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Time series: a stretch of values on the same scale indexed by a time-like

parameter. The basic data and parameters are functions.

Time series take on a dazzling variety of shapes and forms, indeed there are as

many time series as there are functions of real numbers. Some common exam-

ples of time series forms are provided in Figure 1. One notes periods, trends,

wandering and integer-values. The time series such as those in the Figure may

be contemporaneous and a goal may be to understand the interrelationships.

Concepts and fields related to time series include: longitudinal data, growth

curves, repeated measures, econometric models, multivariate analysis, signal

processing and systems analysis.

The field, time series analysis, consists of the techniques which when applied

to time series lead to improved knowledge. The purposes include summary,

decision, description, prediction.
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Figure 1

Some different types of time series.
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The field has a theoretical side and an applied side. The former is part of the

theory of stochastic processes (e.g. representations, prediction, information,

limit theorems) while applications often involve extensions of techniques of

”ordinary” statistics e.g. regression, analysis of variance, multivariate analy-

sis, sampling. The field is renowned for jargon and acronyms - white noise,

cepstrum, ARMA, ARCH, see Granger [16].

1 Importance

”... but time and chance happeneth to them all.” Ecclesiastes

Time series ideas appear basic to virtually all activities. Time series are used

by Nature and humans alike for communication, description and visualisation.

Because time is a physical concept, parameters and other characteristics of

mathematical models for time series can have real-world interpretations. This

is of great assistance in the analysis and synthesis of time series.

Time series are basic to scientific investigations. There are: circadian rhythms,

seasonal behaviors, trends, changes and evolving behavior to be studied and

understood. Basic questions of scientific concern are formulated in terms of

time series concepts - Predicted value? Leading? Lagging? Causal connection?

Description? Association? Autocorrelation? Signal? Seasonal effect? New phe-

nomenon? Control? Periodic? Changing? Trending? Hidden period? Cycles?

Because of the tremendous variety of possibilities, substantial simplifications
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are needed in many time series analyses. These may include assumptions of

stationarity, mixing or asymptotic independence, normality, linearity. Luckily

such assumptions often appear plausible in practice.

The subject of time series would be important if for no other reason than

that it provides means of examining the basic assumption of statistical inde-

pendence invariably made in ordinary statistics. One of the first commonly

used procedures for this problem was the Durbin-Watson test [11]. The au-

tocovariance and spectrum functions, see below, are now often used in this

context.

2 History

Contemporary time series analysis has substantial beginnings in both the

physical and social sciences. Basic concepts have appeared in each subject

and made their way to the other with consequent transfer of technology. His-

torical researchers important in the development of the field include: Thiele

[29], Hooker [26], Einstein [12], Wiener [41], Yule [44], Fisher [15], Tukey [38],

Whittle [40], Bartlett [2]. Books particularly influential in the social sciences

include Moore [31] and Davis [8]. Nowadays many early analyses appear naive.

For example, Beveridge in 1920 listed some 19 periods for a wheat price in-

dex running from 1500 to 1869 [3]. It is hard to imagine the presence of so

much regular behavior in such a series. When statistical uncertainty is esti-

mated using later day techniques most of these periods appear insignificant,
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Figure 2

The dashed lines provide 95 percent bounds about a central curve.

see the periodogram with 95 percent error bounds in Figure 2. Many historical

references are included in Wold [43].

Historians of science have made some surprising discoveries concerning early

work with time series. An example is presented in Tufte [37]. He shows a time

series plot from the 10th or 11th century AD. This graph is speculated to

provide movements of the planets and sun. It is remarkable for its cartesian

type character. More generally Tufte remarks, following a study of newspapers

and magazines, that ”The time-series plot is the most frequently used form of

graphic design.” Casual observation certainly supports Tufte’s study.
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Important problems that were addressed in the twentieth century include: sea-

sonal adjustment, leading and laging indicators and index numbers. Paradigms

that were developed include:

series = signal + noise

series = trend + seasonal + noise

series = sum of cosines + noise

series = regression function + noise

These conceptualizations have been used for forecasting, seasonal adjustment

and description amongst other things. There are surprises, e.g. ordinary least

squares is surprisingly efficient in the time series case, see Grenander and

Rosenblatt [19]. Other books from the 1950s and 1960s that proved important

are Blackman and Tukey [4], Granger and Hatanaka [18], Box and Jenkins [5].

