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The stronger the qualitative understanding the data analyst can
get of the subject-matter field from which his data comes, the
better - just so long as he does not take it too seriously.

Mallows and Tukey (1982)

Abstract

In this work spike trains of firing times of neurons recorded from
various locations in the cat’s auditory thalamus are studied. A goal is
making inferences concerning connections amongst different regions of
the thalamus in both the presence and the absence of a stimulus. Both
second-order moment (frequency domain) and full likelihood analyses
(a threshold crossing model), are carried through.

1 Introduction

The sequence of spikes of a neuron, referred to as a ”spike train”, may
carry important information processed by the brain and thus may under-
lie cognitive functions and sensory perception [1]. The data studied are
recorded stretches of point processes corresponding to the firing times of
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Figure 1: A block diagram of the auditory regions of the cat’s brain.

neurons measured in the cat’s auditory thalamus [25]. This set of nuclei
is often viewed as the penultimate in an ascending hierarchy of process-
ing stages of the auditory sensation that begins at the level of the inner
ear. The thalamic nuclei belonging to the cat auditory pathway are the
medial geniculate body (MGB), the lateral part of the thalamic posterior
complex and the reticular nucleus of the thalamus (R or RE). The RE
receive and send projections to the other thalamic subdivisions through an
array of convergent and divergent connections [22]. Figure 1 provides a block
diagram indicating some plausible connections amongst the regions of the au-
ditory system of concern in this work.

A basic goal of the paper is to obtain some understanding of how auditory
regions of the brain interact. More specifically, results are presented about
the association of pars magnocellularis (M) of the medial geniculate body



and the reticular nucleus of the thalamus. Special interest has been raised by
these thalamic subdivisions because M, also known as the medial division of
MG B, is characterized by a unique pattern of projection to all the auditory
cortical fields [17, 19] and R is playing a key-role in the adaptive filtering of
the auditory input to the cerebral cortex [23].

The data were collected during two recording conditions: a first in which
the neurons were firing spontaneously, a second in which white noise sound
bursts were applied regularly as a stimulus. The simultaneous recording
of the electrophysiological activity of neurons in R and M was replicated,
at times separated by 2 to 8 hours, between successive experiments. One
interesting problem involved in this study is how to combine the results of
different recording sessions.

Two types of analyses are presented in the paper. The first is based on
second-moment statistics in the frequency domain, while the second is based
on a conceptual (threshold crossing) model for neuron firing. Previous work
on the problem of interacting neurons includes: [2, 13]. This paper continues

the work of [9, 6].

2 Experimental Background

The experiment was conducted in a nitrous-oxide anesthetized young adult
cat in compliance with Swiss guidelines for the care and use of laboratory
animals and after receiving governmental veterinary approval. The exper-
imental procedure and ordinary time series analysis of this dataset are de-
scribed in [21]. Briefly, the anesthesia was induced by an intra-peritoneal
injection of sodium pentobarbital (Nembutal, 40 mg/kg body weight). The
cat was mounted in a stereotaxic instrument and a small hole was trepanated
on the skull, at the level of the auditory thalamus. The anesthesia during the
recording sessions was maintained by an artifical ventilation with a mixture
of 80% N,O and 20% O3. The reflex state, pupil size and blood pressure
were monitored in order to detect any sign of discomfort of the cat.

Extracellular single unit recordings were made with glass-coated platinum-
plated tungsten microelectrodes having an impedance in the range 0.5-2 M)
measured at a frequency of 1 kHz. Up to six microelectrodes could be ad-
vanced independently. The dataset analyzed here was collected from one



electrode inserted in R (2 spike trains) and two electrodes inserted in M (3
spike trains). Simultaneous recording of spike trains from the same micro-
electrode was achieved by using an analog template matching spike sorter
according to a technique described elsewhere [14, 22]. The firing times were
measured by a microcomputer with an accuracy of 1 ms and stored digitally
for off-line analysis. The activity of a group of units was recorded during
40 to 60 minutes. Four recording sessions, performed at intervals of 2 to 8
hours, involving three units in M and two units in R are used to assess the
connections between these thalamic subdivisions.

Several stimuli were applied in order to characterize some typical response
properties of auditory units, but the results reported in this paper were col-
lected in two recording conditions: during stimulation by a white noise burst
(at an intensity of 72 dB sound pressure level delivered to both ears simulta-
neously) at a frequency of 1 stimulus/second (i.e. lasting 200 msec followed
by 800 msec of silence) and during absence of external stimulation, to be
referred to as spontaneous activity. The spike trains were collected during 5
to 8 minutes of each recording condition.

