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Abstract-This paper begins with a description of some of the impor-
tant procedures of the Fourier analysis of real-valued discrete
time series. These procedures include the estimation of the power spec-
trum, the fitting of finite parameter models, and the identification of
linear time invariant systems. Among the resuits emphasized is the one
that the large sample statistical properties of the Fourier transform are
simpler than those of the series itself. The procedures are next gen-
uﬂhedwnpplytomemofvecmmnhedms,mnlﬁdww
time series or spatial series, point processes, random measures, and
ﬁmllytomﬂonuyrmdomsmwmzdwﬁnﬂon& It is seen that the
relevant Fourier transforms are evaiuated by different formulas in these
further cases, but that the same constructions are carried out after their
evaluation and the same statistical results hokd. Such generalizations
are of interest because of current work in the fields of picture process-

ing and pulse-code modulation.

I. INTRODUCTION

4 " N HE FOURIER analysis of data has a long history, dat-

ing back to Stokes [1] and Schuster [2], for example.

It has been done by means of arithmetical formulas
(Whittaker and Robinson [3], Cooley and Tukey [4]), by
means of a mechanical device (Michelson [S}), and by means
of real-time filters (Newton [6], Pupin [7}). It has been car-
ried out on discrete data, such as monthly rainfall in the Ohio
valley (Moore [8]), on continuous data, such as radiated light
(Michelson [5]), on vector-valued data, such as vertical and
horizontal components of wind speed (Panofsky and McCor-
mick [9]), on spatial data, such as satellite photographs (Leese
and Epstein [10]), on point processes, such as the times at
which vehicles pass a position on a road (Bartlett [11]), and on
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point processes in space, such as the positions of pine treesin a
field (Bartlett {12]). It has even been carried out on the
logarithm of a Fourier transform (Oppenheim et al. [13]) and
on the logarithm of a power spectrum estimate (Bogert et al.
[14]).

The summary statistic examined has been: the Fourier trans-
form itself (Stokes [1]), the modulus of the transform
(Schuster {2]), the smoothed modulus squared (Bartlett
[15]), the smoothed product of two transforms (Jones [16]),
and the smoothed product of three transforms (Hasselman
eral [17]).

The summary statistics are evaluated in an attempt to mea-
sure population parameters of interest. Foremost among these
parameters is the power spectrum. This parameter was initially
defined for real-valued-time phenomena (Wiener [18]). In re-
cent years it has been defined and shown useful for spatial
series, point processes, and random measures as well, Our de-
velopment in this paper is such that the definitions set down
and mathematics employed are virtually the same for all of
these cases.

Our method of approach to the topic is to present first an
extensive discussion of the Fourier analysis of real-valued
discrete-time series emphasizing those aspects that extend di-
rectly to the cases of vector-valued series, of continuous spatial
series, of point processes, and finally of random distributions.
We then present extensions to the processes just indicated.
Throughout, we indicate aspects of the analysis that are pecu-
lar to the particular process under consideration. We also
mention higher order spectra and nonlinear systems. Wold
[19] provides a bibliography of papers on time series analysis
written prior to 1960. Brillinger [20] presents a detailed de-
scription of the Fourier analysis of vector-valued discrete-time
series.

We now indicate several reasons that suggest why Fourier
analysis has proved so useful in the analysis of time series.
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II. WHY THE FOURIER TRANSFORM?

Several arguments can be advanced as to why the Fourier
transform has proved so useful in the analysis of empirical
functions. For one thing, many experiments of interest have
the property that their essential character is not changed by
moderate translations in time or space. Random functions
produced by such experiments are called stationary. (A defini-
tion of this term is given later.) Let us begin by looking for a
class of functions that behave simply under translation. If, for
example, we wish

fe+u)=Cuf1),
with Cy ¥ 0, then by recursion
f)=C1fit- 1)=Caofit - 2) ="+ = C{f(0)

for t = 0 and so f{t) = f{0) exp E}&Qfora =InC,. If f(t) is to
be bounded, then @ =i}, fori =4/-1 and A real. We have been
led to the functions exp {iAr}. Fourier analysis is concerned
with such functions and their linear combinations.

On the other hand, we might note that many of the opera-
tions we would like to apply to empirical functions are linear
and translation invariant, that is such that; if X;(f) > Y, ()
and X, (1) = Y,(¢) then oy Xy () + axX,(t) > o, Y, (1) +
o, Y, (t) and if X(¢) = Y () then X(¢ -~ u) > Y(z - u). Such op-
erations are called linear filters. It follows from these condi-
tions that if X(¢) = exp {i\t} > ¥5(?) then

X(t +u) = exp {\u} X(t) > exp {iAt} Yo (1) = Y(t +u).

Setting u=1¢, t=0 gives Y () =exp {irt} ¥Y»(0). In sum-
mary, exp {iAt} the complex exponential of frequency A is
carried over into a simple multiple of itself by a linear filter.
AQ\) = Y\ (0) is called the transfer function of the filter. If the
function X(¢) is a Fourier transform, X(¢) = f exp {iat} x(@)
da, then from the linearity (and some continuity) X(z) >
[expiar A(a) x(a) da. We see that the effect of a linear filter
is easily described for a function that is a Fourier transform.

In the following sections, we will see another reason for deal-
ing with the Fourier transforms of empirical functions,
namely, in the case that the functions are realizations of a sta-
tionary process, the large sample statistical properties of the
transforms are ‘simpler than the properties of the functions
themselves.

Finally, we mention that with the discovery of fast Fourier
transform algorithms (Cooley and Tukey [4]), the transforms
may often be computed exceedingly rapidly.

tu=0,%1,2, -

III. STATIONARY REAL-VALUED DISCRETE-TIME SERIES

Suppose that we are interested in analyzing T real-valued
measurements made at the equispaced times¢=0,***, T~ 1,
Suppose that we are prepared to model these measurements by
the corresponding values of a realization of a stationary
discrete-time series X(f), =0, 1,2, - - - . Important param-
eters of such a series include its mean,

cx =EX(t) ¢)]

giving the average level about which the values of the series are
distributed and its autocovariance function

cxx(u) = cov {X(z +u), X(1)}
=E{[X@+u)- cx][X()~ cx]}, u=0,%1,--"

)
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providing a measure of the degree of dependence of values of
the process |u| time units apart. (These parameters do not de-
pend on t because of the assumed stationarity of the series.)
In many cases of interest the series is mixing, that is, such that
values well separated in time are only weakly dependent in a
formal statistical sense to be described later. Suppose, in par-
ticular, that cxx(u) = 0 sufficiently rapidly as |u| - o for

fxxW =2 3 exx exp (-}, -w<A<oo

u=-~co
3)

to be defined. The parameter fy x(A) is called the power spec-
trum of the series X() at frequency A. It is symmetric about 0
and has period 27. The definition (3) may be inverted to ob-
tain the representation

”
cxx(u) = f exp {iau} fxx(@) da (4)

of the autocovariance function in terms of the power
spectrum.
If the series X(#) is passed through the linear filter

X)) > Y(1) =3 a(t - u) X(u)

with well-defined transfer function

AQ) = a(u) exp {-iu}

then we can check that

cyy(u) =Y 3 a(u +v)a(w) cxx(w = v) (5)
u v
and, by taking Fourier transforms, that
Fry®) =14Q) Py x(N) (6)

under some regularity conditions. Expression (6), the fre-
quency domain description of linear filtering, is seen to be
much nicer than (5), the time-domain description.

Expressions (4) and (6) may be combined to obtain an inter-
pretation of the power spectrum at frequency A. Suppose that
we consider a narrow band-pass filter at frequency A having

transfer function
1,
Ala) =
0,

with A small. Then the variance of the output series Y(¢), of
the filter, is given by

latA|<A

otherwise

var Y(¢) = ny(o)

= J. fry(e) da

=fIA(0l) fx x(e) da

=4Afxx (). @)

In words, the power spectrum of the series X(r) at frequency A
is proportional to the variance of the output of a narrow band-
pass filter of frequency A. In the case that A # 0, £27, 47, - - -
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the mean of the output series is 0 and the variance of the out-
put series is the same as its mean-squared value. Expression
(7) shows incidentally that the power spectrum is nonnegative.
We mention, in connection with the representation (4), that
Khintchine [21] shows that for X(¢) a stationary discrete time
series with finite second order moments, we necessarily have

”
exx )= f exp {iou} dFyx(@) ®

where Fyx(a) is a monotonic nondecreasing function.
Fyxx(\) is called the spectral measure. Its derivative is the
power spectrum. Going along with (8), Cramér [22] demon-
strated that the series itself has a Fourier representation

Xx@) = f exp {iat} dZy{a), t=0,%1,°*+ (9)
-
where Z x()\) is a random function with the properties;
EdZy(\)=n(\) cx dA (10}
cov {dZx (), dZx ()} = n(\ - ) dFx x(N) du.  (11)

(In these last expressions, if 8§(A) is the Dirac delta function
then n(A) = Z 8(A - 2m) is the Kronecker comb.) Also expres-
sion (11) concerns the covariance of two complex-varied vari-
ates. Such a covariance is defined by cov {X, Y} =
E{(X- EX)(Y - EY)}.) Expression (9) writes the series X()
as a Fourier transform. We can see that if the series X(¢) is
passed through a linear filter with transfer function 4(A), then
the output series has Fourier representation

"
f exp {iat} A(a)dZy(e), t=0,%1, -,
.

