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Summary. The response of many dynamical systems to an impulse is a linear
combination of decaying cosines. The frequencies of the cosines have
generally been estimated in geophysics by periodogram analysis and little
formal indication of uncertainty has been provided. This work presents an
estimation procedure by the methods of complex demodulation and non-
linear regression that specifically incorporates in the basic model the decaying
aspect of the cosines (periodogram analysis does not). The use of plots of the
instantaneous phase as a function of time is shown to greatly enhance
resolution. Expressions for the variances of eigenfrequencies, amplitudes,
phases and damping constants Q are derived by non-linear least-squares. The
results are illustrated, for the problem of the free oscillations of the Earth,
by computations with the record made at Trieste of the Chilean earthquake
of 1960 May 22. Sample values are periods and standard errors of 737.79 ¢
0.13s, 506.25 +0.13s and 429.60 £ 0.14 s for T3, ¢T3 and o7y with Q
values and standard errors of 200 * 14,230 = 28 and 215 * 30, respectively.

Introduction

A basic need in the measurement of terrestrial eigenspectra is a general algorithm for
simultaneously estimating eigenfrequencies, amplitudes, phases and damping coefficients.
This paper provides such a method, formulated in a statistical context so that variances of
each estimate can also be obtained. The method also has wider applications.

From the beginning of work on the Earth’s free vibrations, the emphasis has been on
estimation of the spectral eigenfrequencies (Derr 1969; Buland & Gilbert 1978), but few
estimates have been accompanied by statistical uncertainties. This requirement is important
because independent frequency estimates have been seen to differ by up to 0.5 per cent on
occasion (e.g., 2's for Ty, oTy7) and it is difficult to know how to combine the separate
estimates.
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Many fewer measurements are available of the actual ground displacements in each eigen-
vibration (Nowroozi 1974), partly because some key recording instruments were not
calibrated for impulse response, but also because some methods of spectrum estimation used
could not provide the true amplitudes. New work on terrestrial eigenvibrations is stressing
not only measurements of the ground amplitudes but also the damping of amplitudes, As
emphasized by several authors (Jobert & Roult 1976; Anderson & Hart 197 8), even the most
recent estimates of the damping constant (usually given in seismology as the specific dissipa-
tion constant Q) show considerable scatter and indicate the great difficulty of precise
measurements of the amplitude decay rate. Further, there are questions of whether Q
depends on frequency. Progress clearly depends upon the more systematic use of statistical
analysis of the time series (Bolt & Brillinger 1975).

The procedures and formula developed in this paper were motivated by the problem of
spectral estimation of damped terrestrial eigenvibrations. In particular, the computer
programs were tested on the time series obtained by the long-period pendulums at the
Grotta Gigante, Trieste, following the 1960 Chile earthquake (Bolt & Marussi 1962). These
data have provided some of the best estimates of the gravest torsional eigenfrequencies to
the present time. It is hardly necessary to point out, however, that the methodology
developed is of a general nature and is applicable to a wide class of geophysical time series.

Our procedure depends heavily on the ability of complex demodulation (Tukey 1961)
not only to locate as precise a value of an eigenfrequency as the data permit, but often to
allow an assessment of whether difficulties in resolution are arising from such physical
causes as multiple energy sources or splitting of peaks due to Earth inhomogeneities and
rotation. We investigate especially the use of the instantaneous phase spectrum for decisions
on resolution. This is a sensitive method that seems to have received little use in the analysis
of geophysical periodicities previously. We set out an informative way of comparison
between demodulate estimates of the amplitudes, frequencies and damping factors of the
oscillations and with estimates obtained by the technique of non-linear regression (see
Draper & Smith 1966). The latter technique allows the relative uncertainties between
individual caiculated eigenfrequencies to be estimated. The former gives a way to select
the most closely resolved modes.

The model

The impulse response, s(¢), of a wide variety of stable geophysical, mechanical and electro-
magnetic linear systems with finite dissipation is a linear combination of decaying cosine
waves,

K
s(t;0)= 3 agexp {—Byt)cos {1 t+8), 30, ¢))
k=1
where 0 = {ay, By, 1, 8, k= 1,..., K} with %, B, Y > 0, 0 < 8 < 27 and v, distinct.
(See Lamb 1920, pp. 230—239; Whittaker 1944, pp. 230-234; Lancaster 1966, Chapter 9.)
The 7y are the eigenfrequencies of the system. The Bx determine the rate of decay of the
oscillations and are often redefined as

B = 7e/(2Q%) (2

in terms of @, damping factors.

