sex, race, personality, . . . , are concomitants. So
far, we have ignored this distinction, which is less problematic for kernels, but a difficulty for
the kind of strong invariance in equation (1). However, if Y depends on a manipulable X and a
concomitant W through a linear causal law with additive error, we can rewrite (1) as

(8) Yi,x = a + bx + cWi + δi .
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In addition to the usual assumptions on the δ’s, we would have to assume independence between
the δ’s and the W ’s. In applications, defining and isolating the intervention may not be so easy, but
that is a topic for another day. Also see Robins (1986, 1987).

11. The story behind figures 3 and 4

When some variables are unobserved, Pearl (1995) develops an interesting calculus to define
confounding and decide which kernels or composites—see (5) for example—can be recovered from
the joint distribution of the observed variables. That is a solution to the identification problem for
such diagrams. He uses Figure 3 to illustrate his “back-door criterion.” The unobserved variable X

is genotype; the observed variables Y,Z,W represent smoking, tar deposits in the lung, and lung
cancer, respectively (Figure 5). The objective is to determine the effect of smoking on lung cancer,
via (5).

Smoking Tar
Deposits

Lung
Cancer

Genotype
(Unobserved)

Figure 5. A graphical model for smoking and lung cancer.

Data in this example would consist of a long series of independent triplets (Yi, Zi,Wi), each
distributed like (Y, Z,W). Pearl interprets the graph causally. The timeworn idea that subjects in a
study form a random sample from some hypothetical super-population still deserves a moment of
respectful silence. Moreover, there are three special assumptions in Figure 5:

(i) Genotype has no direct effect on tar deposits.

(ii) Smoking has no direct effect on lung cancer.

(iii) Tar deposits can be measured with reasonable accuracy.

There is no support for these ideas in the literature. (i) The lung has a mechanism—“the mucociliary
escalator”—for eliminating foreign matter, including tar. This mechanism seems to be under genetic
control. (Of course, clearance mechanisms can be overwhelmed by smoking.) The forbidden arrow
from genotype to tar deposits may have a more solid empirical basis than the permitted arrows from
genotype to smoking and lung cancer. Assumption (ii) is just that—an assumption. And (iii) is
clearly wrong. The consequences are severe: if arrows are permitted from genotype to tar deposits
or from smoking to lung cancer, or if measurements of tar are subject to error, then formula (5)
does not apply. Graphical models cannot solve the problem created by an unmeasured confounder
without introducing strong and artificial assumptions.
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The intellectual history is worth mentioning. Fisher’s “constitutional hypothesis” explained
the association between smoking and disease on the basis of a gene that caused both. This idea is
refuted not by making assumptions but by doing some empirical work. For example, Kaprio and
Koskenvuo (1989) present data from their twin study. The idea is to find pairs of identical twins
where one smokes and one does not. That sets up a race: who will die first, the smoker or the
non-smoker? The smokers win hands down, for total mortality or death from heart disease. The
genetic hypothesis is incompatible with these data.

For lung cancer, the smokers win two out of the two races that have been run. (Why only
two? Smoking-discordant twin pairs are unusual, lung cancer is a rare disease, and the population
of Scandinavia is small.) Carmelli and Page (1996) have a similar analysis with a larger cohort of
twins. Do not bet on Fisher. International Agency for Research on Cancer (1986) reviews the health
effects of smoking and indicates the difficulties in measuring tar deposits (pp.179–98). Nakachi et
al. (1993) and Shields et al. (1993) illustrate conflicts on the genetics of smoking and lung cancer.
Also see Miller et al. (2003). The lesson: finding the mathematical consequences of assumptions
matters, but connecting assumptions to reality matters even more.

Pearl uses Figure 4 to illustrate his “front-door criterion,” calling the figure a “classical example
due to Cochran,” with a cite to Wainer (1989). Pearl’s vision is that soil fumigants X are used to kill
eelworms and improve crop yields Y for oats. The decision to apply fumigants is affected by the
worm population A before the study begins, hence the arrow from A to X. The worm population is
measured at baseline, after fumigation, and later in the season: the three measurements areU,V,W .
The unobserved B represents “birds and other predators.”

This vision is whimsical. The example originates with Cochran (1957, p.266) who had several
fumigants applied under experimental control, with measurements of worm cysts and crop yield.
Pearl converts this to an observational study with birds, bees, and so forth—entertaining, a teaching
tool, but unreal. It might be rude to ask too many questions about Figure 4, but surely crops attract
predators. Don’t birds eat oat seeds? If early birds get the worms, what stops them from eating
worms at baseline? In short, where have all the arrows gone?