In Section XV, we will see that the first and second-order rela-
tions (10), (11) may be -extended to kth order relations with
the definition of kth order spectra.

IV. THE FINITE FOURIER TRANSFORM

Let the values of the series X(t) be available for =0, 1, 2,
+++, T~ 1 where T is an integer, The finite Fourier transform
of this stretch of series is defined to be

-
dS{T)O\)=z:lX(t)exp {-in}, ~e<A<Lw (12)
t=0

A number of interpretations may be given for this variate, For
example, suppose we take a linear filter with transfer function
concentrated at the frequency A, namely A(a@) =8(x - \). The
corresponding time domain coefficients of this filter are

a(u) =(2m)™ | A(a) exp {iua} da

=(2m~" exp {iuA},
The output of this filter is the series
(2m™ T Xw)exp (A - w}=2m™ exp {i} dP ).
u

u=0,%1, .

These remarks show that the finite Fourier transform may be
interpreted as, essentially, the result of narrow band-pass filter-
ing the series.
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Before presenting a second interpretation, we first remark
that the sample covariance of pairs of values X(z), Y(1),t =0,
1,+++, T~ lisgiven by 77! T X(¢) Y(z), when the Y(¢) values
have 0 mean. This quantity is a measure of the degree of linear
relationship of the X(¢#) and Y(¢) values. The finite Fourier
transform is essentially, then, the sample covariance between
the X(t) values and the complex exponential of frequency A.
It provides some measure of the degree of linear relationship
of the series X(¢) and phenomena of exact frequency A.
In the case that A =0, the finite Fourier transform (12) is
the sample sum. The central limit theorem indicates condi-
tions under which a sum of random variables is asymptotically
normal as the sample size ;rows to o, Likewise, there are
theorems indicating that d )(K) is asymptotically normal as
T -, Before indicating some aspects of these theorems we
set down a definition. A complex-valued variate w is called
complex normal with mean 0 and variance 0* when its real
and imaginary parts are independent normal variates with
mean 0 and variance 0/2. The density function of w is pro-
portional to exp {- |w|*/0®}. The variate |w|? is exponential
with mean ¢° in this case.
In the case that the series X(f) is stationary, with finite
second-order moments, and mixing (that is, well-separated
values are only weakly dependent) the finite Fourier transform
has the following useful asymptotic properties as T - o°:
a) dgrn(O) = Tcx is asymptotically normal with mean 0 and
variance 21 Tf x x(0);

b) for A# 0, t;, 27, -, d(xﬂ(k) is asymptotically com-
plex normal with mean 0 and variance 207fy x(A);

¢) for #(1), j=1,"++,J integers with N(T)=2ns(T)/T >
A# 0, 4w +27, -+ the variates dg{n(?\' @), -,
dS{T)G"(T)) are asymptotically independent complex
normals with mean 0 and variance 21T x x(A),

d) for A#0,%n,+27,--+ and U=T/J and integer, the

variates

U-1
dPD0N=3 Xw+jUyexp {-idu}, j=0,-"

u=0

=1

are asymptotically, independent complex normals with
mean 0 and variance 2nUfx x(A).

These results are developed in Brillinger [20]. Related re-
sults are given in Section XV and proved in the Appendix.
Other references include: Leonov and Shiryaev [23], Picin-
bono {24], Rosenblatt [25], Brillinger [26], Hannan and
Thomson [27]. We have seen that exp {iAt} d;}')(k) may be
interpreted as the result of narrow band-pass filtering the
series X(¢), It follows that the preceding result b) is consistent
with the “engineering folk” theorem to the effect that narrow
band-pass noise is approximately Gaussian.

Result a) suggests estimating the mean cy by

T-
P =15 x0)
=0

and approximating the distribution of this estimate by a nor-
mal distribution with mean O and variance 2nfy x(0)/7. Re-
sult b) suggests estimating the power spectrum fyx y(A) by the
periodogram

IR = @rry a0k (13)

in the case A# 0,27, -+ . We will say more about this sta-
tistic later. It is interesting to note, from c) and d), that
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asymptotically independent statistics with mean O and vari-
ance proportional to the power spectrum at frequency X may
be obtained by either computing the Fourier transform at
particular distinct frequencies near A or by computing them at
the frequency A but based on different time domains. We
warn the reader that the results a)-d) are asymptotic. They
are to be evaluated in the sense that they might prove reason-
able approximations in practice when the domain of observa-
tion is large and when values of the series well separated in the
domain are only weakly dependent.

On a variety of occasions we will zaper the data before com-
puting its Fourier transform. This means that we take a data
window ¢(T)(t) vanishing for t <0,#> T - 1, and compute the
transform

dPN =T 6D (0) exp {-ie} X(1) a4
t

for selected values of A. One intention of tapering is to reduce
the interference of neighboring frequency components. If

DN = 3 ¢ (1) exp {-in}
t

then the Cramér representation (9) shows that (14) may be
written

dPn = fcb(”(x— @) dZx(a). (15)
From what we have just said, we will want to choose ¢(T)(t)
so that ®T)(a) is concentrated near a = 0,%2m,+ . (One
convenient choice of ¢(T)(t) takes the form ¢(t/T) where
u) =0 for u<0,u=>1) The asymptotic effect of tapering
may be seen to be to replace the variance in b) by
21 Z ¢ D)1 x V).

Hannan and Thomson [27] investigate the asymptotic dis-
tribution of the Fourier transform of tapered data in a case
where fyx(\) depends on T in a particular manner. The hope
is to obtain better approximations to the distribution.

V. ESTIMATION OF THE POWER SPECTRUM

In the previous section, we mentioned the periodogram,
1}90\), as a possible estimate of the power spectrum fy x(A)
in the case that A# 0, 2mr,* . If result b) holds true, then
I‘g}()\), being a continuous function of d&n(k), will be dis-
tributed asymptotically as |w|?, where w is a complex normal
variate with mean O and variance fy x(A). That islgg()\) will
be distributed asymptotically as an exponential variate with
mean fxx(\). From the practical standpoint this is interest-
ing, but not satisfactory. It suggests that no matter how large
the sample size T is, the variate Ig;),()\) will tend to be dis-
tributed about fxx(A) with an appreciable scatter. Luckily,
results c) and d) suggest means around this difficulty. Follow-
ing c), the variates I&Q()\/(T)),j =1,++,J are distributed
asymptotically as independent exponential variates with mean
fxx(\). Their average

J .
RN =71 ,2; IR 16
will be distributed asymptotically as the average of J indepen-
dent exponential variates having mean fy x{(\). That is, it will
be distributed as

FxxOnG 712 an
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where X3 s denotes a chi-squared variate with 2J degrees of
freedom. The variance of the variate (17) is

FxxO I = fxx(\N*U/T (18)

if U= T/J. By choice of J the experimenter can seek to obtain
an estimate of which the sampling fluctuations are small
enough for his needs. From the standpoint of practice, it
seems to be useful to compute the estimate (16) for a number
of values of J. This allows us to tailor the choice of J to the
situation at hand and even to use different values of J for dif-
ferent frequency ranges. Result d) suggests our consideration
of the estimate

J=
ARM =S @royt1d@ o1,

j=0

19)

It too will have the asymptotic distribution (17) with variance
(18).