A traditional means of estimating the Y, of equation (1) in geophysics has been the
searching for peaks in the periodograms, or smoothed periodograms, calculated from the
geophysical time series (see e.g. Zadro & Caputo 1968; Dziewonski & Gilbert 1972). The
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usual numerical procedure has been to calculate the amplitude Fourier spectrum only,
using an FFT algorithm. A less usual method involves the fitting of a long autoregressive
schemne to the digital record (Burg 1972; Bolt & Currie 1975). None of these estimation
procedures have taken specific note of the presence of the damping factor § in equation (1),
even though, as Dahlen (1978) has lately shown, the concept of damped sinusoids is valuable
in theoretical discussions of terrestrial eigenvibrations and multiplets. Also, as mentioned
above, their use has generally not been accompanied by the provision of formal indications
of the statistical variability of the estimates.

The suggested approach is multi-stage. Assume that one of the traditional methods has
been used to determine frequencies that perhaps correspond to eigenvibrations. Then
complex demodulation (discussed in the next section) is carried out at the determined
frequencies. Examination of the results of complex demodulation suggests whether an
individual frequency is reasonable and allows initial estimation of a precise value for the
frequency, decay, phase and amplitude. Finally non-linear regression, based on the Fourier
transform values in the neighbourhood of a given frequency, is carried out in order to de-
termine final estimates of the spectral parameters and their standard errors.

Complex demodulation

Given a record X(¢), t=1,..., T, the complex demodulate at frequency X of that record is
the time series W(z,\), t =1, 2,..., that results from low-pass filtering the series X (¢) exp
{—iAt}. The complex demodulate W(¢, A\) will be much smoother than the original time
series. The technique is described in detail in Bingham, Godfrey & Tukey (1967), Brillinger
(1975, p. 33), Bloomfield (1976, Chapter 6), for example.

In the present application, suppose the low-pass filter adopted has impulse response
b(?), transfer function B(\) with sufficiently small bandwidth and suppose A is near an
eigenfrequency 7. The demodulate may be written

W(t,\)=Zb(t —u)X(u)exp {—i\t}. 3)
For the signal s(z, 8) of equation (1), the result of demodulating is
Z(t,\) ~ %B(0)ay exp {—Pyt} exp {i(vx — A)t +i; . (4)

Standardize the low-pass filter by B(0)=2 as we may. Then, from the complex de-
modulate, one sees the following forms for the instantaneous phase function

arg Z(¢,A) = (v — Nt + 8 4
and for the logarithm of the instantaneous amplitude function
log. | Z(t, \) | =~ — Bt +loge ag. (6)

1t follows that plots of arg W(z, A) and log | W(¢, \) | against ¢ can provide evidence of the
presence of a damped periodicity in a time series of interest. Indeed, successive variations
of the demodulate frequency A lead to parameter trajectories from which «, 8,y and 6 can
be estimated in some optimal sense. If the plots (see Figs 1-4) of arg W(z, ) and log,
| W(t, \)| are made nearly linear over the record duration T, especially where the signal
amplitude is large, the damped vibration is close to the adopted model. If the plot of W(z, )
is erratic, there is a suggestion that the record is just noise. If the plots have regular non-
linear behaviour, there is some violation of the basic simple model, perhaps beating between
signal and noise harmonics with nearly equal frequencies, perhaps the injection of new
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energy into the system by applied forces (perhaps an aftershock arrived), perhaps there is
time dependent dispersion.

The slope of the logarithm of the instantaneous amplitude curve gives an estimate of the
decay constant f;; the intercept gives the log instantaneous amplitude of the oscillation at
the beginning of the movement. Similarly, the intercept of the instantaneous phase plot
yields the relative phase of the oscillation. In addition, it should be noted that some idea of
the uncertainty of these estimates is given by the variation of the complex demodulate
curves about the fitted straight lines over the selected time interval.

