Parallelizing CART Using a Workstation
Network

Phil Spector Leo Breiman*

Department of Statistics
University of California, Berkeley

January, 1995

Abstract

The CART (Classification and Regression Trees) program, devel-
oped by Breiman, et. al[1985], has been used in a wide variety of
disciplines to solve classification problems where the available vari-
ables do not meet the usual assumptions for classical analyses. To
do this, the procedure considers, for each continuous variable, a cut-
off value which is most effective in discriminating between groups in
question, and for each discrete variable, a partitioning of the discrete
values to achieve the same goal. The procedure continues recursively
by applying the same criteria to the subgroups of the data which were
formed by earlier splits. Since, at each level of the data splitting, a
potentially large number of variables must be considered, and since at
a given point in the process the partitioning ability of each variable is
measured independently of other variables, the technique lends itself
very naturally to parallel processing, with each processor evaluating
the effectiveness of some subset of the variables, and a central process
coordinating the information.

This paper investigates a scheme for parallelizing the CART al-
gorithm, using the commercially available program C-Linda (John-
son[1988] and Wolfe[1992]), on a network of 20 Sun Microsystems

*Partially supported by NIH Grant PR7536

SparcStations. While some reductions in execution time were ob-
tained, they were considerably smaller than expected, and increasing
the number of machines used sometimes increased execution time in-
stead of decreasing it.

1 Introduction

Some years ago, one of the authors (Phil Spector) wrote software that
distributed large Monte Carlo simulations out over our departmental
workstation network (currently 40 Sun Microsystems SPARCstations),
gathered the results and aggregated them as desired. Since that time,
our network has functioned at supercomputer speed on Monte Carlo
problems. These problems have a structure that made them easily dis-
assembled into pieces needing almost no intercommunication between
workstations. The results led us to hope that problems that could
be cut into pieces not requiring much intercommunication could also
be handled effectively on a workstation network. To explore this, we
decided to try to parallelize a version of CART over the network.

CART(see Breiman et. al.[1985])is a program that constructs a bi-
nary prediction tree for regression and classification. Since it searches
through many candidate splits at each node, tree construction is fairly
compute intensive compared, say, to linear regression. Also, because
CART cuts the data into disjoint pieces and then operates separately
on each piece, we believed that intercommunication requirements were
not extensive. In short, CART seemed a good test bed to see how effec-
tively a workstation system could be employed as a parallel computer
on statistical procedures.

The steps in this experiment were the following. First, a special
version of CART was written designed to minimize network commu-
nications requirements. Second, the program was distributed over the
network using the C-Linda parallelizing language (See Johnson[1988]
and Wolfe[1992]). Third, we experimented with the sizes of the prob-
lems fed into the parallel CART program and with the number of
workstations used to get results on running times.

Our conclusions are disappointing. Network communication speed
and capacity form a narrow bottleneck as compared to CPU speed.
Using multiple workstations decreased running times only for large
problems, and even for these, any decrease using 4 or 5 machines was

as large or larger as when 20 machines were used.

Our outline is this: in the next section (2) we give a brief descrip-
tion of the basic CART concepts. Section 3 describes the distribution
strategy in the CART program designed for this project. Section 4
describes the C-Linda implementation, and Section 5 presents the re-
sults of our experiments. Concluding remarks are given in Section

6.

2 The CART Program

The basic strategy of the CART algorithm for classification provides
a recursive partitioning of a multivariate sample in the following way.
At each stage of the partitioning procedure, each variable is studied
for its potential in classifying the observations in the sample into their
actual groups. This is done by examining how effectively each split of
the variable divides the data with respect to the observation’s group
membership. In this context, a split is a binary division of the obser-
vations. For continuous predictor variables, each value found in the
data set is considered; observations less than or equal to the value
are placed into one group (known as the left node) and observations
greater than the value are placed in the right node. For categori-
cal variables, the splits are defined as all possible binary divisions of
the unique values of the categorical variable. To assess the quality
of each split, a measure of node impurity is employed. A variety of
such measures are available; in this study, the measure used was the
Gini measure. To determine the way the observations will be divided
at each stage of the recursive procedure, the most effective split for
each variable is compared in terms of its ability to reduce the impurity
of the resulting nodes which such a split would produce. The value
of the split for that variable which produces the optimal reduction
in impurity is then used to divide the node which is being currently
considered. The next step in the recursive procedure is to apply the
same technique to both the left and right nodes created in the previous
step. Finally, after a prespecified number of nodes is formed, pruning
techniques are used to eliminate some of the later splits which were
not sufficiently useful in reducing node impurity. (In this study, the
final pruning was done by a single machine; only the actual splitting
of the data was distributed to machines on the network.) The final

result of the analysis is usually displayed in the form of a classification
tree, as shown in Figure 1.