We must note that it is not sensible to take J in (16) and
(19) arbitrarily large as the preceding arguments might have
suggested. It may be seen from (15) that

EIRM) = f Fr(\- a) fxx(@) da+Fr(\) ¢k (20)

where
2
siny
FrQ) = (211! —
sin -
2

is the Fejér kernel. This kernel, or frequency window, is non-
negative, integrates to 1, and has most of its mass in the inter-
val (-2n/T, 2n/T). The term in c} may be neglected for A # 0,
+2m, +» and T large. From (16) and (20) we now see that

g J .
Ef{RN = j IU Y FrN(D - @) fxx(@da. (21)
- j=1

If we are averaging J periodogram values at frequencies 2n/T
apart and centered at A, then the bandwidth of the kernel of
(21) will be approximately 4nJ/T. If J is large and fy x(a)
varies substantially in the interval -2aJ/T <a- A<2aJ/T,
then the value of (21) can be very far from the desired fx x(A).
In practice we will seek to have J large so that the estimate is
reasonably stable, but not so large that it has appreciable bias,
This same remark applies to the estimate (19). Parzen (28]
constructed a class of estimates such that Efy}()\) > fxx(N)
and var f)(rQO\) —>0. These estimates have an asymptotic dis-
tribution that is normal, rather than x’, Rosenblatt [29].
Using the notation preceding these estimates correspond to
having J depend on T in such a way that Jp = %, but J5/T >0
as T —> oo,

Estimates of the power spectrum have proved useful; i) as
simple descriptive statistics, ii) in informal testing and discrim~
ination, iii) in the estimation of unknown parameters, and iv)
in the search for hidden periodicities. As an example of i), we
mention their use in the description of the color of an object,
Wright [30]. In connection with ii) we mention the estima-
tion of the spectrum of the seismic record of an event in at-
tempt to see if the event was an earthquake or a nuclear explo-
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sion, Carpenter [31], Lampert et al. [32]. In case iii}, we
mention that Munk and MacDonald [33] derived estimates of
the fundamental parameters of the rotation of the Earth from
the periodogram. Turning to iv), we remind the reader that
the original problem that led to the definition of the power
spectrum, was that of the search for hidden periodicities. Asa
modern example, we mention the examination of spectral es-
timates for the periods of the fundamental vibrations of the
Earth, MacDonald and Ness [34].

VI. OTHER ESTIMATES OF THE POWER SPECTRUM

We begin by mentioning minor modifications that can be
made to the estimates of Section V. The periodograms of (16)
may be computed at frequencies other than those of the form
2ns/T, s an integer, and they may be weighted unequally. The
periodograms of the estimate (19) may be based on overlap-
ping stretches of data. The asymptotic distributions are not so
simple when these modifications are made, but the estimate is
often improved. The estimate (19) has another interpretation.
We saw in Section IV that exp {iAr} a7 (A, /) might be inter-
preted as the output of a narrow band-pass filter centered at A.
This suggests that (19) is essentially the first power spectral
estimate widely employed in practice, the average of the
squared output of a narrow band-pass filter (Wegel and Moore
[35]). We next turn to a discussion of some spectral estimates
of quite different character.

We saw in Section III that if the series X(¢) was passed
through a linear filter with transfer function A(A), then the
output series Y(#) had power spectrum given by fyy(A) =
JAQ)Pfxx(\). In Section V, we saw that the estimates (16),
(19) could have substantial bias were there appreciable varia-
tion in the value of the population power spectrum. These re-
marks suggest a means of constructing an improved estimate,
namely: we use our knowledge of the situation at hand to de-
vise a filter, with transfer function 4(}), such that the output
series Y(r) has spectrum nearer to being constant, We then
estimate the power spectrum of the uSered series in the man-
ner of Section V and take |AQ\)[? TyQ) as our estimate of
fxx(A). This procedure is called spectral estimation by pre-
whitening and is due to Tukey (see Panofsky and McCormick
[9]). We mention that in many situations we will be content
to just examine fg}()\), This would be necessary were
AQ) =0,

One useful means of determining an A(A) is to fit an auto-
regressive scheme to the data by least squares. That is, for
some K, choose (1), * - * , 2(X) to minimize

X +a(1) X(2 - 1)+ - - +a(K) X(t - K

whereAthe summation extends over the available data, In this
case AQA)=1+8(1)exp {-A}++--+8(K) exp {~-AK}. An
algorithm for efficient computation of the @(u) is given in
Wiener [36, p. 136]. This procedure should prove especially
effective when the series X(¢) is near to being an autoregressive
scheme of order K. Related procedures are discussed in
Grenander and Rosenblatt [37, p. 270], Parzen [38], Lacoss
[39], and Burg {40]. Berk [41] diicusses the asymptotic dis-
tribution of the estimate |A2Q2rD™ T [X() +
(1) X(t- 1)+ +3(K) X(z - K)|*. Its asymptotic variance
is shown to be (18) with U = 2K,

Pisarenko [42] has proposed a broad class of estimates in-
sluding the high resollxtion estimate of Capon [43] as a par-
ticular case. Suppose X is an estimate of the covariance matrix
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of the variate

Xx(1)

X(U)
deten,x‘lined from the sample values X(0), ', X(T - 1). Sup-
DOse fy, @,, u =1, -, U are the latent roots and vectors of

Z. Suppose H{u), 0 <u <o, is a strictly monotonic function
with inverse (). Pisarenko proposed the estimate

{

He presents an argument indicating that the asymptotic vari-
ance of this estimate is also (18). The hope is that it is less
biased. Its character is that of a nonlinear average of periodo-
gram values in contrast to the simple average of (16) and (19).
The estimates (16) and (19) essentially correspond to the case
H(u) = . The high resolution estimate of Capon [43] corre-
sponds to H(u)=u".

The autoregressive estimate, the high-resolution estimate and
the Pisarenko estimates are not likely to be better than an
ordinary spectral estimate involving steps of prewhitening,
tapering, naive spectral estimation and recoloring. They are
probably better than a naive spectral estimate for a series that
is a sum of sine waves and noise.

v oo
> Hi)2nUy?

u=1

2N |1
3 aypexp {—ikj}f ) 22)
=t

VII. FviTE PARAMETER MODELS
Sometimes a situation arises in which we feel that the form
of the power spectrum is known except for the value of a finite
dimensional parameter . For example existing theory may
suggest that the series X(¢) is generated by the mixed moving
average autoregressive scheme

X@O)+a(DX(@- D+ +aK)X( - K)=€e(t) +b(1)e(z - 1)
+-c o+ b(L)e(z- L) (23)
where U, V are nonnegative integers and €(f) is a series of
independent variates with mean O and variance @%. The power
spectrum of this series is
0 |1 +b(1) exp {~iN} + - - - +b(L) exp {~iAL}H?
27 |1 + a(1) exp {=iA} + - - +a(K) exp {~iAK}|?
(24)
with 8 = 6%, a(1),"**,a(K), b(1),"**,b(L). A number of
procedures have been suggested for estimating the parameters
of the model (23), see Hannan [44] and Anderson [45], for
example.

The following procedure is useful in situations more general
than the above. It is a slight modification of a procedure of

fxx(\;0)=

Whittle [46]. Choose as an estimate of § the value that
maximizes . §
2ns \" 278 2ns \~
Il fxx(—T—; 0) exp {-I}Q(T)fxx(T; 9) }
0<s<T/2

(25)

Expression (25) is the likelihood corresponding to the assump-
tion that the periodogram values I}?(Zns/T), 0<s<7T/2,are
independent exponential variates with means fyx(27s/T; 9),
0 < s < T/2, respectively. Under regularity conditions we can
show that this estimate, [} , is asymptotically normal with mean
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6 and covariance matrix 21T '47'(4 + B)A™' where; if
Vixx(A; 0) is the gradient vector with respect to § and fyxxx
the 4th order cumulant spectrum (see Section XV)

ki
4= J Vixx(; 0) - Vexx(a; 0)fxx(a; 82 da
0

” n
B '—'J j Vixcx(@; 8) * Vexx(B; 0)fxx(e; 0 2 fxx(8; 6)72
o Yo

s fxxxx(@, -a, -f) da df.

We may carry out the maximization of (25) by a number of
computer algorithms, see the discussion in Chambers [47]. In
[48], we used the method of scoring. Other papers investi-
gating estimates of this type are Whittle [49], Walker {50],
and Dzaparidze [51].

The power spectrum itself may now be estimated by
fxx(\; 8). This estimate will be asymptotically normal with
mean fyy(X; 0) and variance 277" Vfxx(X; 6)747(4 + B) -
A7 'Vfyx(\; 8) following the preceding asymptotic normal dis-
tribution for 6. In the case that we model the series by an
autoreyessive,\ scheme and proceed in the same way, the esti-
mate fyx(X; 0) has the character of the autoregressive estimate
of the previous section.