Non-linear regression
Consider first, data generated by a model
% =50) +ej,

Jj=1,..., J where the y; are observed, where the f;(6) are known except for the K-
dimensional parameter 6, and where the ¢; are unobserved, uncorrelated random errors with
mean 0 and common variance o2, The least squares estimate of 8 is the value providing the
minimum of the expression

J
Y by —HO)
i=1

Suppose that the function f;(9) is differentiable with derivatives
a5(9)
80y

k=1,..., K. Collect the y; together into the J-vector y, the f;(§) into the J-vector £(0)
and the g% (0) into the Jx K matrix g(6). One means of determining an extreme value of 6
is through the Gauss—Newton iteration procedure

B+l =9"+[g(8")*g(0™]'g(6™)*ly — £(8)] M

n=0, 1, 2,..., having started with some initial value 8°. (Other procedures are described
in Chambers (1973).) Under regularity conditions this estimate will be approximately
normal with mean 6 and covariance matrix that may be estimated by

(86" 2. 1y - £ P/ - K) ®
7

&ix(0) =

(see Jennrich 1969). :

In the present case, where the noise is not uncorrelated and K is very large, it seems
appropriate to modify the above approach as follows. Suppose
X(@)=s@, O+e(®y t=1,...,T

where s(t, 8) is given by equation (1) and e(¢) is a stationary noise series with mean O
and power spectrum f;.(A). Define

T
AT = Y exp {—i\}
r=1

T
di()= ¥ X(D)exp {—ikt},
t=1
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0 < A < 2, with similar definitions for d7 (), dZ()). By Parseval’s formula

2nj 2aj
(7))

T-1 2

X =5, F=T S
t=1

j=0

®)

Minimizing the left-hand side of this expression is equivalent to minimizing the right-hand
side. Now d7(\) is a sum of the terms

T -

2 o exp {—Pet} cos {1t + 8} exp {—ikt} = beAT(A — x) + B AT\ + ),
t=1
k=1,...,K, where by = Yhay exp {i8y }, Xz = v + ifx. By inspection, the term in AT()\ — Xi)
has appreciable magnitude only for X near 7. This means that the minimum of equation (9)
may be obtained approximately by simultaneously minimizing the expressions

)

I

12

A2 ) o

where 1y,..., I are disjoint frequency intervals making up the interval [0, 7], and 27//T, A
belong to I. In addition, for 27j/T in I,

2nj 2nj 2nj
dT(—) ~ dT(—-) s AT(—— -
\7r *\7r % T Xk)

are approximately independent complex normal variates with zero mean and common
variance 2n7fee(}). (See Brillinger 1975, Theorem 4.4.1. This approximation seems to work
very well in practice, ibid )

We proceed by computing the dZ(2nj/T) using a fast Fourier transform algorithm,
identifying the intervals J; from the periodogram of the record X (¢) and then estimating
bk, Xz by minimizing expression (10) using a Gauss—Newton iteration procedure. The
covariance matrix of these estimates may be estimated by an expression analogous to
equation (8).

If we think of B, as fractions of T, say f, = ¢,/T as seems reasonable in practice (for
otherwise the signal s(z, 8) would quickly become a negligible part of X(¢) as ¢ increases)
then if &y, ¢k, 7, S5 denote the least squares estimates it can be shown, by direct extension
of the arguments of Hannan (1973) that

var &y ~ T4 fee (i) Ba($5c) T () ™

var & ~ T74mfee(ve) e o($1c) I (1) ™

var ¥ ~ T724n foe (Vi) i To(95c) () ™ (11)
COV {a, i} ~ T 4mfue (Vi) o [y (01) T (1)

cov {Vx, bx} ~ T7*4nfee(vi) i Ly(9c) I (91) ™,

k=1,...,K with all other covariances asymptotically negligible, where

1
L(p) = f u'exp {—20u} du
0

1=0,1,2
T(9) = 1o(8)I)(8) ~ 1(9)*.
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Expressions analogous to those of equation (11) are derived for the case of =0,k =1,...,
K in Whittle (1954), Walker (1971), Hannan (1973).

In the case that a separate record of the noise process, €(¢), is available, it may be used
to estimate f,.(y) directly and alternate estimates of the variances of interest may be con-
structed through the formulas of equation (11). This should be done whenever possible as
it seems that the variance estimates should be more robust than those produced by the non-
linear regression. We were unable to do this in the present case of the Trieste data.

