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Summary. This work derives and fits stochastic models to the trajectories

of mammals moving about in a heterogeneous landscape. The basic data

are locations of 53 Rocky Mountain elk (Cervus elaphus) estimated approx-

imately every two-hours for nine months. The elk roam about the Starkey

Experimental Forest and Range in eastern Oregon. Elk movements may be

affected by explanatory variables such as the locations of fences, of roads,

of cover, of water, of forage and other habitat characteristics. Wildlife bi-

ologists are interested in questions like how an elk’s movement relates to

such explanatories. In the work a model was developed in successive stages.
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First equations of motion were set down motivated by the idea of a potential

function. Then the functional parameters appearing in the equations were

estimated nonparametrically. Statistical questions arising involved how to

include explanatory variables in the equations and how to decide which vari-

ables are significant? Residual plots proved useful. Time of day was found to

play a fundamental role and distance to nearest road enters as well. Future

work will include other explanatories.

Key words: Circadian rhythm; Diffusion Model; Elk; Nonparametric Re-

gression; Potential Function; Stochastic Differential Equation; Telemetry

Data; Vector Field; Wildlife.

1. Introduction

In the late 1980’s Federal land managers began to examine more closely

the effects of forest management and domestic livestock grazing on Rocky

Mountain elk (Cervus elaphus) and mule deer (Odocoileus heminonus) in

National Forests. As part of this effort, the Starkey Project was initiated

in the Blue Mountains of northeastern Oregon within the 9000 ha fenced

area of the Starkey Experimental Forest and Range (Rowland et al. 1997).

Locations of elk, deer and cattle were continuously monitored for a 10-year

period to test a variety of hypotheses concerning the interactions of cattle,

elk, deer, and forest management. Of specific interest were the effects of

vehicular traffic, timber harvesting, and cattle grazing on patterns of habitat

use by elk and mule deer.

The problem of interest is the description of the movement of free-ranging

animals. In particular the trajectories or paths of Rocky Mountain elk in the

Starkey Forest are studied. Models of movement are useful tools to study
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the ecology of animal behavior and test ideas concerning foraging strategies,

habitat preferences, and the dynamics of population densities. Specific ques-

tions for large animals like elk include: What are the effects of phenomena

such as roads, cover, forage, time of day, season, and human disturbance?

How should one allocate forage amongst wild and domestic species? What is

the effect of vehicular traffic? Is change taking place? What is the sequence

of habitat use? Understanding the physical and biological mechanisms that

regulate animal movements is clearly a complex problem.

The data are spatial-temporal. The locations of M = 53 elk, (labelled by

m = 1, .., M , and recorded at times, tmk, k = 1, .., Km for the m-th animal)

are given as well as various explanatory variables describing vegetation and

topography. Other habitat features (e.g., distance to road, distance to wa-

ter) suspected to influence elk movement, are also available. The locations

are written as a column vector r = {Xm(tmk), Ym(tmk)}′, corresponding

to the UTM (Universal Transverse Mercator) coordinates of the k-th time

measurement of the m-th elk.

The approach developed in the work was to assume that the animals were

moving in accordance with stochastic differential equations

dr(t) = µµ{r(t), t}dt + ΣΣ{r(t), t}dB(t) (1)

Here µµ and ΣΣ are parameters and B is a random function such as a Brownian

or Levy process. The parameters and the Brownian process control the

direction and speed of motion. The effect of the fence, i.e. a barrier, about

the Starkey area lies in the functions µµ() and ΣΣ(). See the discussion in the

Appendix. With the dependence of the right-hand side of (1) on r(t), the

process {r(t)} while Markovian can be far from Gaussian.
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There may be points, lines or regions of attraction or repulsion as well

as the barriers to be included. The barriers can represent actual physical

objects (e.g., fences or very steep outcroppings). The process B can include

impulses due to the presence of objects such as trees, mounds, dips and natu-

ral variability corresponding to individual elk behavior. The fitted SDEs may

be used to predict spatial and temporal patterns of animal distribution and

habitat preferences, to simulate trajectories and to study the directionality

of the movement for example. Figures are presented in the paper providing

such results.

