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Abstract

For many years the Modified Mercalli (MM) scale has been used to describe the observed
effects of sizeable earthquakes on buildings and people. Initially isoseismal lines of the
effects were added to maps by hand. Some objective methods have been proposed eg.
DeRubeis et al. [14], Brillinger [2, 3, 4, 6], Wald et al.[33], Pettenati et al. [25]. The work
presented here develops such methods further. In particular the ordinal character of the
MM scale is specifically taken into account. Numerical smoothing is basic to the approach
and methods involving splines, local polynomial regression and wavelets are illustrated.
The approach presented also allows the inclusion of explanatory variables, for example site
effects. The procedure is implemented for data from the 17 October 1989 Loma Prieta
event.
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1. Introduction

It has been common for seismic researchers concerned with earthquake effects
to classify damage that has occurred on an ordinal scale, see for example Reiter
[27]. Working with such a scale has the advantage that values may sometimes be
inferred for historical events, for example Justo and Salwa [20] do such a study for
the 1531 Lisbon earthquake. Such data may then be used to develop risk estimates
covering hundreds of years for a region of concern.

In many cases the damage information is summarized via isoseismal contours
superposed on a map. These lines are the loci of points that separate areas of
equal seismic intensity and prove useful to quantify the shaking pattern and to
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understand the damage, see Bullen and Bolt [9], Reiter [27]. A principal difficulty
has been that the curves are drawn subjectively by hand.

One often used intensity scale is the Modified Mercalli Intensity (MMI) Scale,
ibid. It is still used nowadays even though many precise instrumental recordings are
often available, eg. the three component traces of ground motion. The MMIs still
provide important supplementary information, see Wald et al. [33] and because
of the direct relation of intensity values to damage they are in fact often what
engineers desire the most.

The intentions of the analysis to be presented is to further develop automatic
displays of earthquake damage effects. The statistical methods employed include
the generalized additive model and local smoothing as provided by splines, polyno-
mials and wavelets. The layout of the paper is the following. After this introduction,
Section 2 gives some background on seismology and the Loma Prieta event. Section
3 provides the statistical methods to be used in the analysis and Section 4 some
background on ordinal data. The statistical model is discussed in Section 5 and the
results in Section 6. The final Section includes discussion and conclusions.

2. Background on Seismology and Loma Prieta Event

After a sizeable earthquake observations are made of its effects on structures
and people. The observations are often recorded on a descriptive scale. One such
is that of Modified Mercalli (MM) intensities. It has 12 ordinal levels of increasing
severity. For example the description of MMV III reads

“Damage slight in specially designed structures; considerable in ordi-
nary substantial buildings, with partial collapse; great in poorly built
structures. Disturbs persons driving motor cars. Fall of chimneys,...”

while MM III includes

“Felt quite noticeably indoors, especially on upper floors of buildings,
but many people do not recognize it as an earthquake ...”

The complete scale may be found in Bullen and Bolt [9], Perkins and Boatwright
[24].

When intensity data are examined, there is found to be a general fall-off in
severity of effect with distance from the earthquake source. Figure 1 presents the
observations for the Loma Prieta event of 17 October 1989. (The maps use arabic
rather than roman numerals.) Intensities 0, II - IX were observed in the event. The
epicenter of the earthquake is marked by a large dot. A general description of the
event is provided in Bolt [1]. The event had magnitude 6.9, duration 10 seconds,
depth of 19km, and led to 63 deaths, 1300 buildings destroyed and 5.9 billion dollars
damage. There were 921 observations of MM intensity in all. The data displayed
and analyzed are those employed in Stover et al. [29]. In the figures one notes some
intensities of levels VIII and IX at some distance from the epicenter. These were a
result of local site and building conditions. Figure 2 is a plot of MMI value against
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distance from the epicenter. (The intensity values have been jittered on the plot to
make the distinct cases more apparent.)

Perkins and Boatwright [24] list some factors on which MM intensities depend.
These are: the size of the earthquake, the distance of the site from the earthquake
source, the focusing of the earthquake energy and the geologic material underlying
the site.

Disadvantages of the use of MMI values include: a) no measurement may be
available if no person or damageable objects were present in an area and b) local
site conditions are not taken into account.