Numerical results

The steps outlined in the paper were applied to the Trieste record of the 1960 May 22
Chilean earthquake. The data were digitized at a time interval of 2 min and tides were
removed. The number of data points was 2548 points. The periodogram of the record was
examined for peaks. Demodulation was carried out at the peak frequencies (Bolt & Currie
1975). A representative selection of the results is described below. The coefficients b(¢)
of equation (3) were taken proportional to 1+ cos (mu/L) for |u | < L and were 0 otherwise
with L =200. (For a lengthy stretch of data, it would have been advantageous to employ
a fast Fourier transform in the computations (see Bingham et al. 1967)).

Consider first the demodulates for T, shown in Fig. 1. The instantaneous phase remains
almost constant until about 25 hr from the onset. This is followed by small variations in
phase until almost 40 hr when the phase increases sharply, becoming erratic at about 50 hr.
There is thus evidence that there is almost a pure harmonic, at about the demodulation
frequency chosen, for at least 25 hr and perhaps for another 10. The behaviour of the
instantaneous amplitude is consistent with the phase information; a straight line equation (6)
might well be fitted to the first 2535 hr and a decay rate §; measured. After this time the
amplitudes become erratic with large fluctuations which suggest the level of background
noise has been reached. Some variation in the fitting of the line equation (6) even to the first
part of the spectrum is, however, clearly permissible and numerical fits of straight lines
indicate slopes corresponding to Q values between extremes of 300 and 400 are perhaps
allowable. If a longer period of recording were used, however, Fig. 1 indicates that a lower
decay rate might be calculated (i.e., a false high Q). Comparison with similar plots shows
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Figure 1. Results of complex demodulation for the mode ,T, at a demodulation period of 1303.15 s
from the N-S§ horizontal Trieste record of the 1964 Chilean earthquake. The upper plot gives the log,,
instantaneous ground amplitude as a function of time in hours from the beginning of the record. The
lower plot shows the variation in instantaneous phase between — 7 and 7 with time in hours.
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Figure 2, Complex demodulation for ,T, at a demodulation period of 925.65 s for the Trieste data.

that the 7, mode gives one of the more stable instantaneous plots calculated from the
Trieste data. In this regard it should be noted that this eigenvibration is well separated from
neighbouring torsional and spheroidal modes (see Fig. 1, Bolt & Currie 1975) so that no
interference is expected.

Now, consider the similarly isolated (T mode, demodulated in Fig. 2. Here there is even
more stability of instantaneous phase and amplitude than for (7. There is only a slight drift
in phase over the first 65 hr. (This slight drift may indicate that the demodulation frequency
adopted could be improved slightly.) The decay for o7 is clearly similar to that for 4T} (note
different vertical scales), and a straight line can be fitted to the instantaneous amplitude up
to 60 hr with comparable precision. Overall, we would expect the estimate of the o7}
frequency to be more reliable than that of ,75.

In Fig. 3, the instantaneous spectra for the demodulates of the spheroidal mode S, are
shown. In this case, apart from a hiatus near the beginning of the record, the phase is almost
constant near —0.77 throughout the record. We thus have an assurance that we are
measuring a single coherent decaying sinusoid throughout most of the recording. Further
study of the instantaneous amplitude confirms this, although there is a more rapid decrease
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Figure 3. Complex demodulation for ,S, at a demodulation period ot 634.90 s for the Trieste data.
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Figure 4. Complex demodulation for ,T, at a demodulation period of 391.45 s for the Trieste data.

in ampiitude after about 60 hr. Some allowance for this change can be made in estimating
the decay rate ;. The observed Q is clearly significantly higher for 4S5, than for ¢7; and (7T
and appears moderately well resolved in the sense of the straight line fit equation (6). The
explanation of the change in slope at 60 hr remains unknown, but presumably the effect of
interfering signals (noise?) has become more important.

The fourth demodulate presented (Fig. 4) is an illustration of a mode for which the
instantaneous phase plot detects major difficulties in resolution. Even 20 hr after the onset
the phase angle begins to change rapidly and thereafter cannot be followed. (Note that phase
moves continuously from the top to the bottom of the plot.) The conclusion is that only the
first 20 hr of amplitudes should be used to estimate Q for this mode. A mean Q value of
only about 190 is indicated by the slope of a fitted line. Thereafter the amplitude decays
more slowly with large fluctuations. It is interesting that the spectral peak of o7Ts is very
near that of its neighbour S, and it is feasible that some cross modulation (or leakage)
is occurring.