The paper includes in Appendix A a description of deterministic and

stochastic methods for describing the paths followed by particles under the

influence of a potential function. The next section provides some details

of the statistical methods employed. Section 3 describes the experiment in

which the data were collected. Section 4 presents results obtained. The final

section reviews some of the merits and limitations of the approach.

References presenting models for animal movement include Dunn and

Gipson (1977); Dunn and Brisbin (1985); Clark et al. (1993); Preisler and

Akers (1995); Brillinger and Stewart (1998). Likelihood functions may be

formulated via conditional densities and may be used to make inferences. The

sometimes-employed Fokker-Planck approach is to be contrasted with that

in the present and other papers, eg. Brillinger and Stewart (1998), Preisler

and Akers (1995), where stochastic equations are set down describing the

individual paths. If wished Fokker-Planck equations of desired order may

be derived from the SDE models, but the SDE approach leads directly to

residuals, simulation and likelihood, i.e. basic entities of statistical inference.
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2. The Statistical Methods Used

There are a variety of methods to approximate the SDE (1), Kloeden and

Platen (1995). A naive approximation is provided by writing

{r(tl+1)− r(tl)}/(tl+1 − tl) ≈ µµ{r(tl), tl} + ΣΣ{r(tl), tl}Zl/
√

tl+1 − tl (2)

l = 1, 2, .. with t1 < t2 < t3 < ... observation times and with the Z indepen-

dent bivariate standard normals having independent components. Expression

(2) follows from (1) directly. The validity of the approximation is investigated

in Kloeden and Platen (1995).

In terms of the individual components (X, Y ) of r one has the form (2)

∆X

∆t
= µx(X, Y, t) + noise,

∆Y

∆t
= µy(X, Y, t) + noise (3)

If the drift function components, µx, µy , are smooth and unknown, one has

a nonparametric regression estimation problem.

The principal tools employed in the work are smoothing methods and

residual plots. Estimates are provided of conditional longrun population

densities and of functions depending smoothly on time and location and

explanatories. There are a variety of nonparametric estimates including:

kernel-based, spline-based and local polynomial.

Kernel density estimates have been used to describe limits of animal move-

ments, the so-called home range or ultilization distribution, Worton (1989).

In the present work, time of day proves important and conditional density es-

timates are evaluated for selected times of day using kernel densities. When

an invariant distribution such as (A.1) below exists, conditional densities

may be estimated a second way by first estimating the potential function
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H from animal-trajectory data (Brillinger et al., 2000). The smoothing or

nonparametric regression procedure employed to estimate the parameters in

the SDEs is the function loess() of Cleveland et al. (1992) within the func-

tion gam() of Hastie (1992). The function loess() involves the local fitting of

quadratics in the explanatories.

In the work the motion of the animals is modelled by nonGaussian dif-

fusion processes of the form (1). References to inferential methods for diffu-

sion processes, both parametric and nonparametric, include Burgière (1993);

Sorensen (1997); Prakasa Rao (1999).

3. The Experiment

Radio telemetry studies began at Starkey Experimental Forest and Range in

1988. Each spring a number of elk, deer, and cattle are fitted with collars

containing Loran-C receivers. The collars are instructed to intercept Loran-

C broadcasts at regular intervals and then to relay those signals to a central

receiver. Locations are then estimated from the time delays. The mean

location error is about 50 m., Findholdt et al. (1996). The telemetry system

attempts to locate a different animal every 20 seconds. Because the Starkey

Reserve is large, it is assumed that the movements of animals are not unduly

affected by the perimeter fence enclosure.

The study area is also managed for a variety of public uses such as recre-

ation, hunting, forest management, cattle grazing, and other activities. An

extensive database was built describing vegetation, topography, and location

of roads, streams and other features relevant to the study of elk, Rowland et

al. (1997). The left panel of Figure 1 gives a planar view of the Starkey area

showing the cover and roads. Cover is defined as the location having more
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than 40% canopy cover in trees.

