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Estimation of the Second-order Intensities of a 
Bivariate Stationary Point Process 

By DAVID R. BRILLINGER 

The University of California, Berkeley 
[Received October 1974. Final revision May 1975] 

SUMMARY 
We consider histogram and smoothed histogram type estimates of the auto and 
cross intensity functions of a bivariate stationary point process. The asymptotic 
distributions are found to be multiples of Poissons in the histogram case and linear 
combinations of Poissons in the smoothed case. These asymptotic distributions 
suggest the plotting of the square roots of the estimates in order to stabilize the 
variance and to make the distributions more nearly normal. Two examples of such 
plots are presented in the paper. 

Keywords: AUTOINTENSITY FUNCTION; CROSSINTENSITY FUNCTION; POINT PROCESS; SQUARE ROOT 
TRANSFORMATION; STATIONARY PROCESS 

1. INTRODUCTION 

LET {Nl(t), N2(t)}, -oo<t<oo, be a bivariate stationary point process with N1(t) being the 
number of events of Type 1 that occurred in the time interval (0, t] and N2(t) the number of 
events of Type 2 in the same interval. Suppose that the process is orderly in the sense that 
there is zero probability that events occur simultaneously. The intensity of events of type a 
is defined by 

Pa = lim Pr {type a event in (t, t + h]}/h (1. 
hl? 

for a = 1,2. The existence of the limit (1.1) was shown by Khintchine (1960). Korolyuk 
showed that, with orderliness, 

E{dNa()} = Pa dt (1.2) 
(see Khintchine, 1960). The second-order product density function of events of type a with 
events of type b is defined by 

Pab(U) = lim Pr {type a event in (t + u, t + u + h] 
h,h'IO 

and type b event in (t, t+h']}/(hh') (1.3) 

for a, b = 1 ,2 and uo 0. The second-order intensity function of events of type a, given events 
of type b, is defined by 

flab(u) = lim Pr {type a event in (t + u, t + u + h] I type b at t}/h 
hlO 

= Pab(U)!Pb (1.4) 
for a, b = 1,2 and u 40. In this paper we are concerned with large sample properties of 
estimates Of Pab(U)g fiab(U) that have the form proposed in Griffith and Horn (1963), Cox (1965) 
and Cox and Lewis (1972). We shall propose a modified form of these estimates and, in the 
light of the large sample properties, recommend the application of a square root transformation. 
Numerous practical examples of estimates of the original form may be found in Bryant et al. 
(1973) for bivariate processes consisting of the input and output spike trains of nerve cells. 
Two examples of the modified estimates are presented in this paper. Numerous additional 
examples are given in a paper by Brillinger, Bryant and Segundo which is in preparation. 
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Suppose that the process {Nl(t), N2(t)} is given for 0< t < T, that is, the times at which 
events occurred in the interval (0, T] are known. Let the times of events of type a beS.1 s2, .., 

and the times of events of type b be t., t2, .... Let /3>O denote a scale parameter. Next, let 
*{A} denote the number of elements in a set A. Then the estimates of Pab(U) and mab(u), 
considered in Cox and Lewis (1972), are based on the counting variate 

JP'(u) = if{(j k) such that u-/ < si-tk < u+/3 and sj5 tk}. (1.5) 

JT (U) counts the number of a events falling in a cell of bin width 2/3 and midpoint u time 
units along from a b event. It is a histogram type statistic. Cox and Lewis (1972) show that 

EJab(U(T-u) J Pab(V) dv 

2fTPEab(U) (1.6) 

for large T, small /3 and moderate u, suggesting the estimates 

Pab(U) = JTb(u)/(2/3T), 
rnab(U) JT (u)1{22Nb(T)}. 

We shall determine the asymptotic distributions of these estimates under certain regularity 
conditions. In addition we shall propose the use of the following modified estimates 

Pab(U) = Pab(U) +J u j Na(T) Nb(T)!T3, ' 

rab(u) =nab(U) + I u| Na(T)1T2 (1.8) 

for I u < T. Under the regularity conditions mentioned, these appear to have better overall 
mean-squared error properties. Their definition will be motivated in Section 3. In the case that 
u is not large compared to T, there is little difference between the estimates of (1.7) and (1.8). 
Their asymptotic distributions are the same. 

2. THE ASYMPTOTIC DISTRIBUTIONS 
Many random processes that occur in practice seem to satisfy some form of mixing 

condition, that is, functionals of the process that are well separated in time are only weakly 
dependent. We will make use of the following condition of that character. 