3. Background on Local Polynomial, Spline and Wavelet Models

3.1. Generalized Linear and Additive Models

The classical linear model Y = β′x + ε postulates that ε is (normally) dis-
tributed with mean 0 and variance σ2. However in many situations the form of the
data makes this model inappropriate. For example, it is clear that for the data dis-
cussed in this paper µ = E(Y |x) is nonnegative. To handle such situations we may
generalize the linear model by assuming that Y follows some exponential family
distribution, not necessarily normal, and that the dependence of the mean µ on the
covariate, x, is given by a link function h(µ) = β ′x, see McCullagh and Nelder [22].
We can further generalize this model by keeping the additive structure but relaxing
the linear assumption. The model can be written as g{E(Y |x)} =

∑p
j=1

fj(xj)
with the xj the covariates in x and the fj arbitrary smooth functions. This is
usually called a generalized additive model, see Hastie and Tibshirani [19]. The
function gam() in S-Plus fits this model by a socalled local scoring procedure. In
order to obtain smooth estimates of the fjs this proceder uses splines and local
polynomials, which are described in the next two sections. Wavelets are another
choice and are described in Section 3.4.

3.2. Local polynomials

A method for smoothing is to fit local polynomials. For a data set (xk, yk),
k = 1, · · · , n, the fitted value, ŷj , at xj is the value of, say, a dth degree polynomial
fit to the data using weighted least squares. The weight for (xk, yk) is large if xk

is close to xj and small if it is not. For example, we may consider the symmetric
triweight function

h(u; d) =

{

(1− | u/d |3)3, if | u |< d,
0, otherwise,

with d a window size or span. For each (xj , yj), weights hj(xk) are defined for all
xk, k = 1, · · · , n, by

hj(xk; dj) = h(|xj − xk|; dj).
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We may define dj as the distance from xj to its qth nearest neighbor of xj . It can
be convenient to choose q = bpnc, where 0 < p < 1. Note that as p increases the
neighborhood of influential points increases leading to a smoother fit.

This procedure is easily extended to the case of fitting a bi-dimensional surface
to data (xk, yk), with x ∈ R2. Once a distance is defined for points in R2 the weight
function h(u; d) is assigned in exactly the same way, and a local polynomial surface
may be computed. Cleveland [11], Cleveland et al. [12] describe the functions
loess() and lo() and indicate some methods for choosing p and d in practice.
Hastie and Tibshirani [19] describe how this procedure, involving a weighted least
squares criterion, is extended to the more generalized, non-normal, case.

3.3. Splines

Fitting splines is another useful approach to smoothing (Wahba [32]). One
defines a finite dimensional linear space of functions by considering piecewise poly-
nomials. The regions that define the pieces are separated by a sequence of knots or
breakpoints t1, . . . , tK and it is permitted to put constraints on the behavior of the
functions at these break points. For example, the spline function bs() in S-Plus
produces cubic smoothing splines which are piecewise cubic polynomials with con-
tinuous first and second derivatives at the knots. The smoothing splines approach
(Silverman [28]) defines the linear space of cubic spline functions with knots at the
unique values of the predictor measurements and chooses the function in this space
that minimizes a penalized least squares criterion. This procedure is extended to
the generalized additive model approach by consdiering a penalized likelihood cri-
terion instead of a least squares one. The procedures described can be directly
extended to the case where predictor measurements are two-dimensional. A tensor
spline function for two predictors is a product of two one-dimensional basis func-
tions - one for each predictor. This permits the construction of the model matrix
in S-Plus for a pair of covariate vectors x1, x2 through bs(x1)*bs(x2). See Hastie
and Tibshirani [19] for further details.

3.4. Wavelets

Another approach is via wavelet technology. From two basic functions, the scal-
ing function φ(x) and the wavelet ψ(x) one defines infinite collections of translated
and scaled versions, φjk(x) = 2j/2φ(2jx − k), ψjk(x) = 2j/2ψ(2jx − k), j, k ∈ Z
often set up so that {φ`k(·)}k∈Z ∪ {ψjk(·)}j≥`;k∈Z forms an orthonormal basis of
L2(R), for some `. A key point (Daubechies [13]) is that it is possible to construct
compactly supported φ and ψ that generate an orthonormal system and have space-
frequency localization, which allows parsimonious representations for wide classes
of functions in wavelet series.