The basic data used in the work of this paper were collected for 53 female

elk between April 7 and November 15,1994. Observations were omitted for

30 days during the autumn of 1994 when hunting was conducted within

the project area. Preliminary analyses of these data showed some erratic

movements that were not typical of the rest of the year. Because velocities

calculated from short time intervals are strongly influenced by telemetry

error and since long time intervals generate uncertainty regarding the true

trajectories of elk, also omitted were movements where the time spacing

exceeded 1.5 hours or was less than 0.08 hours. The focus then became the

period of May 1 to July 15.

The right-hand panel of Figure 1 illustrates the successive estimated lo-

cations of one of the elk. This elk is seen to have roamed widely in Starkey.

This trajectory was selected as including basic features present in the ob-

served motion of all the elk. The trajectory plotted is a sequence of straight-

line segments and therefore jagged. This discreteness results from the fact

that location estimates are only available at scattered times. The ”islands”

within the figure corresponds to small elk-proof exclosures in the study area.

4. Results of Analyses

4.1 Some descriptive statistics

It is natural to imagine that an elk’s movements are dependent on both

time of day and on location and, indeed, the analyses presented confirm this.

Temporal dependence can be anticipated from the circadian rhythm (with

a period of 24 hours) in animal behavior. Figure 2 is a parallel boxplot of

estimated elk speeds by hour of the day. The elk appear substantially more
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mobile around 0500 hrs and 1800 hrs and less active at night and midday.

These observations agree with previous studies of elk that have shown strong

activity cycles that are characterized by dawn and dusk transitions between

foraging and resting habitat. Speed was estimated by dividing the distance

between two successive locations by the difference of the corresponding ob-

servation times.

In consider spatial aspects, Figure 3 shows an estimate of the density of

elk locations. It is a kernel estimate computed for the data in each of two

hour long time periods centered at the times 0600, 1200, 1800, 2400, i.e.

equi-sampling the day. The function kde2d() of Venables and Ripley (1999)

with bandwidth parameter (1,1) was used. The darker pixels correspond to

greater density. The contour levels range from 0 to 5 elk/km2. There are hot

spots of high density and cold spots of avoidance. These densities provide

the estimated long run distribution of elk locations for the indicated times of

day. From Figure 2 the most active periods appear centered at times 0500

and 1800 hours, while the least active were around 1100 and 2300. These

times correspond approximately to the equispaced ones chosen for Figure 3.

From a study of the four separate images, the time of day effect does not

appear to be simply proportional, rather there appears to be an interaction

of time of day and location. This possibility is investigated formally in the

next section.

A simple dot plot (e.g., Brillinger et al., 2000), of all the locations, r(tmk),

that the animals visited suggests that the Starkey Reserve is well travelled

by them.
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4.2 Modelling the drift vector µµ

Following the model (3) the problem of learning about the vector field µµ

may be seen as one of nonparametric regression analysis. Estimates of the

functions µx(.), µy(.) of (3) were calculated via the function gam() of Hastie

(1992) making use of the function lo() of Cleveland et al. (1992). Following

(2) the weights tm,k+1 − tm,k were used for the m-th elk and its k-th difference.

The preliminary investigations of the previous section suggested that elk

movements were affected by both time of day and location, and the two effects

were perhaps additive. To study this possibility the model µµ(r, t) = g(<

t >), g being supposed smooth, was first fit where < t > denotes the time

of day at time t. Then the additive model, µµ(r, t) = g(< t >) + h(r) was

fit. Finally the general model, µµ(r, t) = i(r, <t>), i being supposed smooth,

was employed. This succession of models was employed in order to look for

simplifications in the structure. To compute the velocities for each of those,

only successive values with the times more than .08 hr and less than 1.5 hrs

were used. The results of the analyses of variance are provided in Table 1. In

the tables < t > refers to time of day and (x, y) to location r. The spans used

in lo(.) were .4, .16, 064 following Hastie (1992)’s page 276 suggestion for

obtaining approximately the same marginal span and to make the analyses

nested.