VIII. LINEAR MODELS
In some circumstances we may find ourselves considering a
linear time invariant model of the form

©

X(@)=p+ Y a(t- uw)S(u)+e)

u=-o

(26)

where the values X(¢), S(¢),t =0, 1, -+, T~ 1 are given, €(f)
is an unknown stationary error series with mean 0 and power
spectrum fee(A), the a(u) are unknown coefficients, u is an un-
known parameter, and S(¢) is a fixed function. For example,
we might consider the linear trend model

X(t)=u+at+e(r)

with u and @ unknown, and be interested in estimating fee(A).
Or we might have taken S(¢) to be the input series to a linear
filter with unknown impulse-response function a(u), v = 0,
+1, ' '+ in an attempt to identify the system, that is, to estimate
the transfer function A(A) = Z a(u) exp {-~i\u} and the a(u).
The model (26) for the series X(¢) differs in an important way
from the previous models of this paper. The series X(¢) is not
generally stationary, because EX(1) = + Za(r - u)S(u).

Estimates of the preceding parameters may be constructed
as follows: define

T~
aP = zl X(1) exp {-iAt}
t=0

with similar definitions for d§)(A), d7)(A). Then (26) leads
to the approximate relationship

T_
dP) = ):' exp {-iAe} + 402 +dP). 27
1=0

Suppose AX(T), - -+, N(T) = \ are as in Section IV. Then

dPNTN = a0 NT) +dDNTY  (28)
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forj=1,-,J. Following b) of Section IV, the d{)N(T))
are, for large T, approximately independent complex normal
variates with mean 0 and variance 27T/ (A). The approximate
model (28) is seen to take the form of linear regression. The
results of linear least-squares theory now suggest our considera-
tion of the estimates,

AT = Do 29
and
D) =R - $ROEN R
where

J —_—
=71 3 @y a{DNT)adNT))
j=t

with similar definitions for f,({?, f}TA), f;g:). The impulse re-
sponse could be estimated by an expression such as

_ Py 2mp -i2npu
@),y = p-1 (€] et —_
a‘' (u)=P pz A ( 7 ) exp { 7 }

for some integer P. In some circumstances it may be appro-
priate to taper the data prior to computing the Fourier trans-
form. In others it might make sense to base the Fourier
transforms on disjoint stretches of data in the manner of d) of
Section IV.

Under regularity conditions the estimate A(T)O\) may be
shown to be asymptotically complex normal with mean A(\)
and variance J ! fes(\)jég: J\! (see [20]). The degree of fit
of the model (26) at frequency A may be measured by the
sample coherence function

REIMI = 1RO ARO
satisfying
D) =11 - IREMIP1RN.

This function provides a time series analog of the squared
coefficient of correlation of two variates (see Koopmans
[52)).

The procedure of prefiltering is often essential in the estima-
tion of the parameters of the model (26). Consider a common

relationship in which the series X(t) is essentially a delayed
version of the series S(z), namely

X()=aS(t-v) +e(r)
for some v. In this case
A\ = aexp {-idv},
dFINTY) = a exp (iN(T}EDNT)) +aDN(T))
and

BV =ast 3 exp iN@WHEN(T))
i

+fOn). 30

If v is large, the complex exponential fluctuates rapidly about
0 as j changes and the first term on the right-hand side of (30)
may be near O instead of the desired a exp {-i\v} f_g)O\). A
useful prefiltering for this situation is to estimate v by ¥, the
lag that maximizes the magnitude of the sample cross-covari-
ance function, and then to carry out the spectral computations
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on the data X(z), S(t - 0), see Akaike and Yamanouchi [53]
and Tick [54]. In general, one should prefilter the X(¢) series
or the S(¢) series or both, so that the relationship between the
filtered series is as near to being instantaneous as is possible.

The most important use of the calculations we have described
is in the identification of linear systems. It used to be the case
that the transfer function of a linear system was estimated by
probing the system with pure sine waves in a succession of
experiments. Expression (29) shows, however, that we can
estimate the transfer function, for all A, by simply employing
a single input series S(#) such that Jég )()\) #0.

In some situations we may have reason to believe that the
system (26) is realizable that is a(u) = 0 for u < 0. The factor-
ization techniques of Wiener [36] may be paralleled on the
data in order to obtain estimates of 4(A), a(u) appropriate to
this case, see Bhansali [55]. In Section IX, we will discuss a
model like (26), but for the case of stochastic S(z).

Another useful linear model is

X()=019:(t) + - - + Ogdx (1) +€(t)

with ¢ (2), ", ¢x(¢t) given functions and 6, ', 8 un-
known. The estimation of these unknowns and f () is con-
sidered in Hannan [44] and Anderson [45]. This model
allows us to handle trends and seasonal effects.

Yet another useful model is

X(£)=p+p;sin (612 +a;)+- - +pg sin (Ot +ag) +€(2)

with g, py, 01,0, , px, 0k, ax unknown. The estimation
of these unknowns and f.(}) is considered in Whittle [49].
It allows us to handle hidden periodicities.

IX. VECTOR-VALUED CONTINUOUS SPATIAL SERIES

In this section we move on from a consideration of real-
valued discrete time series to series with a more complicated do-
main, namely p-dimensional Euclidean space, and with a more
complicated range, namely 7-dimensional Euclidean space. This
step will allow us to consider data such as: that received by an
array of antennas or seismometers, picture or TV, holographic,
turbulent field.

Provided we set down our notation judiciously, the changes
involved are not dramatic. The notation that we shall adopt
includes the following: boldface letters such as X, a, 4 will
denote vectors and matrices. 47 will denote the transpose of a
matrix 4, tr A will denote its trace, det 4 will denote its de-
terminant. EX will denote the vector whose entries are the
expected values of the corresponding entries of the vector-
valued variate X. cov {X, Y} = E{(X - EXXY - EY)"} will
denote the covariance matrix of the two vector-valued variates
X, Y (that may have complex entries). ¢, u, A will lie in p-
dimensional Euclidean space, RP, with

t=(t,,--~,tp) dt=dt;- - dtp
u=(u,,"',up) du=du,"'dup
A=, Ap) dh=dNcrd),

N D=NMfte N0,
AW =Nug+- -+ 2,
lul = uf +- -+ u)'f?
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The limits of integrals will be from -0 to o, unless indicated
otherwise.

We will proceed by paralleling the development of Sections
IIT and IV. Suppose that we are interested in analyzing mea-
surements made simultaneously on 7 series of interest at loca-
tion t, for all locations in some subset of the hypercube
0<t, ", tp < T. Suppose that we are prepared to model
the measurements by the corresponding values of a realization
of an r vector-valued stationary continuous spatial series X(z),
t ERP. We define the mean

ex =EX(1)
the qutocovariance function
exx(u) = cov {X(t +u), X(t)}
and the spectral density matrix

fxx(l)=(21r)'pfexp i\ wexx(u)du, XERP (31)

in the case that the integral exists. (The integral will exist
when well-separated values of the series are sufficiently weakly
dependent.) The inverse of the relationship (31) is

exx(w) = fexp {i(\, D} fxx(@) da. (32)

X()=>Y(t)= Ja(t - u)X(u)du
be a linear filter carrying the r vector-valued series X(¢) into
the s vector-valued series Y(¢). Let

AN = |a) exp {~i(), v} du

denote the transfer function of this filter. Then the spectral
density matrix of the series ¥Y(¢) may be seen to be

Fry) = AN fxxWAQN)". (33)

As in Section III, expressions (32) and (33) may be combined
to see that the entry in row j, column k of the matrix fxx(A)
may be interpreted as the covariance of the series resulting
from passing the jth and kth components of X(z) through nar-
row band-pass filters with transfer functions 4 (@) = 8(a - A).
The series has a Cramér representation
X(t)= |exp {ila, N} dZx(a)
where- Zy()) is an 7 vector-valued random function with the
properties
EdZx(\)=8\)ex dA
cov {dZx(\), dZx ()} = 8(\ - Wfxx () dX du.