Definition. A stationary bivariate process {Nl(t), N2(t)}, - oo < t < oo, is called strong 
mixing when 

-() = sup {P(AB)-P(A)P(B) : A e- W og B Ec t+} -> 0 (2.1) 

as -r->oo. Here P(.) denotes the probability measure of the process and X2v, denotes the 
u-algebra of events generated by events of the form 

{Nai(vl) - Nai(Ul) < hl, .*., Na(vK) - NaK(uK) < hK}g 

where ak = 1, 2; u < Uk < Vk < v; hk is a non-negative integer for k = 1, 2, ..., KandK= 1,2, .... 
This condition appears in Volkonskii and Rozanov (1959) for example. We shall also 

require that the second- to fourth-order moments of the process have the following forms: 

E{dNa(t + u) dNb(t)} = Pab(u) dt du, 

E{dNa(t + u) dNb(t + v) dN,(t)} = Pabc(Ug v) dt du dv, (2.2) 

E{dNa(t + u) dNb(t + v) dN,(t + w) dNd(t)} = Pabcd(Ug v, w) dt du dv dw 

for a, b, c, d = 1, 2 and u, v, w, 0 distinct. Finally, let P(k) denote a Poisson variate with mean [u. 
3 
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Theorem 1. Let {Nl(t), N2(t)}, - oo < t < oo, be a stationary bivariate point process that is 
strong mixing, o(r + u) = O{o(-r)} as -r -- oo, and such that pab(u), Pabc(U, v), Pabcd(U, v, w) of 
(2.2) are finite and continuous for a, b, c, d = 1, 2. Then for uk ,T u1-uT I > 2, 1 K k < k' < K 
and P = LIT, L constant, the variates JTb1() , *JT ](UT) are asymptotically independent 
P{2LPakbk(Uk)}, k = 1, ..., K for ak, bk = 1,U2 as T aoo. 

This result is proved in Section 4 of the paper assuming a direct variant of Theorem 1.3 
of Volkonskii and Rozanov (1959). We may take K = 1 and uT = u, here, and so see that 
JT (u) -P(2LPab(U)) for a, b = 1,2. We have allowed the arguments UT to depend on T in 
order to be able to handle the case of a number of bins in the neighbourhood of a given lag u. 
The restriction on I uT- l means that the counting variates refer to distinct bins. In con- 
nection with the estimates Of Pab(U), mab(u) we have: 

Corollary 1. Under the conditions of Theorem 1, Pab@O, Pab(u), given by (1.7), (1.8), are 
asymptotically distributed as (2L)-1P{2Lpab(u)}. 

Corollary 2. Under the conditions of Theorem 1, m cJu), nab(u), given by (1.7), (1.8), are 
asymptotically distributed as (2L)-1pb-1P{2Lpab(U)}. 

Had we so desired, we could have considered collections of estimates, at lags uT, in the 
manner of the theorem, here. The asymptotic distributions of the estimates of (1.7) are not 
affected by the modification to (1.8) because of the convergence of the correction terms to 
zero, in probability. In both cases, the variance of the asymptotic distribution is seen to 
be proportional to the parameter being estimated. This occurrence suggests the application 
of a square root transformation to the estimates. We will return to this comment in the next 
section. 

The estimates discussed here are histogram type estimates, involving a rectangular 
smoothing function. Cox (1965) remarks that one might want to consider other smoothing 
functions. For example, we might base estimates on 

I 

where E wi = 1. From Theorem 1, the asymptotic distribution of this variate is seen to be 
that of E wi Pi, where the Pi are independent P{2LPab(U)} variates. The mean of this asymptotic 
distribution is 2LPab(U). The variance is (E w2) 2LPab(U), a result that again suggests a square 
root transformation. 

3. SOME FURTHER CONSIDERATIONS AND PRACTICAL EXAMPLES 

The second-order product density, Pab(U), and the intensity function, mab(u), both provide 
measures of the degree of statistical dependence of increments of the process Na(-) that are 
u time units ahead of corresponding increments of the process Nb(-). In the case that these 
increments are independent, Pab(U) = PaPb and mab(u) = Pa. In the case that the process is 
stong mixing 

E{dNa(t + u) dNb(t)}- E{dNa(t + u)} E{dNb(t)} = O{(u)} 0 

as Iu I- oo, see Volkonskii and Rozanov (1959) and so 

lim Pab(U) = PaPb and lim mab(U) = Pa- (3.1) 
luleoC- 1ut1-->. 