Figure 2 provides raster plots of the data for five neurons of one of the
recording sessions involving stimulation. Each dot represents the occurrence
of a spike. Here in an individual raster plot, spike times for 300 successive
repetitions of the stimulus presentation are stacked above each other, aligned
on the stimulus onset. For unit (neuron) 1, one sees a solid transient response
to the stimulation a brief latency after the beginning of stimulus application.
For unit 4, one can note a transient increase of activity after a longer latency
than observed in unit 1 followed by an increase of activity lasting up to the
ending of the noise burst.

Upon completion of the experiment, an electrolytic lesion was performed at
a known depth for each microelectrode track, by passing a current of about
8 pA during 10 s. At the end of the recording session the animal received a
lethal dose of Nembutal, and the brain was prepared for standard histological
procedures. These allowed the physical locations of the neurons recorded to
be obtained.



Figure 2: Raster plots of experiment w21q04 with stimulation. The gray bar
indicates the presence of the stimulus. A pair of units 1, 2 and unit 3 were
recorded in M subdivision of MGB from two microelectrodes, respectively,
and a pair of units 4, 5 was recorded in R.

3 Statistical Background

Two distinct types of analyses are presented. The first is a second-order mo-
ment analysis working with multivariate statistics computed in the frequency
domain. The second is a likelihood analysis based on a conceptual model for
the firing of a neuron. In the second case, the parameters are estimated by
the method maximum likelihood.

3.1 Second moment analysis based on FTs

The points of a pair of contemporaneous of point processes, M and N, may
be denoted o,,, m = 0, 1, ... and 7,, n = 0, +1, ... respectively. The
data may be thought of as a segment of a realization of a bivariate stationary
point process. The empirical Fourier transform of the o points is

dy(A) = e (1)



where T' denotes the length of the time period of observation and for A real-
valued. Under conditions of stationarity and mixing such Fourier transforms
often satisfy central limit theorems. The coherency of the M and N pro-
cesses, at frequency A, may be defined as

Run(A) = limT_mcorr{Z e_MU’", Ze_MT"} (2)

Its modulus-squared the coherence, |Ryn(N)|?, is a measure of the linear
time invariant dependence of the two processes at frequency A, see eg. [3].
One way to see the reasonableness of these definitions is to consider the case
of ordinary time series whose components take on the values 0 — 1. With
fine enough time interval expression (1) corresponds to the usual Fourier

transform of a stretch of such 0 — 1 values.

A measure of conditional dependence of processes M and N, given some
other processes is provided by the partial coherency

RMN|Test — (RMN - RM|T65tRN|T65t)/\/(1 - |RM|Test|2)(1 - |RN|Test|2)
(3)

having supressed the dependence on A. Here Ryn is given by (2), while
Ratpest(A) = limT_mcorr{Z eom - BT(A\)}

m

with BT()) denoting the best (minimum mse linear) predictor of (1), ex-
cluding the process N. Estimates of the coherence and partial coherence
may be based directly on empirical Fourier transforms of the point processes
involved. For example, one could take
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with the sums over [ = 1,...,n empirical Fourier transforms of the form (1)
based on separate time stretches. For another estimation method see [3, 7].

Ran())

(4)

Examples of partial coherence computations for networks of three neurons
may be found in [7]. Other neurophysiological examples may be found in [18].
References on partial coherence in the time series case include [4, 12, 20].

For the data sets of interest, the neurons fall into particular regions of the
brain and it is desired to have measures of the strengths of connection



amongst pairs of these regions. This necessitates a form of multivariate
analysis. The particular regions studied here are M and R, as sketched in
Figure 1.

The fact that the empirical Fourier transforms are approximately Gaussian,
suggests employing some traditional procedure of multivariate (Gaussian)
analysis. Let R refer to the matrix of sample coherencies computed for
all available neurons (either in region M or region R.) (Again dependence
on A is being suppressed.) Let f{MM and f{RR refer to submatrices of R
corresponding to the M units and R units, respectively. The |.|, in (5)
below, denotes the determinant of the matrix involved with the dependence
on A suppressed for simplicity’s sake. A test of independence of the M and
N components can be based on the likelihood ratio or deviance statistic

— 2 n log{|R|/|Rywm||Rrr|} (5)

approximating its null distribution by a chi-squared with degrees of freedom
2pyvpr. In the case of independence, for the population values,

IR| = [Raum||Rrr|.