The resulting F-values are all 0 to the accuracy of Splus, assuming that

the F-distribution is appropriate. The degrees of freedom (DF) are those

produced by gam(). The formula for the DFs and the accompanying F-values

are motivated in Hastie (1992) by an assumption of independent gaussian

errors and fixed regressors. Goodness of fit of the model is discussed in
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Section 4.4 below.

Following the analysis the relation appears nonadditive. This complicates

the display of the estimates. Figure 4 presents the estimated µµ(r, t) for the

times of day = 0600, 1200, 1800, 2400 using the final, i.e. nonadditive model

in time of day and location. The figures are vector-field plots with the lengths

of the arrows proportional to the estimated
√

µx
2 + µy

2 at the indicated

locations. The angles of the vectors give the estimated direction of motion

away from these locations. The elk appear to be more active at 0600 and 1800

hours, but staying in a local area at 1200 and 2400 hours. This is consistent

with the information of Figure 2. Moreover, there are regions of the vector

fields that converge towards areas of attraction similar to the hotspots of

Figure 3.

Further discussion of sampling uncertainty is needed in order to formalize

the inferences. Concerning the vector field plots the jackknife (Chapter 8

in Mosteller and Tukey, 1977) was employed. In its implementation the

50 longest of the 53 elk trajectories were used, 5 trajectories were dropped

each time in the evaluations and Tukey’s classic suggestion of employing

10 pseudo estimates was followed. Figure 5 graphs the locations where the

absolute values of t-statistics exceed the 95 percent point of the Student-t

distribution with 9 degrees of freedom. The elk were most mobile around

0600 and 1800 and there appear to be some points of convergence.

Those plots provide insights into diel patterns of elk movements. The

results presented in the panels are consistent with the previous evidence that

the time of day effect is not simply additive. Figure 5 remains important

because the lengths of the arrows provide estimates of the animals’ speeds
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as a function of location.

In summary, this section has presented a method for estimating the vector

field µµ(r, t) when it is smooth. The dependence on time of day and location

did not appear additive.

4.3 Modelling the diffusion matrix ΣΣ

Residuals are an important tool for seeking omitted variables, for inferring

nonlinearities in entered variables and for learning about the basic variabil-

ity in the model. In the model (1) variability is represented by the term

ΣΣ(r, t)dB(t). In this section residuals of the smooth fit, î(r, < t >), to time

of day and location are employed.

The estimated variance-covariance matrix of the X- and Y - residuals is[
.05272 .00028
.00028 .06301

]

It is near diagonal, consistent with the assumption of the independence of

the X- and Y -components of the Brownian noise of (1).

To study a possible time of day effect in ΣΣ first a model involving only

< t > was fit. Next a separation of variables model was employed and finally

a general model was considered. More specifically at the second analysis it

was supposed that ΣΣ was diagonal with diagonal entries σi(r, t) = αia(r)b(<

t >) for i = 1, 2 and a(.) and b(.) being supposed smooth. Then the model

σ(r, t) = αic(r, < t >) was employed. In the computations the αi term was

handled by defining a two-level factor, A, with levels corresponding to the

X- and Y -components of the motion.

The analysis of variance is given in part (c) of the Table 1 for the spans

= .4, .16, .064, again following the Hastie (1992) suggestion for making the

models nested.

11



The P-values are all negligeable. It appears that the variance needs to be

modelled as depending nonlinearly on both time of day and location.

4.4 Goodness of fit

It is necessary to assess the goodness of fit of the model of sections 5.2,

5.3 before drawing substantial conclusions. For example the P-values in the

ANOVA table are based on Gaussian, white-noise assumptions. Difficulties

in studying the goodness of fit are that the data involved are unequally-

spaced in time and may be autocorrelated in time. The periodogram is a

useful statistic to employ in such a situation, see Brillinger (2001).

