Homework 1.

1. (Problem 1.4 in Brockwell and Davis) Let $\{Z_t\}$ be a sequence of independent normal random variables, each with mean 0 and variance σ^2 , and let a, b, and c be constants. Which, if any, of the following processes are stationary? For each stationary process specify the mean and autocovariance function.

```
a. X_t = a + bZ_t + cZ_{t-2}
```

b.
$$X_t = Z_1 cos(ct) + Z_2 sin(ct)$$

c.
$$X_t = Z_t cos(ct) + Z_{t-1} sin(ct)$$

$$d. X_t = a + bZ_0$$

e.
$$X_t = Z_0 cos(ct)$$

$$f. X_t = Z_t Z_{t-1}$$

2. (Problem 1.7 in B and D). If $\{X_t\}$ and $\{Y_t\}$ are uncorrelated stationary sequences, i.e. if X_r and Y_s are uncorrelated for every r and s, show that $\{X_t + Y_t\}$ is stationary with autocovariance function equal to the sum of the autocovariance functions of $\{X_t\}$ and $\{Y_t\}$.

3. (Problem 1.11 in B and D). Consider the simple moving-average filter with weights $a_j = (2q+1)^{-1}, -q \le j \le q$.

a. If
$$m_t = c_0 + c_1 t$$
, show that $\sum_{j=-q}^q a_j m_{t-j} = m_t$.

b. If Z_t , $t=0, \pm 1, \pm 2, ...$, are independent random variables with mean 0 and variance σ^2 , show that the moving average $A_t = \sum_{j=-q}^q a_j Z_{t-j}$ is "small" for large q in the sense that $EA_t = 0$ and $Var(A_t) = \sigma^2/(2q+1)$.