Homework 5.

1. (A variant of problem 4.5 in the text). If \(\{X_t\} \) and \(\{Y_t\} \) are uncorrelated stationary sequences, i.e. if \(X_r \) and \(Y_s \) are uncorrelated for every \(r \) and \(s \), show that \(\{X_t + Y_t\} \) is stationary with spectral density function equal to the sum of the spectral density functions of \(\{X_t\} \) and \(\{Y_t\} \).

2. (Problem 4.6 in the text.) Let \(\{X_t\} \) be the process defined by

\[
X_t = A \cos(\pi t/3) + B \sin(\pi t/3) + Y_t
\]

where \(Y_t = Z_t + 2.5Z_{t-1}, \) \(\{Z_t\} \sim WN(0, \sigma^2) \), \(A \) and \(B \) are uncorrelated with mean 0 and variance \(\nu^2 \), and \(Z_t \) is uncorrelated with \(A \) and \(B \) for each \(t \). Find the autocovariance function and spectral distribution function of \(\{X_t\} \).