Let

ε̂m(tm,k) = {X(tm,k+1)−X(tm,k)−µ̂(rm,k, < tm,k >)(tm,k+1−tm,k)}/
√

σ̂(rm,k, < tm,k >)

denote the standardized X-residuals in the case of the m-th elk. Consider

the empirical Fourier transform

dm
T (λ) =

∑
k

ε̂m(tm,k)exp{−iλtm,k}

evalutated by summing over the available time points, tm,k, for the m-th

animal. In many stationary cases such Fourier transforms are approximately

Gaussian and independent for distinct frequencies λ, Brillinger (2001). The

X-periodogram is now defined as |dm
T (λ)|2.

This statistic was computed for each of the M = 53 elk and the results

averaged. Assuming the series have common power spectrum, the distri-

bution of the average is approximately a multiple of chi-squared on 2 ∗ M

degrees of freedom, Brillinger (2001). In the case that the spectrum is con-

stant, the periodogram’s values will fluctuate approximately about a constant
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level. Figure 6 provides the average of the 53 periodogams and approximate

95% marginal confidence limits about the mean periodogram value. The top

panel refers to the X-values while the middle panel refers to the Y -values.

The high values at the low frequencies provide some evidence that the resid-

uals are not pure white noise. If further refined modelling is needed a time

series model allowing weak correlation between values nearby in time could

be employed. Likewise the value at frequency of 1 cycle/day suggests that

the time of day component has not been completely removed. This may

be because its shape is changing during the season. Incidentally, sometimes

tapering is employed to reduce the bias of a spectrum estimate, but there

is a consequence of increased variability. Tapering was not employed in the

estimates of Figure 6 as it did not seem necessary.

The bottom panel provides the estimated coherence between the X- and

Y -components and an approximate upper 95% null point. It is consistent

with the components being independent as in (2) and the estimated variance-

covariance matrix of Section 4.3 . The coherence at frequency λ is defined

as the |correlation|2, where the correlation is between the components at

frequency λ in the two processes.

Figure 7 addresses the issue of the independence of the trajectories of the

elk when time of day and location effects have been ”removed” by computing

the standardized residuals. An elementary model introducing equicoherence

amongst the elk residuals contains a component common to all the elk and

independent superposed noise. This leads to the following analysis of variance

approach. Consider frequencies λl near a frequency λ of interest. For the
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Fourier transform of the m-th elk write

dm
T (λl) = µ + αl + ηlm

with µ a mean level, the αl random effects, and the η’s errors. For a given λ

this is a classic one-way layout and the presence or absence of the α’s may

be studied by an F-statistic. The results are given in Figure 7, which are

plots of the F-statistics as functions of frequency. Results are presented for

the X-component. The top panel graphs the F-statistic having removed only

the effects of location, i.e., time of day effect is not removed. One sees peaks

at the frequency of one cycle/day and its second harmonic. The lower panel

shows the statistic having fit both location and time of day. In each case

the horizontal dashed line is the upper 95% level of the null F distribution.

The empirical values are seen to be fluctuating about this level, and the

peaks are much reduced, providing evidence for some dependence at the low

frequencies. Despite that, the results of the jackknife computations are still

pertinence. Modelling the remaining dependence is a problem for future

attention.

4.5 Other explanatories

So far, location and time of day have been the explanatories included

to describe the behavior of the elk. Several other variates are available,

including cover and locations of roads. These were shown in Figure 1. From

the locations of the roads for example one can compute the shortest distance

to a road for any location.

In Brillinger et al. (2000) a potential function H(.) was used to motivate

the form of the function µµ(.) of (1), specifically that work used µµ = − ∇H.