12. Models and kernels revisited

Graphical models may lead to some interesting mathematical developments. The number of
successful applications, however, is at best quite limited. Figures 4 and 5 are not atypical (there
are citations to the literature, below). And it is all too tempting to forget the limitations of such
methods. Given that the arrows and kernels represent causation, while variables are independent
and identically distributed, we can use Pearl’s framework to determine from the diagram which
effects are estimable. This is a step forward. However, we cannot use the framework to answer the
more basic question: Does the diagram represent the causal structure? As everyone knows, there
are no formal algorithmic procedures for inferring causation from association; everyone is right.

Pearl (1995) considers only models with a causal interpretation, the latter being partly formal-
ized; and there is new terminology that some readers may find discouraging. On the other hand, he
draws a clear distinction between averaging Y ’s when the corresponding X is

• set to x, and
• observed to be x in the data.

That is a great advantage of his formalism.
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The approach sketched here would divide the identification problem in two: (i) reconstructing
kernels—viewed as ordinary conditional distributions—from partial information about joint distri-
butions; and (ii) deciding whether these kernels bear a causal interpretation. Problem (i) can be
handled entirely within the conventional probability calculus. Problem (ii) is one of the basic prob-
lems in applied statistics. Of course, kernels—especially mixtures like (5)—may not be interesting
without a causal interpretation.

In sum, graphical models can be formulated using conditional distributions (“Markov kernels”),
without invariance assumptions. Thus, the graphs can be interpreted either distributionally or
causally. The theory governing recovery of kernels and their mixtures can be pushed through with
just the distributional interpretation. That frees us to consider whether or not the kernels admit a
causal interpretation. So far, however, the graphical modelers have few if any examples where the
causal interpretation can be defended. Pearl generally agrees with this discussion:

Causal analysis with graphical models does not deal with defending modeling assumptions,
in much the same way that differential calculus does not deal with defending the physical
validity of a differential equation that a physicist chooses to use. In fact no analysis void of
experimental data can possibly defend modeling assumptions. Instead, causal analysis deals
with the conclusions that logically follow from the combination of data and a given set of
assumptions, just in case one is prepared to accept the latter. Thus, all causal inferences are
necessarily conditional. These limitations are not unique to graphical models. In complex
fields like the social sciences and epidemiology, there are only few (if any) real life situations
where we can make enough compelling assumptions that would lead to identification of causal
effects [Pearl, private communication].

13. Literature review

The model in (1) was proposed by Neyman (1923). It has been rediscovered many times since;
see, for instance, Hodges and Lehmann (1964, section 9.4). The setup is often called “Rubin’s
model,” but this simply mistakes the history: see Dabrowska and Speed (1990), with a comment by
Rubin; also see Rubin (1974) and Holland (1986). Holland (1986, 1988) explains the setup with
a super-population model to account for the randomness, rather than individualized error terms.
These error terms are often described as the overall effects of factors omitted from the equation.
But this description introduces difficulties of its own, as shown by Pratt and Schlaifer (1984, 1988).
Stone (1993) presents a clear super-population model with some observed covariates and some
unobserved.

Dawid (2000) objects to counterfactual inference. Counterfactual distributions may be essen-
tial to any account of causal inference by regression methods. On the other hand, as the present
paper tries to show, invariant counterfactual random variables—like δi in equation (1)—are dis-
pensable. In particular, with kernels, there is no need to specify the joint distribution of random
variables across inconsistent hypotheticals.

There is by now an extended critical literature on linear statistical models for causation, starting
perhaps with the exchange between Keynes (1939, 1940) and Tinbergen (1940). Other familiar
citations in the economics literature include Liu (1960), Lucas (1976), Leamer (1978), Sims (1980),
Hendry (1993), Manski (1993), Angrist, Imbens, and Rubin (1996). Heckman (2000) traces the
development of econometric thought from Haavelmo and Frisch onwards, stressing the role of
“structural” or “invariant” parameters, and “potential outcomes”; also see Heckman (2001ab).
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According to Heckman (2000), the enduring contributions of the field are the following insights:

