
Parallelizing CART Using a WorkstationNetworkPhil Spector Leo Breiman�Department of StatisticsUniversity of California, BerkeleyJanuary, 1995AbstractThe CART (Classi�cation and Regression Trees) program, devel-oped by Breiman, et. al.[1985], has been used in a wide variety ofdisciplines to solve classi�cation problems where the available vari-ables do not meet the usual assumptions for classical analyses. Todo this, the procedure considers, for each continuous variable, a cut-o� value which is most e�ective in discriminating between groups inquestion, and for each discrete variable, a partitioning of the discretevalues to achieve the same goal. The procedure continues recursivelyby applying the same criteria to the subgroups of the data which wereformed by earlier splits. Since, at each level of the data splitting, apotentially large number of variables must be considered, and since ata given point in the process the partitioning ability of each variable ismeasured independently of other variables, the technique lends itselfvery naturally to parallel processing, with each processor evaluatingthe e�ectiveness of some subset of the variables, and a central processcoordinating the information.This paper investigates a scheme for parallelizing the CART al-gorithm, using the commercially available program C-Linda (John-son[1988] and Wolfe[1992]), on a network of 20 Sun Microsystems�Partially supported by NIH Grant PR75361



SparcStations. While some reductions in execution time were ob-tained, they were considerably smaller than expected, and increasingthe number of machines used sometimes increased execution time in-stead of decreasing it.1 IntroductionSome years ago, one of the authors (Phil Spector) wrote software thatdistributed large Monte Carlo simulations out over our departmentalworkstation network (currently 40 Sun Microsystems SPARCstations),gathered the results and aggregated them as desired. Since that time,our network has functioned at supercomputer speed on Monte Carloproblems. These problems have a structure that made them easily dis-assembled into pieces needing almost no intercommunication betweenworkstations. The results led us to hope that problems that couldbe cut into pieces not requiring much intercommunication could alsobe handled e�ectively on a workstation network. To explore this, wedecided to try to parallelize a version of CART over the network.CART(see Breiman et. al.[1985]) is a program that constructs a bi-nary prediction tree for regression and classi�cation. Since it searchesthrough many candidate splits at each node, tree construction is fairlycompute intensive compared, say, to linear regression. Also, becauseCART cuts the data into disjoint pieces and then operates separatelyon each piece, we believed that intercommunication requirements werenot extensive. In short, CART seemed a good test bed to see how e�ec-tively a workstation system could be employed as a parallel computeron statistical procedures.The steps in this experiment were the following. First, a specialversion of CART was written designed to minimize network commu-nications requirements. Second, the program was distributed over thenetwork using the C-Linda parallelizing language (See Johnson[1988]and Wolfe[1992]). Third, we experimented with the sizes of the prob-lems fed into the parallel CART program and with the number ofworkstations used to get results on running times.Our conclusions are disappointing. Network communication speedand capacity form a narrow bottleneck as compared to CPU speed.Using multiple workstations decreased running times only for largeproblems, and even for these, any decrease using 4 or 5 machines was2



as large or larger as when 20 machines were used.Our outline is this: in the next section (2) we give a brief descrip-tion of the basic CART concepts. Section 3 describes the distributionstrategy in the CART program designed for this project. Section 4describes the C-Linda implementation, and Section 5 presents the re-sults of our experiments. Concluding remarks are given in Section6.2 The CART ProgramThe basic strategy of the CART algorithm for classi�cation providesa recursive partitioning of a multivariate sample in the following way.At each stage of the partitioning procedure, each variable is studiedfor its potential in classifying the observations in the sample into theiractual groups. This is done by examining how e�ectively each split ofthe variable divides the data with respect to the observation's groupmembership. In this context, a split is a binary division of the obser-vations. For continuous predictor variables, each value found in thedata set is considered; observations less than or equal to the valueare placed into one group (known as the left node) and observationsgreater than the value are placed in the right node. For categori-cal variables, the splits are de�ned as all possible binary divisions ofthe unique values of the categorical variable. To assess the qualityof each split, a measure of node impurity is employed. A variety ofsuch measures are available; in this study, the measure used was theGini measure. To determine the way the observations will be dividedat each stage of the recursive procedure, the most e�ective split foreach variable is compared in terms of its ability to reduce the impurityof the resulting nodes which such a split would produce. The valueof the split for that variable which produces the optimal reductionin impurity is then used to divide the node which is being currentlyconsidered. The next step in the recursive procedure is to apply thesame technique to both the left and right nodes created in the previousstep. Finally, after a prespeci�ed number of nodes is formed, pruningtechniques are used to eliminate some of the later splits which werenot su�ciently useful in reducing node impurity. (In this study, the�nal pruning was done by a single machine; only the actual splittingof the data was distributed to machines on the network.) The �nal3



result of the analysis is usually displayed in the form of a classi�cationtree, as shown in Figure 1.Figure 1: Display of a CART analysis
x<3

x>=3

node 1

z<4
z>=4

node 2

node 4

y<3.5
y>=3.5

node 5

node 8 node 9

y<3
y>=3

node 3

node 6 node 7

Note that once the data have been split in two, then the treeconstruction on each piece of the data is carried out independently ofthe work on the other piece. Also, the search for the best split on aspeci�ed variable at a node is carried out independently of the valuesof the other variables. 4