Important papers from the era include: Akaike [1], Hannan [22], Parzen [33].

An important development that began in the 1950s and continues today is

the use of recursive computation in the state space model, see Kalman [27],

Harvey [23], Shumway and Stoffer [35] and Durbin and Koopman [10].
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3 Basics

3.1 Concepts

There are a number of concepts that recur in time series work. Already defined

is the time series, a stretch of values on the same scale indexed by a time

parameter. The time parameter may range over the positive and negative

integers or all real numbers or subsets of these. Time series data refers to

a segment of a time series. A time series is said to have a trend when there

is a slowly evolving change. It has a seasonal component when some cyclic

movement of period one year is present. (The period of a cyclic phenomenon

is the amount of time for it to repeat itself. Its frequency is the reciprocal of

the period.)

There is an algebra of mathematical operations that either Nature or an an-

alyst may apply to a time series {X(t)} to produce another series {Y (t)}.

Foremost is the filter, or linear time invariant operation or system. In the

case of discrete equi-spaced time this may be represented as

Y (t) =
∑

u

a(u)X(t− u)

t, u = 0,±1, ... An example is the running mean used to smooth a series. The

functions X(.), Y (.) may be vector-valued and a(.) may be matrix-valued. In

the vector-valued case feedback may be present. The sequence {a(u)} is called

the impulse response function. The operation has the surprising property of
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taking a series of period P into a series of the same period P . The filter is

called realizable when a(u) = 0 for u < 0. Such filters appear in causal

systems and when the goal is prediction.

The above ideas concern both deterministic and random series. The latter

prove to be important in developing solutions to important problems. Specif-

ically it often proves useful to view the subject of time series as part of the

general theory of stochastic processes, that is indexed families of random vari-

ables. One writes {Y (t, ω), t in V }, with ω a random variable and V a set of

times. Time series data are then viewed as a segment, {Y (t, ω0), t = 0, ..., T−1}

of the realization labelled by ω0, the obtained value of ω. Stochastic time se-

ries {Y (t), t = 0,±1,±2, ...} are sometimes conveniently described by finite

dimensional distributions such as

Prob{Y (t) ≤ y} and Prob{Y (t1) ≤ y1, Y (t2) ≤ y2}

This is the case for time series values with joint normal distributions.

Time series may also be usefully described or generated by stochastic models

involving the independent identically distributed random variables of ordinary

statistics.

Stochastic models may be distinguished as parametric or nonparametric. Basic

parameters of the nonparametric approach include: moments, joint probability

and density functions, mean functions, autocovariance and crosscovariance

functions, power spectra.
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One basic assumption of time series analysis is that of stationarity. Here the

choice of time origin does not affect the statistical properties of the process.

For example the mean level of a stationary series is constant. Basic to time

series analysis is handling temporal dependence. To this end one can define

the crosscovariance function of the series X and Y at lag u as the covariance

of the values X(t + u) and Y (t). In the stationary case this function does

not depend on t. In an early paper, [26], Hooker computed an estimate of

this quantity. Another useful parameter is the power spectrum, a display of

the intensity or variability of the phenomenon versus period or frequency. It

may be defined as the Fourier transform of the autocovariance function. The

power spectrum proves useful in displaying the serial dependence present, in

discovering periodic phenomena and in diagnosing possible models for a series.

In the parametric case there are the autoregressive moving average (ARMA)

series. These are a regression-type models expressing the value Y (t) as a linear

function of a finite number of past values Y (t−1), Y (t−2), ... of the series and

the values ε(t), ε(t− 1), ... of a sequence of independent identically distributed

random variables. ARMAs have proved particularly useful in problems of fore-

casting.

Contemporary models for time series are often based upon the idea of state.

This may be defined as the smallest entity summarizing the past history of the

process. There are two parts to the state space model. First, a state equation

that describes how the value of the state evolves in time. This equation may
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contain a purely random element. Second there is an equation indicating how

the available measurements at that time t come from the state value at that

time. It too may involve a purely random element. The concept of the state

of a system has been basic to physics for many years in classical dynamics

and quantum mechanics. The idea was seized upon by control engineers, e.g.

Kalman [27] in the late fifties. The econometricians realized its usefulness in

the early eighties, see Harvey [23].

