
Assessing Connections in Networks ofBiological NeuronsDavid R. Brillinger�and Alessandro E.P. VillayThe stronger the qualitative understanding the data analyst canget of the subject-matter �eld from which his data comes, thebetter - just so long as he does not take it too seriously.Mallows and Tukey (1982)AbstractIn this work spike trains of �ring times of neurons recorded fromvarious locations in the cat's auditory thalamus are studied. A goal ismaking inferences concerning connections amongst di�erent regions ofthe thalamus in both the presence and the absence of a stimulus. Bothsecond-order moment (frequency domain) and full likelihood analyses(a threshold crossing model), are carried through.1 IntroductionThe sequence of spikes of a neuron, referred to as a "spike train", maycarry important information processed by the brain and thus may under-lie cognitive functions and sensory perception [1]. The data studied arerecorded stretches of point processes corresponding to the �ring times of�Statistics Department, University of California, BerkeleyyInstitute of Physiology, University of Lausanne, Switzerland1
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InputFigure 1: A block diagram of the auditory regions of the cat's brain.neurons measured in the cat's auditory thalamus [25]. This set of nucleiis often viewed as the penultimate in an ascending hierarchy of process-ing stages of the auditory sensation that begins at the level of the innerear. The thalamic nuclei belonging to the cat auditory pathway are themedial geniculate body (MGB), the lateral part of the thalamic posteriorcomplex and the reticular nucleus of the thalamus (R or RE). The REreceive and send projections to the other thalamic subdivisions through anarray of convergent and divergent connections [22]. Figure 1 provides a blockdiagram indicating some plausible connections amongst the regions of the au-ditory system of concern in this work.A basic goal of the paper is to obtain some understanding of how auditoryregions of the brain interact. More speci�cally, results are presented aboutthe association of pars magnocellularis (M) of the medial geniculate body2



and the reticular nucleus of the thalamus. Special interest has been raised bythese thalamic subdivisions because M , also known as the medial division ofMGB, is characterized by a unique pattern of projection to all the auditorycortical �elds [17, 19] and R is playing a key-role in the adaptive �ltering ofthe auditory input to the cerebral cortex [23].The data were collected during two recording conditions: a �rst in whichthe neurons were �ring spontaneously, a second in which white noise soundbursts were applied regularly as a stimulus. The simultaneous recordingof the electrophysiological activity of neurons in R and M was replicated,at times separated by 2 to 8 hours, between successive experiments. Oneinteresting problem involved in this study is how to combine the results ofdi�erent recording sessions.Two types of analyses are presented in the paper. The �rst is based onsecond-moment statistics in the frequency domain, while the second is basedon a conceptual (threshold crossing) model for neuron �ring. Previous workon the problem of interacting neurons includes: [2, 13]. This paper continuesthe work of [9, 6].2 Experimental BackgroundThe experiment was conducted in a nitrous-oxide anesthetized young adultcat in compliance with Swiss guidelines for the care and use of laboratoryanimals and after receiving governmental veterinary approval. The exper-imental procedure and ordinary time series analysis of this dataset are de-scribed in [21]. Brie
y, the anesthesia was induced by an intra-peritonealinjection of sodium pentobarbital (Nembutal, 40 mg/kg body weight). Thecat was mounted in a stereotaxic instrument and a small hole was trepanatedon the skull, at the level of the auditory thalamus. The anesthesia during therecording sessions was maintained by an arti�cal ventilation with a mixtureof 80% N2O and 20% O2. The re
ex state, pupil size and blood pressurewere monitored in order to detect any sign of discomfort of the cat.Extracellular single unit recordings were made with glass-coated platinum-plated tungsten microelectrodes having an impedance in the range 0.5-2 M
measured at a frequency of 1 kHz. Up to six microelectrodes could be ad-vanced independently. The dataset analyzed here was collected from one3