This suggests that graphs of estimates of the functions Pab(-) or mab( ) should also contain 
estimates of the constant levels PaPb or Pa, as the case may be. 

The relations of (3.1) suggest the source of the estimates Pab(U), mrab(u) of (1.8). For many 
processes, the covariance, cov {dNa(t + u), dNb(t)} will be near 0 for large I u 1. In the case of an 
ordinary bivariate stationary process {X1(t), X2(t)} the covariance function 

Cab(U) = COV {Xa(t + U), Xb(t)} 
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is likewise near 0 for large I u I for mixing processes. This has led workers to feel that for many 
purposes, Cab(U) is best estimated by 

Cab(U) = T 1 {Xa(t+U) -a}{Xb(t) Xb} (3.2) 
0,<t,t+u<T-1 

given values for t = 0, 1, ..., T- 1 with a, lb the sample means a, b = 1, 2. The estimate 
(3.2) has the property of being near 0 for IuI near T. The estimate (3.2) suggests estimating 
the second-order product moment, E{Xa(t + u) Xb(t)} by 

Cab(u) + la lb = T-1 Xa(t + U) Xb(t) + I U I la XbIT (3.3) 
0<t,t+u<T-1 

The estimates (3.2), (3.3) appear to have better overall mean-squared error properties than 
the corresponding "unbiased" estimates with the divisor T replaced by (T-I u I), see Parzen 
(1961, p. 139). The estimate 'Pab(U) is the point process analogue of (3.3). It and the corre- 
sponding rnab(u) may be expected to have better overall mean-squared error for mixing 
processes. 

The conclusions of Corollaries 1 and 2 suggest applying a square root transformation to 
the estimates. This is a common procedure for counting variates. In the cases of mab(u) and 
hab(u), the large sample variances of 1{lab(u)} and l{^a'b(u)} are approximately (8Lpb)1 
which may be estimated by {8PNb(T)}-1. Confidence limits may be set by using either a 
Poisson or a normal approximation. A particularly simple approximation to 95 per cent limits 
is to add + {2PNb(T)}j- to the estimate. In a case where the weighted estimate (2.3) was 
employed, a further factor (E w4)' would be included. 

In practice we have found it exceedingly useful to graph the following four curves on the 
same plot, 

V{mab(U)}, ViPa, Pfa + {2/Nb(T)}- ifia - {2PNb(T)} , 

where Pa = Na(T)IT, a = 1,2. Figs 1 and 2 give two examples of this. Fig. 1 is based on a 
point process corresponding to the times of 1,355 consecutive beats of a human heart. The 

2.0 

L 1A1 1 z -~~~A _ A ^ n A A A% 

O.5_ 

0 2 4 6 8 10 
u seconds 

FIG. 1. Square root of the autointensity histogram of a sequence of times of heartbeats. 
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estimated intensity is A1 = 1P33 beats per sec. The central horizontal line in the Figure corre- 
sponds to Vffl. The Figure suggests that increments of the corresponding process are approxi- 
mately independent when more than 4 or 5 sec apart. The estimate is essentially 0 for the first 
0 4 sec because no heart beats occurred closer together than that interval. This behaviour is 
characteristic of point processes generated by mechanisms with dead times. The equi-spaced 
spikes appear in this estimate because of the periodic character of heartbeats. Fig. 2 is based 
upon the times of the 187 world-wide earthquakes of magnitude 7-9 or greater which occurred 
in the years 1900-71. The estimated intensity is f1 = 0-22 major earthquakes per month. Such 
a process is often thought to be near Poisson. The function of Fig. 2 suggests that there is 

0-53 

0-51- 

049 - - -- V - 

~f 0A47 

0*45- 

0V43A 
0 160 320 480 640 

u months 
FIG. 2. Square root of the autointensity histogram of a sequence of times of major earthquakes. 

some degree of clustering present. The central horizontal line is at the level VI. The times 
of these earthquakes may be found in Richter (1958) and "Seismological Notes" appearing in 
the Bulletin of the Seismological Society of America. 