A number of specific probability models have been studied in depth, including

the Gaussian, the ARMA, the bilinear [17], various other nonlinear [36], long

and short memory, ARMAX, ARCH [13], hidden Markov [30], random walk,

stochastic differential equations [20,34] and the periodically stationary.

A list of journals where these processes are often discussed is included at the

end of this entry.

3.2 Problems

There are scientific problems and there are associated statistical problems

that arise. Methods have been devised for handling these. The scientific prob-

lems include: smoothing, prediction, association, index numbers, feedback and

control. Specific statistical problems arise directly. Among these are including

explanatories in a model, estimation of parameters such as hidden frequencies,

uncertainty computation, goodness of fit and testing.
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Special difficulties arise. These include: missing values, censoring, measure-

ment error, irregular sampling, feedback, outliers, shocks, signal-generated

noise, trading days, festivals, changing seasonal pattern, measurement error,

aliasing, data observed in two series at different time points.

Particularly important are the problems of association and prediction. The

former asks the questions of whether two series are somehow related and what

is the strength of any association? Measures of association include: the cross-

corellation and the coherence functions. The prediction problem concerns the

forecasting of future values. There are useful mathematical formulations of this

problem but because of unpredictable human intervention there are situations

where guesswork seems just as good.

Theoretical tools employed to address the problems of time series analysis

include: mathematical models, asymptotic methods, functional analysis and

transforms.

4 Methods

4.1 Descriptive

Descriptive methods are particularly useful for exploratory and summary pur-

poses. They involve graphs and other displays, simple statistics such as means,

medians and percentiles and the techniques of exploratory data analysis, [39].
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The most common method of describing a time series is by presenting a graph,

see Figure 1. Such graphs are basic for communication and assessing a situa-

tion. There are different types. Cleveland, [7], mentions the connected, symbol,

connected-symbol and vertical-line displays in particular. Figure 1 presents

connected graphs.

Descriptive values derived from time series data include extremes, turning

points, level crossings and the periodogram. See Figure 2 for an example of

this last. Descriptive methods typically involve generating displays using ma-

nipulations of time series data via operations such as differencing, smoothing

and narrow band filtering.

A display with a long history, [28,43], is the Buys-Ballot table. Among other

things it is useful for studying the presence and character of a phenomenon

of period P such as a circadian rhythm. One creates a matrix with entry

Y ((i − 1)P + j) in row i, column j = 1, ..., P and then, for example, one

computes column averages. These values provide an estimate of the effect of

period P . The graphs of the individual rows may be stacked beneath each

other in a display. This is useful for discerning slowly evolving behaviour.

Descriptive methods may be time-side (as when a running mean is computed),

frequency-side (as when a periodogram is computed) or hybrid (as when a

sliding window periodogram analysis is employed).
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4.2 Parameter estimation

The way to a solution of many time series problems is via the setting down

of a stochastic model. Parameters are constants of unknown values included

in the model. They are important because substantial advantages arise when

one works within the context of a model. These advantages include: estimated

standard errors, efficiency and communication of results. Often parameter es-

timates are important because they are fed into later procedures, e.g. formulas

for forecasting.

General methods of estimating parameters include: method of moments, least

squares and maximum likelihood. An important time series case is that of

harmonic regression. It was developed in Fisher [15] and Whittle [40].

There are parametric and nonparametric approaches to estimation. The para-

metric has the advantage that if the model is correct, then the estimated

coefficients have considerably smaller standard errors.

4.3 Uncertainty estimation

Estimates without some indication of their uncertainty are not particularly

useful in practice. There are a variety of methods used in time series analysis

to develop uncertainty measures. If maximum likelihood estimation has been

used there are classic (asymptotic) formulas. The delta-method or method

of linearization is useful if the quantity of interest can be recognized to be a
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smooth functon of other quantities whose variability can be estimated directly.

Methods of splitting the data into segments, such as the jackknife, can have

time series variants. A method currently undergoing enjoying considerable

investigation is the bootstrap, [9]. The assumptions made in validating these

methods are typically that the series involved is stationary and mixing.

4.4 Seasonal adjustment

Seasonal adjustment may be defined as the attempted removal of obscuring

unobservable annual components. There are many methods of seasonal ad-

justment, [32], including state space approaches [23].

The power spectrum provides one means of assessing the effects of various

suggested adjustment procedures.