Table 1 gives the non-linear least squares estimates of the periods, Q-factors, and relative
initial amplitudes and phases for the modes that complex demodulation suggested were truly
present and were not multiple. The figures in brackets below give estimates of the
corresponding standard errors. (The model was reparameterized to estimate eigenperiods,
rather than frequencies, as these seem to be the more usual values discussed.)

The iteration scheme converged exceedingly rapidly. In the case of the modes indicated,
the results presented are those obtained after 10 iterations. The case of split peaks might
have been handled by fitting the sum of two decaying cosine waves within a frequency
interval [.

Conclusions

The present paper demonstrates the advantages of the complex demodulation technique
for the spectral analysis of geophysical time series composed of damped harmonic terms in
the presence of noise. The discussion here focused on the critical problem of improving
estimates of amplitudes, frequencies and Q values for the modes of damped eigenvibrations
of the Earth. When comparison is possible (Bolt & Currie 1975), it is found that recent
estimates of eigenfrequencies for some modes (e.g., 474, 0717) differ by up to 0.5 per cent.
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Table 1. Spectral estimnates for the Trieste data (standard errors in parentheses).

Complex Initial
Demodulate Amplitude Phase
Mode Period (sec) o] (arbitrary units) (radians)
T, 1303.150 347.8 30.64 .216
e (.697) (20.3) (4.63) (.151)
oTs 1078.816 185.0 62.01 1.973
(.371) (23.6) (8.07) (.130)
. 963.005 336.2 23.41 1.094
° (.267) (62.7) (4.30) (.184)
T, 925.651 357.2 25.55 .160
° (.332) (91.4) (6.43) (.252)
5 818.377 124.8 127.38 -2.624
° (.427) (16.2) (17.35) (.137)
Tq 737.791 199.6 119.37 2.786
° (.129) (14.0) (8.74) (.073)
Sg 707.458 376.2 46.73 2,764
e (.202) (81.0) (10.10) (.217)
Sg 659.908 184.4 125.91 -2.921
° (.207) (21.3) (15.36) (.122)
Sy 634.087 658.1 23.18 -2.155
° (.086) (117.3) (3.92) (.169)
Tio 619.202 187.6 160.62 - ~3.049
° (.134) (15.2) (13.77) (.086)
13 506.251 230.3 140.77 .532
° (.134) (28.1) (17.88) (.127)
258 486.827 159.4 106.21 -.944
(.118) (12.3) (9.33) (.088)
T 452.416 172.2 126.21 .040
° (.109) (14.3) (11.41) (.091)
oT16 429604 214.5 155.35 2.940
(.141) (30.1) (22.94) (.148)
g 391.447 188.3 119.32 1.929
° (.088) (16.0) (10.76) (.091)
Tho 359.399 248.7 84.15 -2.558
e (.041) (14.2) (5.05) (.061)

However, it is difficult to combine the independent estimates because of the lack of com-
parable probability models. It is recommended that the present method be used so that
pooling with appropriate weights can be made.

Studies of terrestrial eigenspectra have now advanced to the stage when analysis of a long
record of free oscillations must provide more than a set of mean eigenfrequencies. Not only
does the rotation and ellipticity of the Earth produce frequency multiplets about the central
(degenerate) frequency, but lateral inhomogeneities split the peaks also. Earthquake sources
of various types and at various locations generate at different seismographic stations
different relative strengths in the multiplets. As well, variations in long-period noise spectra,
activation of new sources, and rotation of the nodal lines, relative to the receiver, all produce
fluctuations which complicate the meaning to be attached to a simple mean eigenfrequency
estimate. It is demonstrated in this paper that the plots of the real and imaginary parts of the
complex demodulates of each mode provide a powerful way to detect and explore such
fluctuations. The eccentric behaviour is not ‘swept under the rug’ as occurs with most
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traditional methods. Already some progress in the geophysical interpretation of these plots
has been made (Hansen 1978).

Formulae in the present paper enable programs to be written to compute relatively
quickly the complex demodulates and, by non-linear least squares, variances of the spectral
parameters. By repetition at successive steps in the demodulating frequency, the set of
instantaneous amplitude and phase plots allows a decision to be made on the best eigen-
frequency resolution available from the data and the quality of the damping factor Q and
amplitude of ground motion that can be obtained. Clearly more experience with the method
is needed before specific rules for decisions can be given.
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