If Y(t) is the filtered version of X(z), then it has Cramér
representation

Y(t) = | exp {ile, } A(a) dZx(x).
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We turn to a discussion of useful computations when values
of the series X(¢) are available for ¢ in some subset of the
hypercube 0 < #;,* ", 7, <T. Let ¢(T)(t) be a data window
whose support (that is the region of locations where ¢(T){I{; *
0) is the region of observation of X(¢). (We might take ¢\ ()
of the form ¢(z/T) where ¢(t) = 0 outside 0 <15, "+, 1, <1.)
We consider the Fourier transform

aPo) = J‘ X167 exp {-idN, 0} dt

based on the observed sample values.

Before indicating an approximate large sample distribution
for dy (), we must first define the complex multivariate
normal distribution and the complex Wishart distribution. We
say that a vector-valued variate X, with complex entries, is
multivariate complex normal with mean 0 and covariance
matrix_Z when it has probability density proportional to
exp {-X"27'X}. We shall say that a matrix-valued variate is
complex Wishart with n degrees of freedom and parameter z
when it has the form X, X{ + - + X,X,], where X;, "', X,
are independent multivariate complex normal variates with
mean 0 and covariance matrix Z. In the one dimensional case,
the complex Wishart with n degrees of freedom is a multiple of
a chi-squared variate with 2n degrees of freedom.

In the case that well-separated values of the series X(t) are
only weakly dependent, the df)(k) have useful asymptotic
properties as T => o, These include:

a') d}}"(o) is asymptotically multivariate normal with mean
F4X7) dt e and covariance matrix (21 f 6TX)? dt fxx(0);

b') forA#0, d}rr)()\) is asymptotically multivariate complex
normal with mean 0 and covariance matrix

(2ny f DXty dt fx s

¢) for M(T) > X\ # 0, with M(T) - A¥(T) not tending to 0
too rapidly, 1 € j < k < J, the variates d{ O NN(T)), ",
di,T)O\ (T)) are asymptotically independent multivariate com-
plex normal with mean 0 and covariance matrix

@ny f XY de fxx(N);

) if of()¢{ ) = 0, forall 1, 1 <j<k <J,and if A#0
the variates

aPan= f X(©)¢§Tt) exp {-i(, 1} at (34)

j=1,--,J are asymptotically independent multivariate com-
plex normal with mean 0 and respective covariance matrices
@rP [¢Te, 1) dt fyx ), j =1, , .

Specific conditions under which these results hold are given
in Section XV. A proof is given in the Appendix.

Results a'), b") are forms of the central limit theorem. In
result d') the Fourier transforms are based on values of X(¢)
over disjoint domains, It is interesting to note, from c') and
d') that asymptotically independent statistics may be obtained
by either taking the Fourier transform at distinct frequencies
or at the same frequency, but over disjoint domains.
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Result a') suggests estimating the mean cy by
fxm«»‘”(:) ar
P et

Tty ar

(35)

Result b") suggests the consideration of the periodogram matrix
-1 o
o= czu)"’( f ¢ ry? dr) aPnaPa  (36)

as an estimate of fyx(\) when A # 0. From b') its asymptotic
distribution is complex Wishart with 1 degree of freedom and
parameter fyx(A). This estimate is often inappropriate because
of its instability and singularity. Result c’) suggests the con-
sideration of the estimate

J .
R =s1 7: IRNTY) 37
=1

where J is chosen large enough to obtain acceptable stability,
but not so large that the estimate becomes overly biased.
From c') the asymptotic distribution of the estimate (37) is
complex Wishart with J degrees of freedom and parameter
fxx(\). In the case J = 1 this asymptotic distribution is that
of fxx(\x37/2J. Result d') suggests the consideration of the
periodogram matrices

-1
5o = (21r)'P( f 8P dr) a0 a1 (38)

j=1,-+-,J as estimates of fxyy(A), A5 0. The estimate

J
FRO=I1 3 IR0 D) (39)

=1
will have as asymptotic distribution J™! times a complex
Wishart with J degrees of freedom and parameter fyx(A) fol-
lowing result d'). We could clearly modify the estimates (37),
(39) by using a finer spacing of frequencies and by averaging
periodograms based on data over nondisjoint domains. The
exact asymptotic distributions will not be so simple in these
cases.

The method of fitting finite parameter models, described in
Section VII, extends directly to this vector-valued situation.
Result b') suggests the replacement of the likelihood function
(25) by

2ms \™!
1 detfxx(?s;e)

0<5<Sj
@ (278 2ms \™!
“exp 1-tr I§Q (—T—)fxx(—;; 0) } (40)

in this new case for some large values Sy,"**, S, such that
there is little power left beyond th,g cutoff frequency
(278,/T, -+, 2nS8p/T). Suppose that § is the value of
leading to the maximum of (40). Under regularity conditions,
we can show that § is asymptotically normal with mean § and
covariance matrix 277 "4 "4 + B)A™" where if A, By are
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rowj,column k of 4, B

SIT apa) f ()
= A rtay? 8 eyt
Ajx J; tr ae, fla)y 205 fla)? da

2nS/T
By = j XX T Capfl@Coa(Baveala, ~a,-H)
0 a b ¢ d

+dadf
with Cppj(a) the entry in row @ column b of
of(a)
06;

In a number of situations we find ourselves led to consider
an (r + 5) vector-valued series,

[s(r)]
X()

satisfying a linear model of the form

flay™? flay™.

41

E{X(t)|S(u),u€RP}=u +fa(t - u)S(u) du (42)

for some s vector 4 and some s X r matrix-valued function
a(u). The model says that the average level of the series X(¢)
at position ¢, given the series S(1), is a linear filtered version of
the series S(#). If (41) is a stationary series and if A()) is the
transfer function of the filter a(u), then (42) implies

(43)
(44)

cx =u+A(0)cy
Txs() = AN fes(A).
If we define the error series €(t) by

e(r)=X(t)-p- fa(r - u)S(u) du

then the degree of fit of the model (42) may be measured by
the error spectral density

feeQ) =Fxx ) - frsMfss V) Fox (V). (45)
The relationships (43)(45) suggest the estimates
A = rPoor ™ (46)
ﬂ(T) - cg') -4 (T)(O)cgn @7
10 =R - 1R NPN @)

respectively. The asymptotic distributions of these statistics
are given in [26].

If there is a possibility that the matrix £§5 XA) might become
nearly singular, then we would be better off replacing the esti-
mate (46) by a frequency domain analog of the ridge regression
estimate (Hoerl and Kennard {56], Hunt [57]), such as

FEOUE) + a1t @9

for some k > 0 and I the identity matrix. This estimate in-
troduces further bias, over what was already present, but it is
hoped that its increased stability more than accounts for this.
In some circumstances we might choose k to depend on A and
to be matrix-valued.
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X. ADDITIONAL RESULTS IN THE SPATIAL SERIES CASE

The results of the previous section have not taken any essen-
tial notice of the fact that the argument ¢ of the random func-
tion under consideration is multidimensional. We now indicate
some new results pertinent to the multidimensional character.

In some situations, we may be prepared to assume that the
series X(t), t € RP, is isotropic, that is the autocovariance
function exx(u) = cov {X(¢ + u), X(1)} is a function of |u] only.
In this case the spectral density matrix fyy () is also rotation-
ally symmetric, depending only on |Al. In fact (see in Bochner
and Chandrasekharan [58, p. 69])

fxx(\) = (2n) PR G-PR J fulPl?
0

Ty Nl exxtw) dlul (50)

where Ji(¢) is the Bessel function of the first kind of order k.
The relationship (50) may be inverted as follows,

exx(u) = (2P [ @PP f DV

o
“J(p-2)p (N fxx (V) M.

The simplified character of fyx(A) in the isotropic case makes
its estimation and display much simpler. We can estimate it
by an expression such as

J
IS IR (s1)

j=1

where the N(T) are distinct, but with [M(T)| near [A|. There
are many more N(T) with [N(T)| near |\| than there are N (T)
with N(T') near A. It follows that we generally obtain a much
better estimate of the spectrum in this case over the estimate in
the general case. Also the number of N(7') with |[N(T)| near [l
increases as || increases. If follows that the estimate formed
will generally be more stable for the frequencies with [A] large.
Examples of power spectra estimated in this manner may be
found in Mannos [59].