One could expect, for example, H to depend on distance to the nearest road,
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dr in a natural way. Writing H(< t >, r) = g(< t >, d2
r) for some function

g with d2
r = (x − x0)

2 + (y − y0)
2, (x0, y0) = {x0(x, y), y0(x, y)} being the

nearest point on a road to (x, y), one has

∇H =

[
g2(< t >, d2

r){2(x− x0)− 2(x − x0)∂x0/∂x− 2(y − y0)∂y0/∂x}
g2(< t >, d2

r){2(y − y0)− 2(x − x0)∂x0/∂y − 2(y − y0)∂y0/∂y}
]

where g2 is the partial derivative with respect to the second argument. This

expression is interesting for showing the dependence of µµ on more than < t >

and dr. The signs of (x− x0), (y− y0) are seen to play a role. Preisler et al.

(1999) used a polynomial
∑K

k=0 βkd
k
r to model the potential function with

separate β’s for day and night. One may fit more general models than that

for example by using cubic spline functions in place of the polynomial and

by including a 24 hour time variate in place of the two level (night and day)

time variate.

Things are simpler when it comes to modelling the diffusion term because

no derivative is involved. The function σ(r, t) was modeled as a function of

time of day and shortest distance to road. A sequence of models, like those

of part (c) of Table 1, were fit culminating in σi(r, t) = αic(< t >, dr) for

i = 1, 2.

The analysis of variance tables below show the results when: 1) time of

day, < t >; 2) dr and < t >, and 3) a general smooth function of (< t >, dr)

are fit additively to the logarithms. (In the table droad stands for distance

to nearest road.) The spans employed in the successive loess fits are .4, .4,

.16 once again to make the model hierarchical.

All the P-values are negligeable and one has evidence that the model is

non additive. It was clear that time of day was basic to the model. Now it

appears that distance to road matters as well.
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These values may be compared to those of part (c) of Table 1. The

final deviance in part (c) of Table 1 was 78976.07, while that of part (d) is

80909.00. It is not surprising that the fit with general (x, y) led to a smaller

value for the final deviance because dr depends on (x, y) and so, in a sense,

was included in the previous model.

Figure 8 gives the estimated c(< t >, dr) at four times of day and ±2 s.e.

limits about the overall mean level. The latter are estimated by the same

jackknife technique as employed for Figure 5, i.e. taking 50 of the elk and

dropping groups of five at a time. One sees in the 0600 panel an indication

of higher variability at distances close to the road. This could be a result

of morning traffic into the Forest. In the 1800 hours panel one sees a drop

in level about 1.5 km from the road. The curves remain within the ±2 s.e.

bounds in the other two panels. One also notices that the general levels of

the curves are higher at 0600 and 1800. This is consistent with the greater

variability of the animals at those times as seen in Figure 2.

The ±2 s.e. bounds were also obtained as part of the output of gam(.).

These ones were noticeably smaller. In part this is because those outputted

from gam() do not reflect the variability of the estimate of the drift. However

another explanation is that the approximations employed in Hastie (1992)

are not sufficiently accurate. This finding casts some doubt on the P-values

of the ANOVA table.

5. Discussion and Summary

A modelling technique has been developed that can address questions of

interest to wildlife scientists and managers. The methods employed have

merit for large mammals like elk that are highly mobile and have complex

16



patterns of habitat use that vary over space and time. In summary, by

analyses of variance and jackknife computations, apparent time of day and

location effects were found and these did not appear to be additive. In

particular the finding of nonlinear dependence of µµ and ΣΣ on location r

suggests the trajectories are non-Gaussian.

In the work the analytic techniques of potential functions, stochastic dif-

ferential equations, and nonparametric estimation were employed. The as-

sumption of a potential function led to the setting down of a stochastic

differential equation for a diffusion process. This SDE assumption further

motivated the estimates computed. It may be remarked that diffusion pro-

cesses are Markov, whereas more realistic equations would involve time lags

and the process therefore not be Markov.

Another difficulty for interpretations is that the locations of elk were only

available at irregular times points and the elk could have visited many differ-

ent places between them. A basic concern is the possibility that the paths of

individual elk remain dependent even after removing spatial-temporal trends.

If residuals are strongly dependent, as when some elk travel together in

closely-knit herds, then the uncertainty and P-value computations are at

risk. This issue was addressed by a frequency domain statistic.