Figure 1: Display of a CART analysis

Cnode 1

xX<3
xX=>=3
z<4 y<3
z>=4 y=>=3
Goaes) [node] [nove 7]
y<3.5
y>=3.5
‘nodeS‘ ‘nodeg‘

Note that once the data have been split in two, then the tree
construction on each piece of the data is carried out independently of
the work on the other piece. Also, the search for the best split on a
specified variable at a node is carried out independently of the values
of the other variables.

3 Distribution Strategy

At first look, an obvious strategy for distribution suggests itself: use
one CPU to get the first split. Then farm out the data in the left
and right nodes to different workstations. When each of them is split,
farm out the pieces to four workstations, and so on. This strategy was
considered and rejected. Its advantage is that once the initial data
transfer is done, little intercommunication is necessary. The negatives
are that if the initial data set is very large, it may not fit into the
memory of a single workstation and paging is slow. The initial split,
with a single CPU doing all the work, may be slow. The transfer from
disk of large amounts of data as the construction filters down may also
slow the construction. Instead, a strategy was adopted which does a
more balance allocation of computing and memory. Each workstation
is assigned all data in a certain number of variables. For instance, in a
classification problem with 60 variables, if 20 workstations were used,
each is assigned 3 variables.

If the problem is classification with 100,000 cases, then each work-
station would be loaded with the 100,000 values of a case number,
classification of that case, and the values of 3 variables in that case.
This requires only a modest amount of memory. The computation
would proceed as follows: each workstation would know which values
of its variables were in a given node. At a signal from the mother
machine, it would search through all of its variables to find which one
gave the best split, at what location and what the value of the Gini
criterion was at the best split. These three numbers would be com-
municated from the daughter machines to the mother machine. The
mother machine would find the best split among all those proffered.
Then all machines are notified of which cases went right and left and
rearrange the values of their variables. More specifically, when an op-
timal split is identified for a particular variable, all the other variables
from observations in the affected node must be reordered to corre-
spond to this optimal split. In this way, the values for observations in
each node are contiguous in the memory of the computer.

This distribution also has drawbacks. One is that the next stage of
the recursive partitioning can not take place until each of the machines
which is evaluating the splits has completed its task. Thus, if one
machine which is involved in the computations is markedly slower than
the others, then the faster machines will have to wait for the slower

one to complete its computations before proceeding to the next stage
of the procedure. The other, and more serious, is the increased need
for communication among the different machines once the optimum
split is found. Since the data being analyzed must be reorganized into
left and right nodes at each stage of the procedure, the machine which
has found the optimum split must broadcast information regarding
the ordering of the variable in question to all the other machines, so
that they may update the node membership before advancing to the
next stage of the procedure.

4 Implementation Using C-Linda

Simulations were carried out using the C-Linda system!. In this sys-
tem, communication between machines on the network is carried out
by placing objects in a conceptual tuple-space. An object in tuple
space consists of one or more elements which may be character or nu-
merical in value. Any machine participating in the parallel execution
of the program can either place objects in tuple space, or, by specify-
ing a partial tuple, extract objects which match certain criteria. Thus,
the first step in the parallel execution of CART consists of a central
computer (hereafter referred to as the mother) determining how many
machines are available, and how many variables in the data set will be
assigned to each other machine (hereafter referred to as the children).
Next, the appropriate data is placed in tuple space with an identifier
unique to the machine which will be responsible for the data, and
each child machine extracts its data from tuple space. Note that this
allows analysis of extremely large data sets, since no one computer
needs to have access to all the data at any time; the mother com-
puter can simply read the data from disk in small pieces, and then
distribute it around the network through the tuple space. At each
stage of the iterative process, the children report back to the mother
by placing a tuple with their unique identifier and the maximum re-
duction in node impurity which was achieved for any split within the
variables assigned to that child. Then, the mother machine determines
the variable whose optimum split was the overall most effective at re-
ducing node impurity. Note that this requires responses from each of
the children before the recursive splitting of the nodes can continue.

'Linda is a trademark of Scientific Computing Associates, New Haven.

When all the children have reported, the mother machine informs the
child responsible for the variable which resulted in the globally opti-
mal split that it should transmit its reordering information to all the
other children. Once each of the other children extracts the reorder-
ing information from tuple space and reorders the observations for its
variables, the recursive process continues. Finally, after a prespecified
number of nodes is formed, the mother machine prunes the tree using
the techniques described in Breiman, et. al.(1985). The decision rule
thus obtained can then be displayed in a diagram similar to Figure 1,
or new test cases could be assigned to one of the groups based on the
decision rule.