In the process of estimating the model of the paper one needs two-dimensional
wavelet bases. A socalled multiresolution analysis (MRA) of L2(R

2) is obtained
through the tensor product of two 1-dimensional MRA’s on R. Define the bi-
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variate scaling functions as Φ(x, y) = φ(x)φ(y) and the wavelets by Ψh(x, y) =
φ(x)ψ(y), Ψv(x, y) = ψ(x)φ(y) and Ψd(x, y) = ψ(x)ψ(y). Further define Vj =
Vj ⊗ Vj and its orthogonal complement in Vj+1, Wj , by Wj = span{Ψµ

jk(x, y) :
k = (k1, k2), j, k1, k2 ∈ Z, µ = h, v, d}, which consists of three different wavelets
(horizontal, vertical and diagonal). One can write

L2(R
2) = V`

⊕

j≥`
Wj

and so any function f ∈ L2(R
2) can be expanded as

f =
∑

k

∑

µ=h,v,d

clkΦlk(x, y) +
∞
∑

j=l

∑

k

∑

µ=h,v,d

djkΨµ
jk(x, y), (1)

with the wavelet coefficients given by

clk =

∫

R2

f(x, y)Φlk(x, y)dxdy, djk =

∫

R2

f(x, y)Ψµ
jk(x, y)dxdy. (2)

Wavelet bases often entertained are the Haar, Shannon, Meyer, Franklin and
the compactly supported Daubechies. These can be used to generate the 2-d bases
via tensor products. See Bruce and Gao [8] for details. In practice, the sums in (1)
run from j = l to J and k = 0 to 2j−1, where J is the largest j such that djk 6= 0.
An instance of the use of two-dimensional wavelets as described here is Chiann and
Morettin [10].

4. Some Background on Ordinal Data

Ordinal data refers to response variables whose values are categories that are
ordered. Characteristics include that it does not make sense to talk of “distance”
between categories and that adjacent categories may be sensibly merged with the or-
dinality remaining. General references are McCullagh and Nelder [?] and Fahrmeir
and Tutz [17]. Brillinger [5] gives an example of the analysis of an ordinal-valued
time series.

A convenient model leading to ordinal-valued data is based on the category
boundaries or threshold approach. It is assumed that the observable response Y
is a categorized version of a latent continuous variable ζ. If 1, 2, . . . , k are the
categories of the response Y , then

Y = i ⇐⇒ ai−1 < ζ ≤ ai, i = 1, 2, . . . , k, (3)

where a0 = −∞ < a1 < . . . < ak = +∞. The {ai} are cut values or thresholds. If
U is a vector of explanatory variables they are introduced by assuming that

ζ = −U
′

β + ε, (4)
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for β = (β1, . . . , βp) and ε is a random variable.
These considerations lead to models based on cumulative response probabilities

γi = Prob(Y ≤ i|U) = F (ai + U
′

β), (5)

rather than the category probabilities Prob(Y = i). Here F is the distribution
function of ε. The model (3) is called a threshold model.

Several choices of F are possible. If F is the logistic distribution function,
one has the so-called proportional odds model. If F (x) = 1 − exp{− exp{x}}, the
extreme-minimal-value distribution, for some constants αi, one has

log(− log(1 − Prob(Y > i|U))) = αi + U
′

β, i = 1, . . . , k − 1, (6)

called the grouped Cox model. This means that this extreme value distribution
leads to a generalized linear model with the complementary log-log link. Below a
motivation is given for the use of a latent variable and the extreme-value distribution
in the earthquake case.

5. Statistical Methods

5.1. The Seismic Intensity Model

If (xj , yj) is the location of the j−th measurement and Ij the observed MM
intensity, then one can consider the data as a realization of a spatial marked point
process {(xj , yj), Ij}. A basic fact to be incorporated into the modelling of this
circumstance is that the intensities are ordinal-valued. A convenient model leading
to ordinal-valued data was given in the preceding section.

Turning to the present situation, with (x, y) denoting location, consider a latent
variable ζ such that

ζj = g(xj , yj) + εj , j = 1, . . . , J, (7)

where εj has an extreme value distribution. Here J is the number of locations with
measured intensity and g(·) is some (smooth) function of location. Now suppose
that the intensity Ij at the location j is i if ai−1 < ζj ≤ ai, for some cut values
{ai}. Then

Prob{Ij = i} = Prob{ai−1 < ζ ≤ ai} = πij , (8)

in this case leading to

log(− log(1 − Prob{Ij > i | (xj , yj)})) = αi + g(xj , yj), (9)

for some constants αi. In the present situation the additivity of the model corre-
sponds to the effect of location at a given site being the same for all intensities.
Such grouped continuous models were considered in McCullagh [21] and McCul-
lagh and Nelder [22]. Turning to the data, by conditioning one may act as if the
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successive cells are independent, see Pregibon [26], and fit the model via the usual
glm algorithms. This is what is done in the examples below.

