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Introduction 

Is there a useful extension of the concept of volatility  to 

point processes? 

 

A number of data analyses will be presented 



Why bother with an extension to point processes? 

 a) Perhaps will learn more about time series case 

 b) Pps are an interesting data type 

 c) Pps are building blocks 

 d) Volatility often considered risk measure for time series. 

 

27 July Guardian. 

“Down nearly 60 points at one stage, the FTSE recovered and 

put on the same amount again. But by the close it had slipped 

back, down 36.0 points.” 

“inject billions into the banking system” 



Volatility 

 

   When is something volatile? 

      When values shifting/changing a lot 

 

Vague concept 

   Can be formalized in various ways 

   There are empirical formulas as well as models 



Merrill Lynch. 

 

“Volatility. 

 A measure of the fluctuation in the market price of the 

underlying security. 

Mathematically, volatility is the annualized standard 

deviation of returns. 

A - Low; B - Medium; and C - High.” 



Financial time series. 

 

Pt  price at time t 

“Return” data, Yt  =  (Pt  -  Pt-1)/Pt-1  

 

Empirical formula 

Realized volatility 

                mean{|Ys – Ys-1|
p | s near t},   p = 1 or 2 



Model based formula. GARCH 

 

Yt = μt + σtεt,      ε zero mean, unit variance, t discrete 

 σt
2 = α0 + ∑ αi[Yt-i – μt-i]

2 + ∑ βjσt-j
2     α’s, β’s  > 0 

 

Volatility σt
2 

 

For μs, σs smooth 

      mean{[Ys – Ys-1]
2 | s near t} ~ σt

2(εt - εt-1)2 

 



Crossings based. 

 

     E{[Y(t) – Y(t-h)] 2} = 2[c(0) – c(h)]  ≈ -2c"(0)h2  

 

Recognize as 

       2c(0) π2 [E(#{crossings of mean})]2 

for stationary normal 

 

Consider 

        s #{crossings of mean | near t} 

as volatility measure 



Example. Standard & Poors 500. 

 

Weighted average of prices of 500 large companies in 

US stock market 

Events 

   Great Crash Nov 1929 

   Asian Flu (Black Monday) Oct 1997 

   Other “crashes”: 1932, 1937, 1940, 1962, 1974, 1987 



Zero crossings 



S&P 500: realized volatility, model based, crossing based  

                       Tsay (2002) n= 792 



Point process case. 

   locations along line:  τ1  < τ2 < τ3 < τ4 < … 

   N(t)  =  #{τj    t} 

   Intervals/interarrivals  Xj = τj+1  - τj  

 

Stochastic point process. 

Probabilities defined 

Characteristics: rate, autointensity, covariance 

density, conditional intensity, … 

E.g. Poisson, doubly stochastic Poisson 





0-1 valued time series. 

      Zt  = 0 or 1 

 

Realized volatility 

   ave{ [Zs – Zs-1]
2 | s near t } 

 

 

Connection to zero crossings. 

     Zt= sgn(Yt), {Yt} ordinary t.s. 

         Σ [Zs – Zs-1]
2 = #{zero crossings} 



Connecting pp and 0-1 series. Algebra 

   Tj  = <τj/h>     <.> nearest integer, embed in 0’s 

      h small enough so no ties 

   Y(t) = N(t+h) – N(t) =  t
t+hdN(u) 

 Stationary case 

   E{Y(t)} = pN h 

 cov{Y(t+u),Y(t)} = t+u
t+u+h  t

t+hcov{dN(r),dN(s)} 

                             ~ pNδ{u}h + qNN(u)h2 

 

as cov{dN(r),dN(s)} = [pN δ(r-s) + qNN(r-s)]dr ds, 

rate, pN, covariance density, qNN(∙), Dirac delta, δ(∙) 









Parametric models. 

Bernoulli ARCH. Cox (1970) 

   Prob{Zt = 1|Ht} = πt 

   logit πt = Σ αi Zt-i 

   Ht  history before t 

Fitting, assessment, prediction, … via glm() 

 

Bernoulli GARCH. 

   logit πt = Σ αi Zt-i + Σ βj logit πt-j 

 

Volatility πt or πt(1 -  πt)? 



Convento do Carmo 



“California” earthquakes magnitude    4, 1969-2003 

N=1805 



Results of 0-1 analysis 



P.p. analysis. 

   Rate as estimate of volatility 

Consider var{dN(t)} 

        var{N(t)-N(t-h)}  ≈ pNh + qNN(0)h2 

 

Estimate of rate at time t. 

                k(t-u)dN(u) /   k(t-u)du 

k(.) kernel 

  

Variance, stationary case, k(.) narrow 

     pN  k(t-u)2du / [  k(t-u)du]2 + qNN(0) 

 

 





Example. Euro-USA exchange rate 



Interval analysis. 

  

Xj = τj – τj-1 

 

Also stationary 



California earthquakes 



Risk analysis. Time series case. 

Assets Yt and probability p 

VaR is the p-th quantile 

 

     Prob{Yt+1 – Yt   VaR } = p 

   left tail 

If approxmate distribution of Yt+1 – Yt by 

     Normal(0,σt) 

volatility, σt, appears 

Sometimes predictive model is built and fit to estimate VaR 





Point process case. 

Pulses arriving close together can damage 

Number of oscillations to break object (Ang & Tang) 

 

  

Suppose all points have the same value (mark), e.g. spike train. 

Consider VaR of 

   Prob{N(t+u) – N(t) > VaR} = 1-p 

Righthand tail 

 



Examples. 

 

S&P500: p=.05 method of moments quantile 

   VaR =  $.0815 

 

CA earthquakes: u = 7 days,  p=.95 mom quantile 

   VaR = 28 events 



Case with seasonality – US Forest Fires 1970 - 2005 

n=8481 



Dashed line ~ seasonal 



Example. Volatility, simulate Poisson, recover volatility  



Conclusion. 

Returning to the question, “Why bother with extension? 

 a) Perhaps will learn more about time series case 

 b) Pps are an interesting data type 

 c) Pps are building blocks 

 d) Volatility often considered risk measure for time series.” 

 

The volatility can be the basic phenomenon  



Another question. 

 

“Is there a useful extension of the concept of volatility  

to point processes?”  

   The running rate 

      Gets at local behavior (prediction) 
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