electrode inserted in R (2 spike trains) and two electrodes inserted in M (3spike trains). Simultaneous recording of spike trains from the same micro-electrode was achieved by using an analog template matching spike sorteraccording to a technique described elsewhere [14, 22]. The �ring times weremeasured by a microcomputer with an accuracy of 1 ms and stored digitallyfor o�-line analysis. The activity of a group of units was recorded during40 to 60 minutes. Four recording sessions, performed at intervals of 2 to 8hours, involving three units in M and two units in R are used to assess theconnections between these thalamic subdivisions.Several stimuli were applied in order to characterize some typical responseproperties of auditory units, but the results reported in this paper were col-lected in two recording conditions: during stimulation by a white noise burst(at an intensity of 72 dB sound pressure level delivered to both ears simulta-neously) at a frequency of 1 stimulus/second (i.e. lasting 200 msec followedby 800 msec of silence) and during absence of external stimulation, to bereferred to as spontaneous activity. The spike trains were collected during 5to 8 minutes of each recording condition.Figure 2 provides raster plots of the data for �ve neurons of one of therecording sessions involving stimulation. Each dot represents the occurrenceof a spike. Here in an individual raster plot, spike times for 300 successiverepetitions of the stimulus presentation are stacked above each other, alignedon the stimulus onset. For unit (neuron) 1, one sees a solid transient responseto the stimulation a brief latency after the beginning of stimulus application.For unit 4, one can note a transient increase of activity after a longer latencythan observed in unit 1 followed by an increase of activity lasting up to theending of the noise burst.Upon completion of the experiment, an electrolytic lesion was performed ata known depth for each microelectrode track, by passing a current of about8 �A during 10 s. At the end of the recording session the animal received alethal dose of Nembutal, and the brain was prepared for standard histologicalprocedures. These allowed the physical locations of the neurons recorded tobe obtained. 4
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Figure 2: Raster plots of experiment w21q04 with stimulation. The gray barindicates the presence of the stimulus. A pair of units 1, 2 and unit 3 wererecorded in M subdivision of MGB from two microelectrodes, respectively,and a pair of units 4, 5 was recorded in R.3 Statistical BackgroundTwo distinct types of analyses are presented. The �rst is a second-order mo-ment analysis working with multivariate statistics computed in the frequencydomain. The second is a likelihood analysis based on a conceptual model forthe �ring of a neuron. In the second case, the parameters are estimated bythe method maximum likelihood.3.1 Second moment analysis based on FTsThe points of a pair of contemporaneous of point processes, M and N , maybe denoted �m, m = 0; �1; ::: and �n, n = 0; �1; ::: respectively. Thedata may be thought of as a segment of a realization of a bivariate stationarypoint process. The empirical Fourier transform of the � points isdTM(�) = Xm e�i��m (1)5



where T denotes the length of the time period of observation and for � real-valued. Under conditions of stationarity and mixing such Fourier transformsoften satisfy central limit theorems. The coherency of the M and N pro-cesses, at frequency �, may be de�ned asRMN(�) = limT!1corrfXm e�i��m; Xn e�i��ng (2)Its modulus-squared the coherence, jRMN(�)j2, is a measure of the lineartime invariant dependence of the two processes at frequency �, see eg. [3].One way to see the reasonableness of these de�nitions is to consider the caseof ordinary time series whose components take on the values 0 � 1. With�ne enough time interval expression (1) corresponds to the usual Fouriertransform of a stretch of such 0 � 1 values.A measure of conditional dependence of processes M and N , given someother processes is provided by the partial coherencyRMN jrest = (RMN � RM jrest �RN jrest)=q(1 � jRM jrestj2)(1 � jRN jrestj2)(3)having supressed the dependence on �. Here RMN is given by (2), whileRM jrest(�) = limT!1corrfXm e�i��m ; BT (�)gwith BT (�) denoting the best (minimum mse linear) predictor of (1), ex-cluding the process N . Estimates of the coherence and partial coherencemay be based directly on empirical Fourier transforms of the point processesinvolved. For example, one could takeR̂MN(�) = Pl dTM(�; l)dTN (�; l)qPl jdTM (�; l)j2Pl jdTN (�; l)j2 (4)with the sums over l = 1; :::; n empirical Fourier transforms of the form (1)based on separate time stretches. For another estimation method see [3, 7].Examples of partial coherence computations for networks of three neuronsmay be found in [7]. Other neurophysiological examples may be found in [18].References on partial coherence in the time series case include [4, 12, 20].For the data sets of interest, the neurons fall into particular regions of thebrain and it is desired to have measures of the strengths of connection6