3 Distribution StrategyAt �rst look, an obvious strategy for distribution suggests itself: useone CPU to get the �rst split. Then farm out the data in the leftand right nodes to di�erent workstations. When each of them is split,farm out the pieces to four workstations, and so on. This strategy wasconsidered and rejected. Its advantage is that once the initial datatransfer is done, little intercommunication is necessary. The negativesare that if the initial data set is very large, it may not �t into thememory of a single workstation and paging is slow. The initial split,with a single CPU doing all the work, may be slow. The transfer fromdisk of large amounts of data as the construction �lters down may alsoslow the construction. Instead, a strategy was adopted which does amore balance allocation of computing and memory. Each workstationis assigned all data in a certain number of variables. For instance, in aclassi�cation problem with 60 variables, if 20 workstations were used,each is assigned 3 variables.If the problem is classi�cation with 100,000 cases, then each work-station would be loaded with the 100,000 values of a case number,classi�cation of that case, and the values of 3 variables in that case.This requires only a modest amount of memory. The computationwould proceed as follows: each workstation would know which valuesof its variables were in a given node. At a signal from the mothermachine, it would search through all of its variables to �nd which onegave the best split, at what location and what the value of the Ginicriterion was at the best split. These three numbers would be com-municated from the daughter machines to the mother machine. Themother machine would �nd the best split among all those pro�ered.Then all machines are noti�ed of which cases went right and left andrearrange the values of their variables. More speci�cally, when an op-timal split is identi�ed for a particular variable, all the other variablesfrom observations in the a�ected node must be reordered to corre-spond to this optimal split. In this way, the values for observations ineach node are contiguous in the memory of the computer.This distribution also has drawbacks. One is that the next stage ofthe recursive partitioning can not take place until each of the machineswhich is evaluating the splits has completed its task. Thus, if onemachine which is involved in the computations is markedly slower thanthe others, then the faster machines will have to wait for the slower5



one to complete its computations before proceeding to the next stageof the procedure. The other, and more serious, is the increased needfor communication among the di�erent machines once the optimumsplit is found. Since the data being analyzed must be reorganized intoleft and right nodes at each stage of the procedure, the machine whichhas found the optimum split must broadcast information regardingthe ordering of the variable in question to all the other machines, sothat they may update the node membership before advancing to thenext stage of the procedure.4 Implementation Using C-LindaSimulations were carried out using the C-Linda system1. In this sys-tem, communication between machines on the network is carried outby placing objects in a conceptual tuple-space. An object in tuplespace consists of one or more elements which may be character or nu-merical in value. Any machine participating in the parallel executionof the program can either place objects in tuple space, or, by specify-ing a partial tuple, extract objects which match certain criteria. Thus,the �rst step in the parallel execution of CART consists of a centralcomputer (hereafter referred to as the mother) determining how manymachines are available, and how many variables in the data set will beassigned to each other machine (hereafter referred to as the children).Next, the appropriate data is placed in tuple space with an identi�erunique to the machine which will be responsible for the data, andeach child machine extracts its data from tuple space. Note that thisallows analysis of extremely large data sets, since no one computerneeds to have access to all the data at any time; the mother com-puter can simply read the data from disk in small pieces, and thendistribute it around the network through the tuple space. At eachstage of the iterative process, the children report back to the motherby placing a tuple with their unique identi�er and the maximum re-duction in node impurity which was achieved for any split within thevariables assigned to that child. Then, the mother machine determinesthe variable whose optimum split was the overall most e�ective at re-ducing node impurity. Note that this requires responses from each ofthe children before the recursive splitting of the nodes can continue.1Linda is a trademark of Scienti�c Computing Associates, New Haven.6