Another different thing that can occur in the general p
dimensional case is the definition of marginal processes and
marginal spectra. We are presently considering processes
X(ty," ", t5). Suppose that for some n, 1 <n <p, we are
interested in the process with #5,, * *, fp fixed, say at 0, -,
0. By inspection we see that the marginal process X{(t;,* " *, t;,
0, *,0) has autocovariance function exx(uy, " * *, 14, 0, " *,
0). The spectral density matrix of the marginal process is,
therefore,

(2W)*j' : 'fox(ux,"',%, 0,::-,0)
“exp -y + 4 Aatt )} duy i
=f”ffxx(>q.'",?\mkm,"',kp)

' WUEERY: ) ¥

We see that we obtain the spectral density of the marginal
process by integrating the complete spectral density. The same
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remark applies to the Cramér representation for

X(tl,"',tmoy'"50)=J.'"J-eXP{i(tl)\l*'"""tn)\n)}

‘j.‘ .J deO\h' . ,kp)'

Vector-valued series with multidimensional domain are dis-
cussed in Hannan [44] and Brillinger [26].

XI. ADDITIONAL RESULTS IN THE VECTOR CASE

In the case that the series X(¢) is 7 vector-valued withr > 1,
we can describe analogs of the classical procedures of multi-
variate analysis including for example; i) partial correlation,
ii) principal component analysis, iii) canonical correlation anal-
ysis, iv) cluster analysis, v) discriminant analysis, vi) multi-
variate analysis of variance, and vii) simultaneous equations.
These analogs proceed from ¢') or d') of earlier section. The
procedures listed are often developed for samples from multi-
variate normal distributions. We obtain the time series pro-
cedure by identifying the dg)(k’(T)), j=1,---,Jor d§{T)()\, ),
j=0,"++,J - 1 with independent multivariate normals having
mean 0 and covariance matrix 27)° [ D)2 ar fxx(\) and
substituting into the formulas developed for the classical situa-
tion. For example, stationary time series analogs of correlation
coefficients are provided by the

Rix(N) = fix AN fieN)
~ cov {afDV, 00}/ Vvar 40 var 4N

the coherency at frequency X of the jth component with the
kth component of X(t), where fjko\) is the entry in row j,
column k of fyx(A) and d(T)(?\) is the entry in row j of d}((T oM
for j, k = 1, ,r. e parameter R;x() satisfies 0 <
IRjx(Q)| < 1 and is seen to provide a measure of the degree of
linear relationship of the series X;{(r) with the series Xy (?) at
frequency A. Its modulus squared, [R;x(A)I?, is called the
coherence. It may be estimated by

RPN = 500/ 7PN

where f’ir )(7\) is an estimate of f;; ().

As time series papers on corresponding multivariate topics,
we mention in case i) Tick [60], Granger [61], Goodman
[62], Bendat and Piersol [63], Groves and Hannan [64], and
Gersch {65]; in case ii) Goodman [66], Brillinger [67], [20],
and Priestley et al. [68]; in case iii) Brillinger [67], [20],
Miyata [69], and Priestley et al. [68];in case iv) Ligett [70];
in case v) Brillinger [20]; in case vi) Brillinger [71]; in case
vii) Brillinger and Hatanaka [72], and Hannanand Terrell [73].

Instead of reviewing each of the time series analogs we con-
tent ourselves by indicating a form of discriminant analysis
that can be carried out in the time series situation. Suppose
that a segment of the r vector-valued series X(¢) is available
and that its spectral density matrix may be any one of f{(A),
i=1,"+,1I. Suppose that we wish to construct a rule for
assigning X(z) to one of the f;(A).

In the case of a variate U coming from one of J multivariate
normal populations with mean 0 and covariance matrix Z;,

i=1 «++ T acamman dieccrimination nracednre ic tn define a
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discriminant score
-1 log det Z;- JUTZ'U

for the ith population and then to assign the observation U to
the population for which the discriminant score has the highest
value (see Rao [74, p. 488]). The discriminant score is essen-
tially the logarithm of the probability density of the ith
population.

Result 2) suggests a time series analog for this procedure. If
the s;ectral density of the series X(¢) is f;(A), the log density
of d§( )()\) is essentially

-log det f;(N) - tr EROVLV™

This provides a discriminant score for each frequency A. A
more stable score would be provided by the smoothed version

-7 log det £;(N) - tr FEOAV™

with f,g\)()\) given by (37) or (39). These scores could be
plotted against A for i = 1,---,7 in order to carry out the
required discrimination. In the case that the f;(A) are unknown,
their values could be replaced by estimates in (52).

(52)

XII. ADDITIONAL RESULTS IN THE CONTINUOUS CASE

In Section IX, we changed to a continuous domain in con-
trast to the discrete domain we began with in Section III. In
many problems, we must deal with both sorts of domains,
because while the phenomenon of interest may correspond to
a continuous domain, observational and computational con-
siderations may force us to deal with the values of the process
for a discrete domain. This occurrence gives rise to the com-
plication of aliasing. Let Z denote the set of integers, Z =
0, 1, - -. Suppose X(¢), t € RP, is a stationary continuous
spatial series with spectral density matrix fyx(A) and Cramér
representation

x0= f exp {ia, 1} dZx(@).

Suppose X(#) is observable only for ¢t € Z°. For these values
of ¢

Xt =

-, 7

exp {ie, £} D dZy(a+ 2m)).

jEZP
This is the Cramér representation of a discrete series with
spectral density matrix

Y fxxh+2m).
jezP

We see that if the series X(¢) is observable only for ¢ € Z?, then
there is no way of untangling the frequencies

N+2m, jEZP.

These frequencies are called the aliases of the fundamental
frequency A.

XIII. STATIONARY POINT PROCESSES

A variety of problems, such as those of traffic systems,
queues, nerve pulses, shot noise, impulse noise, and micro-
scopic theory of gases lead us to data that has the character of
times or positions in space at which certain events have oc-
rmrred We turn naw to indicatine how the farmnlas we have
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presented so far in this paper must be modified to apply to
data of this new character.
Suppose that we are recording the positions in p-dimensional
Euclidean space at which events of r distinct types occur. For
=1, ,7 let X{t) = Xi(t;, """, 1,) denote the number of
events of the jth type that occur in the hypercube (0, ;] X
+ X (0, tp] Let dXj(t) denote the number that occur in the
small hypercube (), t; +dt;] XX (5, 15 +dtP] Suppose
that joint distributions of variates such as dX(r 2 -, dX(%)
are unaffected by simple translation of ¢!, - - , we then say
that X(¢) is a stationary point process.
Stationary point process analogs of definitions set down
previously inciude

ex dt =E dX(t) (53)
cy is called the mean intensity of the process,
dCxx(u) dt = cov {dX(zr + u), dX (1)} (54)

fxx () = (2myP jexp {0, w} dCxx(u) (55)

rom [ [

. [exp {Aptp} - l]

M
CdZy vy ) Ap) (56)
dx(t) = f exp (i<}, O} dZy(\) dt (57)
E{aX()SW), u ERP} = {n + J' alt - u)dS<u)] a. (58)

This last refers to an {r + 5) vector-valued point process. It
says that the instantaneous intensity of the series X(¢) at posi-
tion ¢, given the location of all the points of the process S(u),
is a linear transtation invariant function of the process S(u).
The locations of the points of X(¢) are affected by where the
points of S(u) are located. We may define here a stationary
random measure de(?) by

de(t) =dX(t) - [u +J.a(t - u) dS(u)} dt. (59

We next indicate some statistics that it is useful to calculate

when the process X(¢) has been observed over some region.
The Fourier transform is now

a) =j ¢TIty exp {~i (), £} dX(2) (60)

for the data window ¢(T)(r) whose support corresponds to the

domain of observation. If r = 1 and points occur at the posi-
tions 7y, T2, * * ', then this last has the form

Ty exp (i, 70} + 0T Xr5) exp (1A, T2} + - -«

We may compute Fourier transforms for different domains in
which case we define

P, = j ¢e) exp {-iA, 1} dX(2). 61
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The change in going from the case of spatial series to the
case of point processes is seen to be the replacement of X(7) d¢
by dX(r). In the case that well-separated increments of the
process are only weakly dependent, the results a')-d’) of Sec-
tion IX hold without further redefinition,

References to the theory of stationary point processes in-
clude: Cox and Lewis [75], Brillinger [76], Daley and Vere-
Jones {77], and Fisher [78]. We remark that the material of
this section applies equally to the case in which dX(z) is a
general stationary random measure, for example with p,r =1,
we might take dX(r) to be the amount of energy released by
earthquakes in the time interval (7, ¢ + dr). In the next section
we indicate some results that do take note of the specific
character of a point process.

XIV. NEw THINGS IN THE POINT PROCESS CASE
In the case of a point process, the parameters cy, Cyx(u)
have interpretations further to their definitions (53), (54).
Suppose that the process is orderly, that is the probability that
a small region contains more than one point is very small.
Then, for small dt

¢jdt = EdXy(t) = Pr (there is an event of type j in (¢,¢ +dt]].