In the present work, the gradient fields estimated for the Starkey elk

may have identified specific landscape-level movement patterns that have a

direct bearing on the interpretation of previous elk habitat selection studies

in the project area, Coe et al. (2001), Rowland et al. (2000). Of additional

interest is the characterization and contrast of movement patterns for specific

months, when changes in forage, hunting pressure, and the presence of cattle
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have strong effect on elk behavior. Only one year of data was analyzed in

this study. There are data for several other years that will be analyzed in

future work. The present analysis was exploratory deliberately leaving the

other years for future confirmatory analyses.

The concept of other particles in the field might be used to portray the

attraction among conspecifics like when elk travel together in a herd. Con-

versely, it could be used to portray repulsion between two different species

of animals where, because of social interactions like those among elk, mule

deer, and cattle, Coe et al. (2001), when individuals of one species might

avoid these of the other species. Finally, it may be of value in modeling dif-

ferences in use of space by adult males and females of the same species, Kie

and Bowyer (1999), Stewart (1997). There are many possibilities for future

studies.
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Appendix A

Approaches to the Description of Moving Particles

The analytic formulation of the motion of particles is a traditional problem

of physical science and applied mathematics. Classical approaches have been

developed offering properties of solutions of the equations of motion and

interpretations of the parameters involved. This subject matter is useful for

motivating the results of the present work. First consider the deterministic

approach.

Deterministic case

Motion in Newtonian dynamics may be described by a potential func-

tion, H(r, t), see Nelson (1967). For r = (x, y)′ location and t time

the equations of motion take the form: dr(t) = v(t)dt, dv(t) = −
βv(t)dt − β∇H(r(t), t)dt with r(t) the particle’s location at time t, v(t) the

particle’s velocity and −β∇H the external force field acting on the particle,

β being the coefficient of friction. Here ∇ = (∂/∂x, ∂/∂y) is the gradi-

ent operator. The function H is seen to control the particle’s direction and

speed.

In the case that the relaxation time β−1 is small (friction is high), the

equations are approximately: dr(t) = −∇H(r(t), t)dt and the velocity, v(t),

is no longer involved directly, see Nelson (1967). This is near the form of (1).

The components Hx, Hy of the gradient ∇H correspond to the components

of µµ of (1).

There has been considerable mathematical development of this material,
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Goldstein (1950). An interesting question given a force field, F, is whether

there exists a real function H, such that F = ∇H? When it does exist, the

field is called conservative, see Stewart (1991). This question is addressed

for the Starkey elk in Brillinger et al. (2000).

Stochastic Case

A pertinent probabilistic concept for dynamic motion is a stochastic dif-

ferential equation (SDE), e.g., see Nelson (1967); Bhattacharya and Waymire

(1990). Such equations often lead to Markov processes and take the form (1)

with µµ the drift parameter, ΣΣ the variance or diffusion parameter and B bi-

variate Brownian motion. Here r, µµ, B are vectors while ΣΣ is a matrix. The

drift µµ may be interpreted as a velocity field and an example of an estimate

is provided in the paper.

The parameters have interpretations provided by: E{dr(t)|Ht} = µµ{r(t), t}dt,

and var{dr(t)|Ht} = ΣΣ{r(t), t}dt with dt is small and Ht representing the

time history of the process. The driving process B leads to variability around

deterministic motion. This process might correspond to explanatories omit-

ted from the equations. The vector µµ(r(t), t) is seen to represent the instan-

taneous velocity of the particle at time t and position r. Since the process

is Markov, these conditional moments depend only on the previous position,

r(t).

Many properties are known concerning solutions of SDEs, for example

when H does not depend on t and ΣΣΣΣ′ = σ2
0I, there is often an invariant

density

π(r) = c exp{−2H(r)/σ2
0} (A.1)

representing the longrun density of locations the process visits, Bhattacharya
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and Waymire (1990). Thus in such a stationary case, by analyzing the paths,

population densities may be estimated.