5 Simulation Results

A simulation study was designed to investigate the effects of the num-
bers of observations and variables, and the number of machines used,
on the execution time of the CART algorithm. Twenty workstations,
mostly SUN Sparc-1+4s, connected by a 10 Mbit ethernet network were
employed in the study. Sample sizes (number of observations) of 1000,
2000, 5000, 10000, 20000, 50000 and 100000 were used, each with ei-
ther 20 or 40 variables. Every third variable was categorical, with
between 8 and 12 categories, and the dependent variable had three
levels. For all combinations of observations and variables, the algo-
rithm was executed on a single workstation. In the 20 variable case,
the algorithm was executed in parallel across the network using 2, 4,
5, 10 and 20 machines, corresponding to 10, 5, 4, 2 and 1 variables
per machine, respectively. In the 40 variable case, 4, 5, 8, 10 and 20
machines were used, corresponding to 10, 8, 5, 4 and 2 variables per
machine. The execution times, measured in minutes of actual clock
time, are displayed in Figures 2 and 3.

Examination of these graphs shows that, while there is a reduction
in execution time of the programs when multiple machines are used,
the reduction is by no means linear with the number of machines used.
For example, in the case of 20 variables and 10000 observations, the
execution time for a single machine was 1784 seconds. By using five
machines in parallel on the network, this time was reduced to 702
seconds, roughly 40 percent of the single machine time. This is half
as fast as the optimal reduction which one might expect from using

Figure 2: Results of Simulation for 20 variables

—— Standalone
2 Machines
---- 4 Machines
——— 5 Machines
—— 10 Machines
—-— 20 Machines

000000

6:00:00—

Time

3:00:00—

0:00 —

T T T T T T
o 20000 40000 60000 80000 100000

Sample Size

five machines. In addition, increasing the number of machines above
five was not effective in reducing execution time. Using 20 machines,
the execution time was 1090 seconds, or a little over 60 percent of the
single machine time, and far slower than the theoretical maximum.
For the CART algorithm described above this is primarily due to the
increased computational burden of distributing the data among the
machines and the communication among the machines necessary to
progress through the recursive splitting. In addition, since all the ma-
chines must finish their computations at each stage before the next
recursive partitioning can begin, problems of synchronicity among ma-
chines increase as more machines are used. This is especially critical
if there are differential loads on the machines used for parallelization
due to other user’s activities on those machines. A similar pattern ex-
ists for the 40 variable case, with 10 machines resulting in the shortest
execution time, approximately 50 percent of the time required for a
single machine. Thus, more machines do not necessarily reduce the
execution time, and even the most effective configuration of machines

Figure 3: Results of Simulation for 40 variables

14:00:00-
o
© —— Standalone
o 4 Machines
o 5 Machines o
© ——— 8 Machines g
© —— 10 Machines
© —-— 20 Machines
9:20:00—
=]
@
E
=

4:40:00—

0:00 —

T T T T T T
o 20000 40000 60000 80000 100000

Sample Size

does not achieve a reduction in time close to the theoretically maxi-
mum reduction.

6 Conclusions

For the problem at hand, parallelization clearly is not a panacea, and
large reductions in time will not be achieved through parallelization
across the network. However, reductions in time on the order of 40
to 50 percent are not unusual. This becomes especially important
for the case of very large data sets, where no single machine on the
network would be able to accommodate all of the data. In such a case,
the parallelized technique could still be feasible, since each machine
only needs to access a fraction of the data. Of course, communication
delays would be increased as the size of the data set increases, but for
very large data sets, this technique might provide the only practical
alternative.

A basic problem of parallelization is that techniques which may be
computationally efficient on a single processor may not necessarily lead
to similar efficiencies when a program is parallelized across a network.
In the current study, since each variable is evaluated independently of
the others at each stage of the recursion, the parallelization scheme
seemed very natural.

But, the price which is paid is that an array of ordering information
must be broadcast to all the machines in the network at each stage of
the partitioning process, so that the data residing in the memory of
each machine can be appropriately reordered. While this strategy is
effective when data is stored on a single machine, it is an open question
as to what other techniques might be more efficient for keeping track of
node membership when the data is distributed among many machines
on a network. It may be necessary to rethink the algorithm from first
principles in order to arrive at an effective solution.

Many of the difficulties encountered in the present study might be
alleviated if a shift was made from parallelization across a network to
parallelization through a single shared memory computer with mul-
tiple processors, or if the speed of the network interconnecting the
machines used was increased. These issues and challenges need to be
addressed more thoroughly as parallelization of statistical algorithms
becomes more widespread.

7 References

1 Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1985).
Classification and Regression Trees , Wadsworth/BrooksCole,
Monterey, CA.

2 Johnson, R.C. (1988) Linda as a memory model turns sequential
to parallel, Flectronic Engineering Times, 493, 60.

3 Wolfe, A. (1992) Parallel tools kick applications into high gear,
Electronic Fngineering Times, 686, 30.

10