It follows that ¢; may be interpreted as the intensity with
which points of type j are occurring. Likewise, for u ¥ 0

dCj(u) dt = cov {dX;(r +u), dX, (1)}

= Pr [there is an event of typejin
(t+u, t+u+du] and an event of type k in
(t,t+dt]) - 1" dtdu,

It follows that
dCix(u) + cycx du
bad LAl . i Pr [event of sort f in

Ck (t+u,t+u+du] given an event

of sort k in (¢, ¢ + dt]]. (62)

In the case that the processes X;(¢) and X k(t) are independent,
expression (62) is equal to c;du.

If the derivative c,k(u) = dCjx(u)/du exists for u #* Qit is
called the cross-covariance density of the two processes in the
case J # k and the eurocovariance density in the case j = k. For
many processes

dCj(u) = c,& (u) du +cjj(u) du

and so the power spectrum of the process X;(¢) is given by

Sy =(2m? [Cj +fexp {-i(\, w} cjp(u) du].

For a Poisson process ¢j;(v) = 0 and sofxx(l) (2n) Pey.
The parameter (2m)Pfxx (0)/cx is useful in the classification
of real-valued point processes. From 1)

var X(T, -+, T)~ (2mPTPfxx (0).

It follows that, for large T, (2m)Pfxx (0)/cx is the ratio of the
variance of the number of points in the hypercube (0, T'}? for
the process X(7) to the variance of the number of points in the
same hypercube for a Poisson process with the same intensity
c¢x. For this reason we say that the process X(¢) is under-
dispersed or clustered if the ratio is greater than 1 and over-
dispersed if the ratio is less than 1.

The estimation procedure described in Section XI for models
with a finite number of parameters is especially useful in the
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point process case as, typically, convenient time domain
estimation procedures do not exist at all. Results of applying
such a procedure are indicated in [79].

XV. STATIONARY RANDOM SCHWARTZ DISTRIBUTIONS

In this section, we present the theory of Schwartz distribu-
tions (or generalized functions) needed to develop properties
of the Fourier transforms of random Schwartz distributions.
These last are important as they contain the processes dis-
cussed so far in this paper as particular cases. In addition they
contain other interesting processes as particular cases, such as
processes whose components are a combination of the processes
discussed so far and such as the processes with stationary in-
crements that are useful in the study of turbulence, see
Yaglom [80]. A further advantage of this abstract approach is
that the assumptions needed to develop results are cut back to
essentials. References to the theory of Schwartz distributions
include Schwartz [81] and Papoulis [82].

Let D denote the space of infinitely differentiable functions
on RP with compact support. Let § denote the space of in-
finitely differentiable functions on RP with rapid decrease,
that is such that if ¢(")(t) denotes a derivative of order g then

i (1+] t)"¢ @) >0 foralln,q.
tl—>oo

A continuous linear functional on 9 is called a Schwartz dis-
tribution or generalized function. The Dirac delta function
that we have been using throughout the paper is an example.
A continuous linear functional on 9 is called a tempered
distribution.

Suppose now that a random experiment is being carried out,
the possible results of which are continuous linear maps X
from 9 to L2(P), the space of square integrable functions for a
probability measure P. Suppose that r of these maps are col-
lected into an r vector, X(¢). We call X(¢) an r vector-valued
random Schwartz distribution. It is possible to talk about
things such as £ X(¢), cov {X(¢), X(¢)} in this case. Anim-
portant family of transformations on D consists of the shifts
SY defined by S“¢¢) = ¢(r + u), ¢, u € RP, The random
Schwartz distribution is called wide-sense stationary when

E X(S“9) = E X(¢)
cov {X(5¥9), X(§“¥} = cov {X(¢), X(¥)}

for all u € RP and ¢, Y € . It is called strictly stationary
when all the distributions of finite numbers of values are in-
variant under the shifts.

Let us denote the convolution of two functions ¢, ¥ € D by

¢ .p(z)=f¢(z- u) Y(u) du
and the Fourier transform of a function in § by the corre-
sponding capital letter
q>(7\)=f¢(u) exp {-i{\, ud} du

then we can set down the following Theorem.
Theorem 1: (Ito [83], Yaglom [80].) If X(¢),¢ € Disa
wide-sense stationary random Schwartz distribution, then

EX(@)=ex f o) dr 63)
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cov {X(9), X(Y)} = exx (9 * ¥ (64)

=f<l>(—a)\ll(—a)dex(a) (65)
and

X(¢)= f P(-a)dZx () (66)

where ¢y is an r vector, ¢ xx (") is an r X r matrix of tempered
distributions, Fxx () is a nonnegative matrix-valued measure
satisfying

f(l +lal) % dF yx(a) <oo (67)

for some nonnegative integer k, and finally Zx () is a random
function satisfying

EdZx(W)=8(\) cxd\ (68)
cov {dZx(N),dZx )} =8\ - u) dFxx () du.  (69)

The spatial series of Section IX is a random Schwartz dis-
tribution corresponding to the functional

X(¢)= | X()g(r) dt
for € D. The representations indicated in that section may
be deduced from the results of Theorem 1. It may be shown
that k of (67) may be taken to be O for this case.

The stationary point process of Section XII is likewise a
random Schwartz distribution corresponding to the functional

X(¢) =f¢(t) ax(r)

for ¢ € D. The representations of Section XII may be deduced
from Theorem 1. It may be shown that k of (67) may be
taken to be 2 for this case.

Gelfand and Vilenkin [84] is a general reference to the
theory of random Schwartz distributions. Theorem 1 is
proved there.

A linear model that extends those of (42) and (58) to the
present situation is one in which the (r + s) vector-valued sta-
tionary random Schwartz distribution

[ sw)]
X(9)

E{X@)ISW), Y€ D }=#j¢(t) dt+8(¢ *a)

satisfies

=p®(0) +fd>(-a)A (@) dZg(a). (70)
In the case that the spectral measure is differentiable this last
implies that

FxsM)=AN)fssN) (71)

suggesting that the system may be identified if the spectral
density may be estimated. We next set down a mixing assump-
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tion, before constructing such an estimate and determining its
asymptotic properties.

Given k variates Xy, "+, Xg let cum {X;," -+, Xy} denote
their joint cumulant or semi-invariant. Cumulants are defined
and discussed in Kendall and Stuart [85] and Brillinger [20].
They are the elementary functions of the moments of the
variates that vanish when the variates are independent, As
such they provide measures of the degree of dependence of
variates. We will make use of

Assumption 1. X(¢) is a stationary random Schwartz dis-
tribution with the property that for ¢;, - ,¢x € § and
ay, ", ag = 11...,,;}‘:2,3’...1

cum {X, (91), ", Xg ($0)} =J“ : J @, (-a'): -

c D (aF Dt +0 s +dF Y

Saeg@t, ) dat - da ! (72)

with
(L+ad [y ™M (L4 [T )R fy gy
. (al’... .ak-l)l<Lk

for some finite my, "+ ,myg_y, Lg.

In the case that the spectral measure Fxx (A) is differentiable,
relation (65) corresponds to the case k¥ = 2 of (72). The char-
acter of Assumption 1 is one of limiting the size of the cumu-
lants of the functionals of the process X(¢). It will be shown
that it is a form of weak dependence requirement, for func-
tionals of the process that are far apart in ¢, in the Appendix.
The function fg, ... (', " * *, A¥~') appearing in (72) is called
a cumulant spectrum of order k, see Brillinger [86] and the
references therein. From (66) we see that it is also given by

cum {dZ, ('), "+, dZg W)} =8 A1+ +2F)
'fa,"'nko\:l; cee, k"")d}\‘ e d)\k, (73)

The fact that it only depends on k - 1 arguments results from
the assumed stationarity of the process.

Let ¢{T)(s) = ¢(+/T) with ¢ € D. As an analog of the Fourier
transforms of Sections IX and XII we now define

dPN) =X (exp {-iA, )} o) (74)

for the stationary random Schwartz distribution X(¢). We can
now state the following theorem.

Theorem 2: If Assumption 1 is satisfied, if dS{T)(R) is given
by (74) and if T|N(T) - N¥(T)| > =, 1 < j< k <J, then
1)-4) of Section IX hold.

This theorem is proved in the Appendix. It provides a justi-
fication for the estimation procedures suggested in the paper
and for the large sample approximations suggested for the dis-
tributions of the estimates.