4.5 System identification

System identification refers to the problem of obtaining a description or model

of a system on the basis of a stretch of input to and the corresponding output

from a system of interest. The system may be assumed to be linear time

invariant as defined above.

In designed experiments the input may be a series of pulses, a sinusoid or

white noise. In a natural experiment the input is not under the control of the

investigator and this leads to complications in the interpretation of the results.
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System identification relates to the issue of causality. In some systems one can

turn the input off and on and things are clearer.

4.6 Computing

Important computer packages for time series analysis include: Splus, Matlab,

Mathematica, SAS, SPSS, TSP, STAMP. Some surprising algorithms have

been found: the fast Fourier transform (FFT), fast algorithms from computa-

tional geometry, Monte Carlo methods and the Kalman-Bucy filter. Amazingly

a variant of this last was employed by Thiele in 1880, [29], while the FFT was

known to Gauss in the early 1800s, [25].

5 Current theory and research

Much of what is being developed in current theory and research is driven by

what goes on in practice in time series analyses. What is involved in a time

series analysis? The elements include: the question, the experiment, the data,

plotting the data, the model, model validation and model use. The importance

of recognizing and assessing the basic assumptions is fundamental.

The approach adopted in practice often depends on how much data are avail-

able. In the case that there are a lot of data procedures that are in some

sense inefficient, are often used effectively. A change from the past is that

contemporary analysis often results from the appearance of very large fine

data sets. The amount of data can seem limitless as for example in the case
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of records of computer tasks. There are many hot research topics. One can

mention: exploratory data analysis techniques for very large data sets, so-

called improved estimates, testing (association? cycle present?), goodness of

fit diagnostics. There are the classical and Bayesian approaches, the paramet-

ric, semi-parametric and nonparametric analyses, the problem of dimension

estimation and that of re-expression of variables.

Current efforts include research into: bootstrap variants, long-memory pro-

cesses, long-tailed distributions, nonGaussian processes, unit roots, nonlin-

earities, better approximations to distributions, demonstrations of efficiency,

self-similar processes, scaling relationships, irregularly observed data, dou-

bly stochastic processes as in hidden Markov, cointegration, disaggregation,

cyclic stationarity, wavelets and particularly inference for stochastic differen-

tial equations.

Today’s time series data values may be general linear model type [14], e.g.

ordinal, state-valued, counts, proportions, angles, ranks. They may be vectors.

They may be functions. The time label t may be location in space or even a

function. The series may be vector-valued. The data may have been collected

in an experimental design.

There are some surprises: the necessity of tapering and prewhitening to reduce

bias, the occurrence of aliasing, the high efficiency of ordinary least squares es-

timates in the correlated case and the approximate independence of empirical
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Fourier transform values at different frequencies [6].

6 Future directions

It seems clear that time series research will continue on all the existing topics

as the assumptions on which any existing problem solution has been based

appear inadequate. Further it can be anticipated that more researchers from

nontraditional areas will become interested in the area of time series as they

realize that the data they have collected, or will be collecting, are correlated

in time.

Researchers can be expected to be even more concerned concerned with the

topics of nonlinearity, conditional heteroscedasticity, inverse problems, long

memory, long tails, uncertainty estimation, inclusion of explanatories, new

analytic models and properties of the estimates when the model is not true.

The motivation for the last is that time series with unusual structure seem to

appear steadily. An example is the data being collected automatically via the

World Wide Web. Researchers can be anticipated to be seeking extensions of

existing time series methods to processes with more general definitions of the

time label - spatial, spatial-temporal, functional, angular. At the same time

they will work on processes whose values are more general, even abstract.

More efficient, more robust and more applicable solutions will be found for

existing problems. Techniques will be developed for dealing with special dif-
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ficultes such as missing data, nonstationarity, outliers. Better approximations

to the distributions of time series based statistics will be developed.

Many have stressed the advantages of linear system identification via white

noise input. Wiener [42] stressed the benefits of using Gaussian white noise

input. This idea has not been fully developed. Indeed data sets obtained with

this input will continually yield to novel analytic methods as they make their

appearance.

The principal journals in which newly developed statistical methods for time

series are presented and studied include: J. Time Series Analysis, Annals of

Statistics, Stochastic Processes and Their Applications, J. American Statistical

Association, Econometrica, IEEE Trans. Signal Processing.
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