The ppr and py denote the numbers of rows in f{MM and f{RR respectively
and n is the number of time segments in an estimate such as (4). (Here
prypn complex parameters have been set to 0 under the null hypothesis of
independence of the M and R regions, hence the indicated degrees of free-
dom.) More accurate approximations to the distribution of (5) are suggested

in [24, 15].

Independent experiments may be combined by adding the statistic (5) over
experiments, with a corresponding addition of degrees of freedom. This will
be the case for the example in Section 4.

When stimulation is present, to assess connections independent of stimula-
tion, one might work with the coherencies having ”partialled out” the point
process of stimulus application times. To do so one proceeds as in (3), but
for example replacing R by

N ~ A 1A
RMM - RMSRSSRSM

The values of such a statistic will be presented in Section 4.
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Figure 3: The functions U(t), 0(¢) and input spike times.

3.2 Likelihood analysis of a conceptual model

Brillinger and Segundo, [8], introduce maximum likelihood fitting of a thresh-
old crossing model for a neuron firing as a function of input. Suppose that
firing of the neuron takes place when an internal state variable, U(t) the
membrane potential, upcrosses a (random) threshold 0(¢). The value U(t)
will depend on the inputs received by the cell. It will be assumed that the
threshold is reset after firing, which in effect introduces a refractory period.
Figure 3 provides a graph of the functions U(t) and 6(¢) for one case. The
piles along the time-axis indicate input neuron spike firing times. The j-
shaped curves correspond to #(t). Output firings occur at the times when
U(t) and (1) meet. In the case of this figure, the input is inhibitory as seen
by the dipping of U(t) after the arrival of an input spike.

Consider a neuron, M, driving a neuron, N. In the fitting of the threshold
model it is convenient to replace the point process values by 0 — 1 valued
discrete time series values, taking a fine time interval. Define

M, = 1 of spike in the interval (1,1 + 1]

and M; = 0 otherwise for ¢ = 0,%£1,... and some small time interval.
There is a similar definition for N;. If ~; denotes the time since the neuron
N last fired, the membrane potential will be approximated by

Yt
Ut = th—uMu
u=1

8



for some summation function m,. It will be further assumed that

0p = d + ey + f1F + 97 + @ (6)

with the ¢; independent standard normals. The cubic form is employed here
to be able to produce J-shaped threshold forms and as a form linear in the
unknown parameters. Taking ® for the standard normal cumulative the log
likelihood, given the input, is
t

In the example to be presented parameter estimates will be determined by
maximizing this expression. Results of such a fitting, in the case of single
input and output spike trains or of spike train output with noise input, may

be found in [8, 5].

For the experiments of interest a multivariate version of the model is needed.
There will be an arbitrary number of neurons, situated in several regions of
the brain. Also a stimulus will be present during particular time intervals.
Define a stimulus variable by setting S; = 1 whilst the stimulus is applied
and S; = 0 otherwise. Then for the j —th neuron one can consider a model
with N;;, = 1 when

Vit

aSy + DY aipi—ulNiw > 054 (7)
k#j5 u=1
and N;; = 0 otherwise,# = 0, +1,... and §,, given by (6) and 7;; is the
time elapsed since neuron j last fired. The j — th and k& — th neurons may
be in the same or different regions of the brain.

To assess the hypothesis that some of the a;; are identically 0 one can
compute the change in the deviance (- twice the log-likelihood), occurring
when the hypothesis is incorporated. This quantity may be viewed as a
measure of the strength of the connection, see [6]. Examples of this and
estimates of the a;;  are presented in the next section.

4 Results

The regions of the brain, for which results are presented in this paper, are
M, the pars magnocellularis, and R (or RE), the reticular nucleus of



the thalamus. Questions of interest include: Is there association of regions
R and M7 Are there direct connections of R and M? Is apparent association
due to signal driving? How strong are the connections? The results of the
analyses are presented next.

4.1 Second-order Analysis

Figure 4 provides the values of the mod-square of the statistic (4) in the cases
of stimulation (upper panels) and of spontaneous firing (lower panels), and
also the corresponding partial coherence "removing” the effects of stimulation
as in (3). The dashed line provides the approximate upper 95% null line,
based on the approximating chi-squared distribution. The degrees of freedom
were summed over 4 cell groups and totalled 48 here. One sees low frequency
association in each case. The upper left graph shows strong association
around 1.8 Hz and apparent association up to about 15 Hz. Note that no
major peaks were observed on either condition at frequencies higher than 25
Hz. The upper right panel of Figure 4 shows the overall association much
reduced, when the linear time invariant effects of the stimulus are "removed”.
There is an intriguing peak in the two top graphs at 7.9 Hz. The bottom
two graphs are much the same, as they should be. In a sense the upper right
graph is meant to estimate the lower left. (Up to sampling variation this
would be precisely so if the relationship was linear.)