A particular case of an SDE that has been employed in describing animal

motion is the mean-reverting Ornstein − Uhlenbeck (O-U) process, Dunn

and Gipson (1977), Dunn and Brisbin (1981). Here: µµ(r, t) = A(a − r),

and ΣΣ(r, t) = ΣΣ while the mean is a. The O-U process becomes the random

walk when A = 0, i.e., when the drift term, µµ(r, t), is 0.

If A is: symmetric and positive definite, the corresponding potential func-

tion is H(r, t) = (a−r)′A(a−r)/2 and the particle is wandering but being

pulled towards the location a. The invariant distribution is multivariate nor-

mal, N(a, ΨΨ), with: ΨΨ =
∫∞
0

e−AuΣΣΣΣ′e−Audu (see p. 597 in Bhattacharya

and Waymire, 1990). If ΣΣΣΣ′ = σ2
0I, then ΨΨ = σ2

0A
−1/2. Dunn and Gipson

(1977) use approximate maximum likelihood procedures to estimate the pa-

rameters a, ΨΨ of the multivariate O-U process from sampled trajectories with

constant sampling intervals. Dunn and Brisbane (1985) give extensions of the

maximum likelihood estimate to the case where observations are unequally

spaced over time. Both papers use estimated percentile regions of the invari-

ant distribution to indicate regions of use of the animals (home range) and

to study territorial interactions between two or more animals (overlapping

regions).
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Table 1. ANOVA: x-component of the drift.

Source ∆ Dev Approx DF F P-value

< t > 22.16 7.19 45.56 0

< t > +(x, y) 40.97 42.00 14.41 0

(< t >, x, y) 133.63 114.10 17.30 0

Error 1264.93 18687.72
Total 1461.694 18851

(b). y-component of the drift.

Source ∆ Dev Approx DF F P-value

< t > 19.40 7.19 33.33 0

< t > +(x, y) 24.12 42.00 7.09 0

(< t >, x, y) 102.77 114.10 11.12 0

Error 1513.95 18687.72
Total 1660.23 18851

(c). log residuals squared.

Source ∆ Dev Approx DF F P-value

A+ < t > 5747.81 7.19 380.22 0

A+ < t > +(x, y) 1055.95 41.70 12.04 0

A + (< t >, x, y) 1426.32 113.90 5.95 0

Error 78976.07 37539.21
Total 87206.16 37702.00

(d). log residuals squared.

Source ∆ Dev Approx DF F P-value

A+ < t > 5747.81. 7.19 372.32 0

A+ < t > +droad 267.22 8.42 14.78 0

A + (< t >, droad) 282.13 27.56 4.77 1.89e-15

Error 80909.00 37658.84
Total 87206.16 37702.00
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FIGURE CAPTIONS

Figure 1. Left-hand figure: map of the main study area of the Starkey Project

showing areas used by elk as hiding cover (darker area) and roads open to

traffic (dark lines). Areas used as hiding cover are defined as those having

greater than 40 % canopy cover in trees. Right-hand figure: points along the

trajectories of one of the elk.

Figure 2. Estimated speed for all the elk as a function of time of day.

Figure 3. Density estimate based on the data of all 53 elk at 4 times of day. Darker

values correspond to higher density values. The contours are equispaced from 0

and the four displays on the same scale. The highest corresponds to 5 elk/km2

Figure 4. The estimated gradient vector field for times of day 0600, 1200, 1800,

2400 hours.

Figure 5. Locations where absolute value of the t-statistic exceeds the 95%

level, based on jackknife computations.

Figure 6. The X− and Y−periodograms of the standardized residuals and

the estimated coherence. The horizontal line in the coherence plot is the

upper 95% null point.

Figure 7. The X-component F-ratios for looking for a common effect amongst

the elk. The horizontal lines in the plots are the upper 95% null point of the

F-statistic.

Figure 8. The estimated dependence of the log-variance on time of day and

distance to road. The dashed lines provide ±2 s.e. limits about the mean

level.
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