When all the children have reported, the mother machine informs thechild responsible for the variable which resulted in the globally opti-mal split that it should transmit its reordering information to all theother children. Once each of the other children extracts the reorder-ing information from tuple space and reorders the observations for itsvariables, the recursive process continues. Finally, after a prespeci�ednumber of nodes is formed, the mother machine prunes the tree usingthe techniques described in Breiman, et. al.(1985). The decision rulethus obtained can then be displayed in a diagram similar to Figure 1,or new test cases could be assigned to one of the groups based on thedecision rule.5 Simulation ResultsA simulation study was designed to investigate the e�ects of the num-bers of observations and variables, and the number of machines used,on the execution time of the CART algorithm. Twenty workstations,mostly SUN Sparc-1+s, connected by a 10 Mbit ethernet network wereemployed in the study. Sample sizes (number of observations) of 1000,2000, 5000, 10000, 20000, 50000 and 100000 were used, each with ei-ther 20 or 40 variables. Every third variable was categorical, withbetween 8 and 12 categories, and the dependent variable had threelevels. For all combinations of observations and variables, the algo-rithm was executed on a single workstation. In the 20 variable case,the algorithm was executed in parallel across the network using 2, 4,5, 10 and 20 machines, corresponding to 10, 5, 4, 2 and 1 variablesper machine, respectively. In the 40 variable case, 4, 5, 8, 10 and 20machines were used, corresponding to 10, 8, 5, 4 and 2 variables permachine. The execution times, measured in minutes of actual clocktime, are displayed in Figures 2 and 3.Examination of these graphs shows that, while there is a reductionin execution time of the programs when multiple machines are used,the reduction is by no means linear with the number of machines used.For example, in the case of 20 variables and 10000 observations, theexecution time for a single machine was 1784 seconds. By using �vemachines in parallel on the network, this time was reduced to 702seconds, roughly 40 percent of the single machine time. This is halfas fast as the optimal reduction which one might expect from using7



Figure 2: Results of Simulation for 20 variables
Sample Size

Tim
e

0 20000 40000 60000 80000 100000

0:00

3:00:00

6:00:00

Standalone
2 Machines
4 Machines
5 Machines
10 Machines
20 Machines

�ve machines. In addition, increasing the number of machines above�ve was not e�ective in reducing execution time. Using 20 machines,the execution time was 1090 seconds, or a little over 60 percent of thesingle machine time, and far slower than the theoretical maximum.For the CART algorithm described above this is primarily due to theincreased computational burden of distributing the data among themachines and the communication among the machines necessary toprogress through the recursive splitting. In addition, since all the ma-chines must �nish their computations at each stage before the nextrecursive partitioning can begin, problems of synchronicity among ma-chines increase as more machines are used. This is especially criticalif there are di�erential loads on the machines used for parallelizationdue to other user's activities on those machines. A similar pattern ex-ists for the 40 variable case, with 10 machines resulting in the shortestexecution time, approximately 50 percent of the time required for asingle machine. Thus, more machines do not necessarily reduce theexecution time, and even the most e�ective con�guration of machines8



Figure 3: Results of Simulation for 40 variables
Sample Size

Tim
e

0 20000 40000 60000 80000 100000

0:00

4:40:00

9:20:00

14:00:00

Standalone
4 Machines
5 Machines
8 Machines
10 Machines
20 Machines

does not achieve a reduction in time close to the theoretically maxi-mum reduction.6 ConclusionsFor the problem at hand, parallelization clearly is not a panacea, andlarge reductions in time will not be achieved through parallelizationacross the network. However, reductions in time on the order of 40to 50 percent are not unusual. This becomes especially importantfor the case of very large data sets, where no single machine on thenetwork would be able to accommodate all of the data. In such a case,the parallelized technique could still be feasible, since each machineonly needs to access a fraction of the data. Of course, communicationdelays would be increased as the size of the data set increases, but forvery large data sets, this technique might provide the only practicalalternative. 9



A basic problem of parallelization is that techniques which may becomputationally e�cient on a single processor may not necessarily leadto similar e�ciencies when a program is parallelized across a network.In the current study, since each variable is evaluated independently ofthe others at each stage of the recursion, the parallelization schemeseemed very natural.But, the price which is paid is that an array of ordering informationmust be broadcast to all the machines in the network at each stage ofthe partitioning process, so that the data residing in the memory ofeach machine can be appropriately reordered. While this strategy ise�ective when data is stored on a single machine, it is an open questionas to what other techniques might be more e�cient for keeping track ofnode membership when the data is distributed among many machineson a network. It may be necessary to rethink the algorithm from �rstprinciples in order to arrive at an e�ective solution.Many of the di�culties encountered in the present study might bealleviated if a shift was made from parallelization across a network toparallelization through a single shared memory computer with mul-tiple processors, or if the speed of the network interconnecting themachines used was increased. These issues and challenges need to beaddressed more thoroughly as parallelization of statistical algorithmsbecomes more widespread.7 References1 Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1985).Classi�cation and Regression Trees , Wadsworth/BrooksCole,Monterey, CA.2 Johnson, R.C. (1988) Linda as a memory model turns sequentialto parallel,Electronic Engineering Times, 493, 60.3 Wolfe, A. (1992) Parallel tools kick applications into high gear,Electronic Engineering Times, 686, 30.10