The spatial dependence is introduced here via the dependence of the function
g(·) on location (x, y). The motivation for the state variable ζ and the extreme
value distribution is that ζ of (7) represents the strength of the earthquake effect
at the location (xj , yj). The extreme value distribution is employed because the
intensity recorded is the maximum observed by an observer looking around the site,
Reiter [27].

Explanatory variables Uj may be included via assuming a form

ζj = β
′

Uj + g(xj , yj) + εj . (10)

If the εj have c.d.f. F (·), then (8) has the form

πij = F (ai − g(xj , yj)) − F (ai−1 − g(xj , yj)) (11)

in the case of no explanatories.
Each variable Ij corresponds to a multinomial distribution, with πij given by

(8), hence the likelihood may be written

J
∏

j=1

12
∏

i=0

π
Yij

ij , (12)

where

Yij =

{

1, if Ij = i
0, otherwise.

The unknowns will include {ai}, g(·) and the parameters in the distribution of
ε. All the values i = 0, ..., 12 (or 0 to XII) may not appear in the data set.

5.2. Choices of the function g(·).

One can anticipate two situations: g(·) of the same level of smoothness through-
out the region and g(·) having different scales at different places. The first case
may be studied, for example, by local regression or splines. The second may be
approached via wavelet methods.

A further aspect of the use of wavelets is the replacement of the fitted values
β̂µ

j,k by shrunken values β̂µ
j,kw(β̂µ

j,k/sj,k), with s the estimated standard error of β̂
and w a shrinkage function. This can lead to improved estimates and reduces the
need to estimate J . See Donoho and Johnstone [15], Brillinger et al. [7], Chiann
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and Morettin [10].

5.3. Uncertainty estimation

To compute a shrunken estimate one needs to estimate the sjk. Also one will
wish to display uncertainty somehow and to infer whether particular explanatories
need to be in the model.

In the case of maximum likelihood estimates classical large sample expressions
are available. The functions glm() and gam() provide standard errors. In another
seismological context Musmeci [23] proposes the use of a bootstrap procedure. The
boostrap and an alternate procedure, the jackknife, are discussed in Efron and
Tibshirani [16].

6. Results

In the first set of computations the model (10) was fit by the functions gam()

and lo() of S-Plus, see Hastie [18].
Figure 3 gives the estimate of g(·) obtained. This function shows the relative

estimated effects of location. The contours of level -4 correspond to high intensities.
One notes again the occurrence of high damage far from the epicenter of the event
evidenced in Figure 1.

Figure 4 gives estimates of the αi of model (10) and ± 2 standard error limits.
Except for the case of MMI = 0 (corresponding to no effect observed) one sees a
steady increase in the values with intensity. The value corresponding to MM IX
is poorly estimated.

Figure 5 gives the surface when approximated by a spline surface.
[I am trying to understand and improve this estimate.] This differs from Figure

3 in in that the contours are less detailed, yet it is based on 84 degrees of freedom,
while Figure 3 was based on about 40.

Figure 6 gives the result of an approximation via wavelets. The shannon wavelet
was used with j = 0, 1, 2. This differs from Figures 3 and 5 in that it shows more
local detail. Notice in particular how a small area near the bay-area appears with
high intensities.

Figure 7 gives the shrinkage results. The effect of using shrinkage is that some
of the details present in Figure 6 are removed. However, Figure 7 still shows more
local detail than Figures 3 and 5.

7. Discussion and Conclusions

The computations were carried out using widely available statistical functions.
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The complimentary loglog link employed in the computations resulted from
physical conditions

The model may be extended to include covariates directly.
The intentions have been ...
We have seen how the methods described in this paper permit the automatic

construction of seismic intensity maps. Three methods were presented that provide
similar results. Local polynomials and splines provide a smooth map, while wavelets
provide a map with more local details. The local details may be attenuated via the
use of shrinkage.

In Brillinger [2] it is shown how relations obtained by analyzing MM intensities
may be used in computing premiums for earthquake insurance. In particular using
assumed loss ratio values for buildings of some type of interest, one may estimate
the expected loss for such a building situated a given distance from an earthquake
source.
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Figure 1: Locations of MM intensities.
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Figure 2: MM intensities versus distance from the source.
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Figure 3: Estimated g(x, y) of the model (10) using lo().
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Figure 4: Estimates of the αi of the model (10).
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Figure 5: Estimated g(x, y) of the model (10) using bs(·).
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Figure 6: Estimated g(x, y) of the model (10) using Shannon wavelets.
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Figure 7: Estimated g(x, y) of the model (10) using Shannon wavelets with
shrinkage.
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