We end this section by mentioning that a point process with
events at positions 7x, ¥ = 1,* - * may be represented by the
generalized function

> 8(r- 1)
3

the sampled function of Section III may be represented by the
generalized function

S X(sGE-)

jame
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and that a point process with associated variate § may be
represented by

2 Sk8G-1x)
%

see Beutler and Leneman [87]). Mathéron [92] discusses the
use of random Schwartz distributions in the smoothing of maps.

XVI. HIGHER ORDER SPECTRA AND NONLINEAR SYSTEMS

In the previous section we have introduced the higher order
cumulant spectra of stationary random Schwartz distributions.
In this section we will briefly discuss the use of such spectra
and how they may be estimated.

In the case that the process under consideration is Gaussian,
the cumulant spectra of order greater than two are identically
0. In the non-Gaussian case, the higher order spectra provide
us with important information concerning the distribution of
the process. For example were the process real-valued Poisson
on the line with intensity ¢y, then the cumulant spectrum of
order k would be constant equal to cy(2m)! . Were the
process the result of passing a series of independent identically
distributed variates through a filter with transfer function
A(A), then the cumulant spectrum of order ¥ would be pro-
portional to

A AN A (AL - - oaET,

Such hypotheses might be checked by estimating higher cumu-
lant spectra.

An important use of higher order spectra is in the identifica-
tion of polynomial systems such as those discussed in
Wiener [88] and Brillinger [86] and Halme [89]. Tick [90]
shows that if S(¢) is a stationary real-valued Gaussian series, if
€(t) is an independent stationary series and if the series X(f)
is given by

X(1) =u+fa(r- u)S(u) du

+jjb(t -u,t-v)Su)S()dudv+e() (75)

then
fsx(N) =A(-Nfss)
fssx\, 1) = 2B(-\, ~u)fss(N) fss ()

where

AN = | a(u) exp {-i\u}du

B(R,u)=fjb(u, v) exp {-i(\u + )} du dv

and fggx(A, ) is a third-order cumulant spectrum. It follows
that both the linear transfer function A(A) and the bitransfer
function B(A, ) of the system may be estimated, from
estimates of second- and third-order spectra, following the
probing of the system by a single Gaussian series. References
to the identification of systems of order greater than 2, and
to the case of non-Gaussian S(7) are given in [86].

We turn to the problem of constructing an estimate of a kth
order cumulant spectrum. In the course of the proof of
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Theorem 2 given in the Appendix, we will see that

(zﬂ)P(k-l)f¢(T)(,)k d‘fay--ako\l! cee

cum {a{DQAY), -, dfD )} ~

0,
Suppose that no proper subset of A!,- -, A¥ sums to 0. It

then follows from the principal relation connecting moments
and cumulants that

E{a(D" - -aDaky} ~ (211)1’("")_[45(7)(:)"

“dt fy g (AL, N
provided A! +--++Af =0, This last one suggests the use of
kth order periodogram

-1
T; RN 2 T -p (k- T) ok
KD O, N = 2my P ®-) (f¢‘ ) d:)

d;,T)()\l) AN d;:z; (Kk-l)

X dﬁ:)(')\l I ) (76)
as a naive estimate of the spectrum f, ... ak(h‘, A pro-
vided that no proper subset of A!, - -, A*"! sums to 0. From
what we have seen in the case k = 2 this estimate will be un-
stable. It follows that we should in fact construct an estimate
by smoothing the periodogram (76) over (k - 1)—tuples of fre-
quencies in the neighborhood of A!,- -+, ¥~ but such that
no proper subset of the (k - 1)-tuple sums to 0. Details of this
construction are given in Brillinger and Rosenblatt [91] for
the discrete time case. We could equally well have constructed
an estimate using the Fourier transforms d&T)(k, 7) based on
disjoint domains.

APPENDIX

We begin by providing a motivation for Assumption 1 of
Section XIV. Suppose that

cum {Xg (91)," "+, Xg (8},

is continuous in each of its arguments.
multilinear functional it can be written

Cayray(tr @2 @+ Dty

where ¢g, ...q, is a Schwartz distribution on D(RP¥), from the
Schwartz nuclear theorem. If the process is stationary this
distribution satisfies

¢l’...

Being a continuous

€D

Cg, o (5901 @S5G, @+ @SUpy) =g, g
(31 ®¢; @ @y).

It follows that it has the form

e(fﬂt+ux,'",t+u"'l,r)dt)

for ¢ € D(RP¥) where € is 2 distribution on 9 (RP % -1)),
Now consider the case in which the process X(¢) has the
property that

cum {Xg, (1), " ", Xy (1)} =0
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IR N S N R

AT+ # AR,

when the supports of ¢, -, §x, are farther away from that
of ¢ than some number p. This means that the distribution €
has compact support. By the Schwartz-Paley-Wiener theorem,
€ is, therefore, the Founer transform of a function of slow
growth, say fy ..., (A", A*-1y and we may write the rela-
tion (72). In the case that values of the process X(¢) at a dis-
tance from each other are only weakly dependent, we can ex-
pect the cumulant to be small and for the representation (72)
to hold with (73) satisfied.
Proof of Theorem 2: We see from (66) and (73)

cum {d{PA\Y), - <+, d{DN)}

J- I &Mt - Y-

&T) (&k 1. kk l)(p(T)

cat- =N g @t dF
<+ doF!
=Tﬂf....[q,l(ﬁl)...q,k_,(ﬁk-l)(pk
Bl BT TN N Sy gy
T T e BT TR gt gt

~Tpf. . J. q’x(ﬁl)' "q)k—x(ﬁk—!) q,k(_ﬁl - .._5’&-1)

B gy g AT,
forA' +-- 2% =0
=0(TP), forA' +---+2k %0,

It follows from this last that the standardized joint cumulants
of order greater than 2 tend to 0 and so the Fourier transforms
are asymptotically normal.
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Solid-State Control of Electric Drives
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Abstract—A tutorial review of thcdcandacelecmc-dnveﬁddnpw
sented. The goal is to p fu
eu'm.mdkeydaelopmenumdecuic-dﬂutechnology Ptinciples
of ac and dc power converters and ac and dc motors are presented.
Then the combination of the coaverter and motor to provide a com-
plete drive system is discussed along with drive-system characteristics
and methods for pexformance. Finally, some application
guidelines for both ac and dc systems are given.

I. INTRODUCTION

HE GROWTH of electric drives has closely paralleled
I the growth of automation in industry. Electric-drive
systems provide a convenient means for controlling the
operation of industrial machinery. The high reliability and
great versatility of electric drives has resulted in their wide-
spread application. In size, electric drives range all the way
from fractions of one horsepower up to thousands of horse-
power. Speeds range from stalled positioning systems up to
15 000 rev/min and higher.

Historically, the first electric-drive system to gain real prom-
inence was the Ward Leonard System, patented by H. Ward
Leonard in the 1890’. The history of dc electric drives pro-
ceeded from the basic Ward Leonard principle to various modi-
fications thereof, in approximately the following steps:

1) rheostat control of generator field;

2) tandem field rheostat control of generator field and

motor field;
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3) thyratron control of generator and motor fields and later
thyraton control of the armature voltage of small dc
motors;

4) ignitron and mercury pool control of the armature voltage
of dc machines too large for thyratrons;

5) magnetic amplifier control of generator field and motor
armature voltage; and

6) thyristor control of generator and motor fields and later
thyristor control of armature voltage.

During the latter part of the era of the thyratron, the tran-
sistor started to replace vacuum tubes in drive regulators.
Now solid-state electronic circuits are used to implement
special compensating circuits that significantly improve feed-
back control system response. Microelectronic circuits, par-
ticularly operational amplifiers, are used extensively in drive
systems today. The operational amplifier circuits are the key
to drive-gsystem response, stability, and regulation.

The ac motor variable speed drive development is very sim-
ilar to the dc.

Initially, the motor alternator set with field rheostats was
used to control the ac motor speed. Then other methods of
ac motor control were developed. They are as follows:

1) wound rotor resistance control to vary speed with torque

load;

2) methods of replacing the resistor in the rotor with other
rotating machinery or rectifiers to pump the power back
into the ac line;

3) ac motor stator voltage control by the use of resistors,
reactors, magnetic amplifiers, thyratrons, ignitrons, mer-
cury-pool tubes or thyristors; and

4) replacement of the motor-aiternator set for varying volt-
age and frequency to the motor with static devices.
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