4. PROOFS 
The proof of Theorem 1 will be based on Theorem 2. 
Theorem 2. Let MT(t) = {MjT(t), ...,MT(t)}, 0 < t <0o, T = 1,2, ... be a sequence of 

stationary K-variate point processes. Suppose the process MT has mixing coefficient OxT(1r), 
where ofT(r) > 0 uniformly as -r -> oo, XT(-r) x(j). Suppose that the process MkT has intensity 
Pk ET where ET - 0 as T-> oo and that 

E[Mk (tIeT){M k(tIeT)-1}] = 0(t), (4.1) 

E{Mk (tIeT) Mki,(tIT)} = 0(t) J 
as t -> 0, T-oo ~ for 1 A k <k' (K. Then MlT(tlIET), ...,M(tKIeT) are asymptotically inde- 
pendent P(P1 t), . P(1K t) as T-> oo. 

This theorem is a simple variant of Theorem 1.3 of Volkonskii and Rozanov (1959) and 
is not proved here. A related result is discussed in Section 5 of Leadbetter (1969). The 
condition that the mixing coefficients of all the processes are of the same order of magnitude 
means, that with regards degree of mixing, the processes retain the same time scale. The 
intensities are assumed to tend to 0, meaning that events are becoming rare as T-+oo. The 
first condition of (4.1) prevents the processes from having too many events in small intervals. 
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The second condition is what leads to the limit process having independent components. The 
time scaling, tkI8T leads to the limit process having non-zero intensities. 

It is convenient to prove Theorem 1 by applying Theorem 2 to a particular sequence of 
K variate processes associated with the counting of events in intervals of width 2/ derived 
from the given process {Nl(t), N2(t)}. Specifically define the process MT(.) to have j events 
at time t if Nb, has an event at time t and if Nak has j events, at times other than t, between 
t + ulT - P and t + uT + P. In differential notation this corresponds to writing 

dMk(t) = fdNak(S + t) dNbk(t)' (4.2) 

where A is the set {s: uT-<s<uT +f, s#0O}. The counting variates of (1.5) and Theorem 1 
are now given by allowing dMT(t) to range over the interval (3, T-/) whose end points are 
the centres of the first and last bins. Hence 

JTbk(UT) = MT (T- /) - M T(,B) Mk (T). 

Proof of Theorem 1. From (4.2) we note that 

EdM T(t) -29Pa,bk(Uk) dt 

as P is small. This gives the mean values as stated in Theorem 1 for 

EJTbk(uk ) ET EMT'(T) 2LPakbk(Uk)* 

It also suggests defining ET of Theorem 2 to be l/T. The process MT has mixing coefficient 

CoT(_r) = supf{P(AB)-P(A)P(B)j}, 

where A ranges over events involving the variates dNak(s), dNbk(s) with s< min (t, t + u'+3) 
and B ranges over events involving these variates with s > max (t + 'r, t + ' + Tl'-/). It follows 
that oxT(,r) = o(r -u -0O uniformly as r -* oc, and that JT(r) o({) as it has been 
assumed that oi('r+u) = O{x(T)} for -r-0oo. 

Next, following expressions (3.15), (3.16) of Brillinger (1972) the expected values of (4.1) 
may both be written 

f X/er f~ pTkk,(Vl - v2) dvl dv2, (4. 

whether k = k' or not, where PkTk' is a second-order product density of the MT process. 
Now from the representation (4.2) and Theorem 3.1 of Brillinger (1972), expression (4.3) 
hence has the value 

L. -X, }Bi TB, [f{ak - bk'} 8(Vl + tl - V2 - t2)Pa1kbzak'((V1 + t1 - V2 - t29 Vl - V2 -t2) 

+ S{ak - ak,} 3(V1 ? tl - V2 - t2)P(,kb4b A(Vl + tl - v2, ll - v2) 

+ 83bk - ak'} 8(1 -V - t2)Pabkb,bk'(Vl + tl - 1'2, V1 - V2) 

f- S{ak - bk,} {b -ak'} S(vl + tl- V2) 8(v1 - V2 - t2)Palkb,(tl) 

+Pakak,bkbk,(Vl + tl - V2, t2, V1 - V2)] dtl dt2 dvl dv2, 

where A1 denotes the set {uT' < tj < uT + P, tj O}, j = 1, 2, Bj denotes the set {O <t. < 
j = 1,2, S{ }, denotes the Kronecker delta function, 8(.) denotes the Dirac delta function 
and where the domain of integration excludes the values v. - V2=. Making use of the 
boundedness of the densities of (2.2) we find that (4.3) is O(t) + O(t2) + 0(t/T). This tends to 0 
as t -o 0, T-o so. The conditions of Theorem 2 are therefore satisfied and so Theorem 1 follows. 

4 
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