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SOME ANALYSES OF VARIANCE

The General Linear Hypothesis

Let Y = X β + W with Y , X , β, W of dimensions n ×1, n ×p , p ×1, n ×1 respec-

tively and the entries of W being IN (0,σ2) Suppose r (X ) = r .

Consider the (composite) null hypothesis H 0 : P T β = 0 with r (P ) = q .

Let β̂* denote the estimate of β when H 0 holds. By a Lagrange multiplier argu-

ment it is seen to satisfy

X T X β̂* + P λ = X T Y

P T β̂* = 0

Because X β̂* , X (β̂−β̂* ) and Y −X β̂ are mutually orthogonal one has the anova identity

 Y T Y  2 =  X β̂*  2 +  X (β̂ − β̂* ) 2 +  Y − X β̂ 2 (1)

with degrees of freedom breakdown

n = (r −q ) + q + (n −r )

The components in (1) might be called "Total", "Reduced model", "Hypothesis",

"Residual" respectively. The null hypothesis may be examined via

F =
 Y − X β̂ 2⁄(n −r )

 X (β̂ − β̂* ) 2⁄q_ ________________

which, under H 0, has an F distribution with degrees of freedom q and n −r .

Some particular cases.

1. Single Sample

Consider the model Yi = µ + Wi for i =1,...,n and the null hypothesis H 0 : µ = 0.
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The identities become

i
ΣYi

2 = nY 2 +
i
Σ(Yi −Y )2 (2)

n = 1 + (n −1)

and the F -statistic

F =
S 2

nY 2
_ ___ = t 2

2. d-sample/Single Factor

Consider the model Yki = µk + Wki for i =1,...,nk and k =1,...,d and the null

hypothesis H 0 : µk = µ for all k . Writing µk = µ + βk for k =1,...,d with β1=0 the

hypothesis become H 0 : βk = 0 for k =2,...,d .

The identities become

k
Σ

i
ΣYki

2 =
k
Σ

i
ΣY 2 +

k
Σ

i
Σ(Y k −Y )2 +

k
Σ

i
Σ(Yki −Y k )2 (3)

n = 1 + (d −1) + (n −d )

and the F -statistic

F =

k
Σ

i
Σ(Yki −Y k )2⁄(n −d )

k
Σ

i
Σ(Y k −Y )2⁄(d −1)

_ _________________

3. Single Factor With Covariate

Consider the model Yki = µk + γ(xki −x ) + Wki for i =1,...,nk and k =1,...,d . Con-

sider the null hypothesis H 0 : µk = µ for k =1,...,d .

The identities become

k
Σ

i
ΣYki

2 = nY 2 + γ̂*
2

k
Σ

i
Σ(Xki −X   )2 +

k
Σ

i
Σ[Y k +γ̂(Xki −X   k )−Y −γ̂* (Xki −X   )]2 +

k
Σ

i
Σ[Yki −Y k −γ̂(Xki −X   k )]2

n = 1 + 1 + (d −1) + (n −d −1)
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The F -statistic is the ratio of the last two terms in (4) standardized by their degrees of

freedom.

4. Two Factors With Equal Replicates

Consider the model Yjki = µjk + Wjki for j =1,...,J k =1,...,K and i =1,...,I . A

basic identity here is

j
Σ

k
Σ

i
ΣYjki

2 =
j
Σ

k
Σ

i
ΣY ..

2 +
j
Σ

k
Σ

i
Σ(Y j. −Y ..)

2 +
j
Σ

k
Σ

i
Σ(Y   .k −Y ..)

2 +
j
Σ

k
Σ

i
Σ(Y jk −Y j. −Y .k +Y ..)

2 +
j
Σ

k
Σ

i
Σ(Yjki −Y jk )2

Also

IJK = n = 1 + (J −1) + (K −1) + (J −1)(K −1) + I (J −1)(K −1)

Writing µ jk =µ+α j +βk +γjk with α1,β1,γj 1,γ1k = 0 the null hypothesis of no interaction

is H 0 : γjk = 0. The F -statistic is the ratio of the last two terms in (5) standardized by

their degrees of freedom.

5. Two Factors, One Replicate

Consider the model Yjk = µ+αj +βk +Wjk for j =1,..,J k =1,...,K with α1,β1=0.

Consider the null hypotheses H 0 : αj =0 and H 0′ : βk =0. A basic identity is

j
Σ

k
ΣYjk

2 =
j
Σ

k
ΣY ..

2 +
j
Σ

k
Σ(Y j. −Y ..)

2 +
j
Σ

k
Σ(Y .k −Y ..)

2 +
j
Σ

k
Σ(Yjk −Y j. −Y .k +Y ..)

2 (6)

Also

JK = 1 + (J −1) + (K −1) + (J −1)(K −1)

The F -statistic for H 0′ is the ratio of the last two terms in (6) standardized by their

degrees of freedom.
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