amongst pairs of these regions. This necessitates a form of multivariateanalysis. The particular regions studied here are M and R, as sketched inFigure 1.The fact that the empirical Fourier transforms are approximately Gaussian,suggests employing some traditional procedure of multivariate (Gaussian)analysis. Let R̂ refer to the matrix of sample coherencies computed forall available neurons (either in region M or region R.) (Again dependenceon � is being suppressed.) Let R̂MM and R̂RR refer to submatrices of R̂corresponding to the M units and R units, respectively. The j:j, in (5)below, denotes the determinant of the matrix involved with the dependenceon � suppressed for simplicity's sake. A test of independence of the M andN components can be based on the likelihood ratio or deviance statistic� 2 n logfjR̂j=jR̂MM jjR̂RRjg (5)approximating its null distribution by a chi-squared with degrees of freedom2pMpR. In the case of independence, for the population values,jRj = jRMMjjRRRj:The pM and pN denote the numbers of rows in R̂MM and R̂RR respectivelyand n is the number of time segments in an estimate such as (4). (HerepMpN complex parameters have been set to 0 under the null hypothesis ofindependence of the M and R regions, hence the indicated degrees of free-dom.) More accurate approximations to the distribution of (5) are suggestedin [24, 15].Independent experiments may be combined by adding the statistic (5) overexperiments, with a corresponding addition of degrees of freedom. This willbe the case for the example in Section 4.When stimulation is present, to assess connections independent of stimula-tion, one might work with the coherencies having "partialled out" the pointprocess of stimulus application times. To do so one proceeds as in (3), butfor example replacing R̂MM byR̂MM � R̂MSR̂�1SSR̂SMThe values of such a statistic will be presented in Section 4.7
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t denotes the time since the neuronN last �red, the membrane potential will be approximated byUt = 
tXu=1mt�uMu8



for some summation function mt. It will be further assumed that�t = d + e
t + f
2t + g
3t + �t (6)with the �t independent standard normals. The cubic form is employed hereto be able to produce J -shaped threshold forms and as a form linear in theunknown parameters. Taking � for the standard normal cumulative the loglikelihood, given the input, isXt [Nt log �(Ut � �t) + (1 �Nt) log(1 � �(Ut � �t))]In the example to be presented parameter estimates will be determined bymaximizing this expression. Results of such a �tting, in the case of singleinput and output spike trains or of spike train output with noise input, maybe found in [8, 5].For the experiments of interest a multivariate version of the model is needed.There will be an arbitrary number of neurons, situated in several regions ofthe brain. Also a stimulus will be present during particular time intervals.De�ne a stimulus variable by setting St = 1 whilst the stimulus is appliedand St = 0 otherwise. Then for the j� th neuron one can consider a modelwith Nj;t = 1 when �St + Xk 6=j 
jtXu=1 ajk;t�uNk;u > �j;t (7)and Nj;t = 0 otherwise, t = 0; �1; ::: and �j;t given by (6) and 
jt is thetime elapsed since neuron j last �red. The j � th and k � th neurons maybe in the same or di�erent regions of the brain.To assess the hypothesis that some of the ajk;: are identically 0 one cancompute the change in the deviance (- twice the log-likelihood), occurringwhen the hypothesis is incorporated. This quantity may be viewed as ameasure of the strength of the connection, see [6]. Examples of this andestimates of the ajk;: are presented in the next section.4 ResultsThe regions of the brain, for which results are presented in this paper, areM , the pars magnocellularis, and R (or RE), the reticular nucleus of9



the thalamus. Questions of interest include: Is there association of regionsR and M? Are there direct connections of R and M? Is apparent associationdue to signal driving? How strong are the connections? The results of theanalyses are presented next.4.1 Second-order AnalysisFigure 4 provides the values of the mod-square of the statistic (4) in the casesof stimulation (upper panels) and of spontaneous �ring (lower panels), andalso the corresponding partial coherence "removing" the e�ects of stimulationas in (3). The dashed line provides the approximate upper 95% null line,based on the approximating chi-squared distribution. The degrees of freedomwere summed over 4 cell groups and totalled 48 here. One sees low frequencyassociation in each case. The upper left graph shows strong associationaround 1.8 Hz and apparent association up to about 15 Hz. Note that nomajor peaks were observed on either condition at frequencies higher than 25Hz. The upper right panel of Figure 4 shows the overall association muchreduced, when the linear time invariant e�ects of the stimulus are "removed".There is an intriguing peak in the two top graphs at 7.9 Hz. The bottomtwo graphs are much the same, as they should be. In a sense the upper rightgraph is meant to estimate the lower left. (Up to sampling variation thiswould be precisely so if the relationship was linear.)One would like to say that there is association at very low frequencies inde-pendent of the stimulation. Association near 7.9 Hz appears only during thestimulus condition, but it was apparently not linearly locked to the stimulusonset, as suggested by the persistence of the peak at 7.9 Hz in the estimateof the partial 'stimulated' coherence (Figure 4, upper right panel). However,it needs to be noted that, more than 5% of the points of the panel are abovethe 95% null line. The spike train recordings of the four groups were carriedout at di�erent times. The excess of points here may be the consequence ofa time trend or some other individual experimental e�ect.10
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Figure 4: The statistic (4) summed over four recording sessions.11
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Figure 5: Deviance di�erences for the likelihood �ts. Degrees of freedom in(.) .4.2 Likelihood analysisFigure 5 displays the results of �tting the model (7) and in particular thechanges in deviance when the arrows concerned are removed from the di-agram. The experiments are the same as in Section 4.1. The results arecombined by adding the deviances. The �gures in brackets are the degreesof freedom of a null chi-squared statistic. It is clear that there is a strongassociation with the stimulus in each case. The direct connection fromM toR appears stronger than the reverse, if one takes deviance as a measure ofstrength of association.In the case of a single recording session it is possible to show the estimatedajk;:. Figure 6 shows the neurons recorded in the �rst recording session andthe estimated functions ajk;: of the model (7). The upper left panel providesthe summation function for the in
uence of the second neuron of R on the�rst in the presence of the neurons of M.The remaining panels on the left refer to the in
uence on the �rst neuron ofR of the 3 neurons of M . The right column similarly refers to the secondneuron of R. To put it in other words, the left column refers to R1 beingin
uenced by R2, M1, M2, M3 and the right to R2 being in
uenced by R1,12
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M1, M2, M3. Note that discharges of cell pair R1 and R2 were recorded si-multaneously from the same electrode. UnitsM1 and M2 were also recordedfrom the same, but di�erent than the previous, electrode. The dashed linesgive approximate �2 standard error limits. The standard errors are approx-imate, computed by the usual maximum likelihood formulas. While for thethree experiments merged the in
uence of M on R appeared substantial (de-viance of 231.7 with 90 degrees of fredom), none of the summation functionestimates (for the �rst experimen alone) appears strongly signi�cant. Fur-ther investigations are being carried out. Perhaps the standard errors areinappropriate. Perhaps there are lurking correlations.A problem is how to combine such âjk;: for several experiments. The di�cultyis that di�erent neurons and paths are involved, hence for example di�erentlatencies of e�ect may occur.5 Discussion and SummaryAs indicated at the outset, the goal was to make inferences concerning con-nections amongst regions of the auditory thalamus, both in the presence andabsence of a stimulus. Here the work has been on the reticular nucleus of thethalamus and pars magnocellularis of the medial geniculate body. Two meth-ods for investigating the wiring diagram of a particular point process systemhave been presented and illustrated. A second-moment analysis showed theusefulness of the study of frequency bands and provided a global estimationof the strength of the connections between the regions under study. A like-lihood approach was based on the basic biology. One interesting feature ofthis method is the possibility to elaborate detailed inferences on the tempo-ral pattern of the connections. This may represent a fundamental clue forunderstanding the information processing carried out by these regions in thethalamus. Both methods proved convenient for combining the results of dif-ferent experiments. Uncertainty measures were central to making inferences.There are a number of di�culties that arise in this work. The data arenumerous and of complex structure. A neuron may receive thousands ofinputs and data are available for but a few. The sampling of the regions of thebrain cannot be expected to be unbiased. An approach needs to be developedthat reduces the in
uence of individual neurons on the statistics computed14
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