. . . . that causality is a property of a model, that many models may explain the same data
and that assumptions must be made to identify causal or structural models. . . . recognizing
the possibility of interrelationships among causes . . . . [clarifying] the conditional nature
of causal knowledge and the impossibility of a purely empirical approach to analyzing
causal questions. . . . The information in any body of data is usually too weak to eliminate
competing causal explanations of the same phenomenon. There is no mechanical algo-
rithm for producing a set of “assumption free” facts or causal estimates based on those
facts. [pp. 89–91]

For another discussion of causal models from an econometric perspective, see Angrist (2001). An-
grist and Krueger (2001) provide a nice introduction to instrumental variables; an early application
of the technique was to fit supply and demand curves for butter (Wright, 1928, p.316). Engle,
Hendry, and Richard (1983) distinguish several kinds of exogeneity, with different implications for
causal inference.

One of the drivers for modeling in economics and cognate fields is rational choice theory.
Therefore, any discussion of empirical foundations must take into account a remarkable series of
papers, initiated by Kahneman and Tversky (1974), that explores the limits of rational choice theory.
These papers are collected in Kahneman, Slovic, and Tversky (1982), and in Kahneman and Tversky
(2000). The heuristics and biases program has attracted its own critics (Gigerenzer, 1996). That
critique is interesting and has some merit; but in the end, the experimental evidence demonstrates
severe limits to the descriptive power of choice theory (Kahneman and Tversky, 1996). If people
are trying to maximize expected utility, they don’t do it very well. Errors are large and repetitive, go
in predictable directions, and fall into recognizable categories: these are biases, not random errors.
Rather than making decisions by optimization—or bounded rationality, or satisficing—people seem
to use plausible heuristics that can be identified. If so, rational choice theory is generally not a good
basis for justifying empirical models of behavior.

Recently, modeling issues have been much canvassed in sociology. Berk (2003) is skeptical
about the possibility of inferring causation by modeling, absent a strong theoretical base. Abbott
(1997) finds that variables (like income and education) are too abstract to have much explanatory
power. Clogg and Haritou (1997) review various difficulties with regression, noting in particular that
you can all too easily include endogenous variables as regressors. Hedström and Swedberg (1998)
edited a lively collection of essays by a number of sociologists, who turn out to be quite skeptical
about regression models; rational choice theory also takes its share of criticism. Goldthorpe (1998,
2001) describes several ideas of causation and corresponding methods of statistical proof, with
different strengths and weaknesses. Nı́ Bhrolcháin (2001) has some particularly forceful examples
to illustrate the limits of regression. There is an influential book by Lieberson (1985), with a
followup by Lieberson and Lynn (2002); the latest in a series of papers is Sobel (2000). Meehl
(1978) reports the views of an empirical psychologist; also see Meehl (1954), with data showing the
advantage of using regression to make predictions—rather than experts. Meehl and Waller (2002)
discuss the choice between two similar path models, viewed as reasonable approximations to some
underlying causal structure, but do not reach the critical question—how to assess the adequacy of
the approximation. Steiger (2001) has a critical review. There are well-known books by Cook and
Campbell (1979), Shadish, Cook, and Campbell (2002). In political science, Brady and Collier
(2004) compare regression methods with case studies; invariance is discussed under the rubric
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of causal homogeneity. Cites from other perspectives include Freedman, Rothenberg, and Sutch
(1985), Oakes (1986), as well as Freedman (1985, 1987, 1991, 1995, 1999).

There is an extended literature on graphical models for causation. Greenland, Pearl and
Robins (1999) give a clear account in the context of epidemiology. Lauritzen (1996, 2001) has a
careful treatment of the mathematics. These authors do not recognize the difficulties in applying
the methods to real problems. Equation (5) is a special case of the “g-computation algorithm”
due to Robins (1986, 1987); also see Gill and Robins (2001), Pearl (1995, 2000), or Spirtes,
Glymour and Scheines (1993). Robins (1995) explains—all too briefly—how to state Pearl’s
results as theorems about conditionals. For critical reviews of graphical models (with responses
and further citations) see Freedman (1997), Humphreys (1997), Humphreys and Freedman (1996,
1999): among other things, these papers discuss various applications proposed by the modelers.
Woodward (1997, 1999) stresses the role of invariance. Freedman and Stark (1999) show that
different models for the correlation of outcomes across counterfactual scenarios can have markedly
different consequences in the legal context. Scharfstein, Rotnitzky, and Robins (1999) demonstrate
a large range of uncertainty in estimates, due to incomplete specifications; also see Robins (1999).
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