One would like to say that there is association at very low frequencies inde-
pendent of the stimulation. Association near 7.9 Hz appears only during the
stimulus condition, but it was apparently not linearly locked to the stimulus
onset, as suggested by the persistence of the peak at 7.9 Hz in the estimate
of the partial 'stimulated’ coherence (Figure 4, upper right panel). However,
it needs to be noted that, more than 5% of the points of the panel are above
the 95% null line. The spike train recordings of the four groups were carried
out at different times. The excess of points here may be the consequence of
a time trend or some other individual experimental effect.
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Figure 4: The statistic (4) summed over four recording sessions.
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4.2 Likelihood analysis

Figure 5 displays the results of fitting the model (7) and in particular the
changes in deviance when the arrows concerned are removed from the di-
agram. The experiments are the same as in Section 4.1. The results are
combined by adding the deviances. The figures in brackets are the degrees
of freedom of a null chi-squared statistic. It is clear that there is a strong
association with the stimulus in each case. The direct connection from M to
R appears stronger than the reverse, if one takes deviance as a measure of
strength of association.

In the case of a single recording session it is possible to show the estimated
a;i,.. Figure 6 shows the neurons recorded in the first recording session and
the estimated functions aj; of the model (7). The upper left panel provides
the summation function for the influence of the second neuron of R on the
first in the presence of the neurons of M.

The remaining panels on the left refer to the influence on the first neuron of
R of the 3 neurons of M. The right column similarly refers to the second
neuron of K. To put it in other words, the left column refers to R1 being

influenced by R2, M1, M2, M3 and the right to R2 being influenced by R1,

12
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Figure 6: The left column provides influences on neuron R1 from other neu-
rons of R and those of region M. In the top panel, arrows indicate the con-
sidered directions of influence. The right column similarly refers to R2.
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M1, M2, M3. Note that discharges of cell pair Rl and R2 were recorded si-
multaneously from the same electrode. Units M1 and M2 were also recorded
from the same, but different than the previous, electrode. The dashed lines
give approximate £2 standard error limits. The standard errors are approx-
imate, computed by the usual maximum likelihood formulas. While for the
three experiments merged the influence of M on R appeared substantial (de-
viance of 231.7 with 90 degrees of fredom), none of the summation function
estimates (for the first experimen alone) appears strongly significant. Fur-
ther investigations are being carried out. Perhaps the standard errors are
inappropriate. Perhaps there are lurking correlations.

A problem is how to combine such a . for several experiments. The difficulty
is that different neurons and paths are involved, hence for example different
latencies of effect may occur.

5 Discussion and Summary

As indicated at the outset, the goal was to make inferences concerning con-
nections amongst regions of the auditory thalamus, both in the presence and
absence of a stimulus. Here the work has been on the reticular nucleus of the
thalamus and pars magnocellularis of the medial geniculate body. Two meth-
ods for investigating the wiring diagram of a particular point process system
have been presented and illustrated. A second-moment analysis showed the
usefulness of the study of frequency bands and provided a global estimation
of the strength of the connections between the regions under study. A like-
lihood approach was based on the basic biology. One interesting feature of
this method is the possibility to elaborate detailed inferences on the tempo-
ral pattern of the connections. This may represent a fundamental clue for
understanding the information processing carried out by these regions in the
thalamus. Both methods proved convenient for combining the results of dif-
ferent experiments. Uncertainty measures were central to making inferences.

There are a number of difficulties that arise in this work. The data are
numerous and of complex structure. A neuron may receive thousands of
inputs and data are available for but a few. The sampling of the regions of the
brain cannot be expected to be unbiased. An approach needs to be developed
that reduces the influence of individual neurons on the statistics computed

14



in case something unusual is taking place for one of them. Nonstationarity
and experiment effects are sometimes present. Recent evidence of non-linear
deterministic dynamics in spike trains, as indicated by the apparent existence
of low-dimensional chaotic attractors [10, 11], should also taken into account
for global estimations of cumulated recording sessions. Thus, it appears that
future work will look for the evolution of the system in time. This also
represents a necessary step for applying these methods to neurophysiological
data about learning and memory.
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