Predicting Multivariate Responses in Multiple
Linear Regression

Leo Breiman® Jerome H. Friedman'

November 24, 1995

Abstract

We look at the problem of predicting several response variables from
the same set of explanatory variables. The question is how to take advan-
tage of correlations between the response variables to improve predictive
accuracy as compared to the usual procedure of doing individual regres-
sions of each response variable on the common set of predictor variables. A
new procedure is introduced called the curds & whey method. Its use can
substantially reduce prediction errors when there are correlations between
responses while maintaining accuracy even if the responses are uncorrelated.
In extensive simulations, the new procedure is compared to several previ-
ously proposed methods for predicting multiple responses (including PLS)
and exhibits superior accuracy. One version can be easily implemented in
the context of standard statistical packages.

1. Introduction.

Increasingly, there are applications where several quantities are to be predicted us-
ing a common set of predictor variables. For instance, in a manufacturing process
we may want to predict various quality aspects of a product from the parameter

Department of Statistics, University of California, Berkeley, CA 94720. Work partially
supported by the National Science Foundation, Grant No. DMS-9212419.

Department of Statistics and Stanford Linear Accelerator Center, Stanford University, Stan-
ford, CA 94305. Work partially supported by the Department of Energy, Contract No. DE-
AC03-76SF00515.



settings used in the manufacturing. Or, given the mass spectra of a sample, the
goal may be to predict the concentrations of several chemical constituents in the
sample.

Some years ago, the authors were involved in a project trying to predict changes
in the valuations of the stocks in 60 industry groups using over 100 econometric
variables as predictors. In our state of knowledge at that time, prediction equa-
tions for each one of the 60 groups were derived not using the data on the other 59
responses. However, the changes in the 60 groups were strongly correlated. If we
knew then what we know now, we could have taken advantage of the correlations
to produce more accurate predictors.

To give a simple example of the potential improvement in estimation, suppose
that the data is of the form {y,1, yn2, X, }Y where each x,, = (2,1, -, Tpp) is a p
- vector of predictor variables and there are two responses y; and yo. Taking the
usual path, we get predictors for y1, y2 by doing separate regressions on (xy, -+, ).
That is, the estimated regression coefficients & = (d11,- - -, G1,) and &z = (a1, - -
-, dzp) are solutions to

N
a, = arg mgn Z(ynl —a'x,)’

n=1

N
a, = arg mgn Z(yng —a'x,)’

n=1
where all variables have been centered. The prediction equations for y; and y,
are y1(x) = 71 + &l (x — X) and P2(x) = y2 + a5(x — X) where (y;,X) are the
corresponding sample means (before centering). Now suppose further that the
(unknown) truth happens to be y,1 = bio + b'x,, + £,1 and yn2 = bo + b'x,, + €2
where {z,1}Y and {g,2}) are independent i.i.d. N(0,0?). Here y; and y, are
correlated because they have the same dependence on the predictor variables,
bix. It is also clear that accuracy is improved for each of the two responses by
using the predictors §; = g; + 3(J1 — 41) + 5(92 — 42) (¢ = 1,2), instead of §; and
15 respectively.

1.1. The curds and whey (C&W) procedure.

In general, if there are ¢ responses y = (y1,- - -, y,) with separate least squares
regressions ¥ = (91, - -, ¥y ), then the above example raises the possibility that if
the responses are correlated, we may be able to get a more accurate predictor y;



of each y; by using a linear combination
q .
yi:gi+zbik(yk_?jk)a t=1,--¢ (1-1)
k=1

of the ordinary least squares (OLS) predictors

p
gi =g+ Y ai(x; — ;) (1.2)
7=1
N P 2
{aij}§:1 = arg ml}r}, Z Yni — Yi — Z aj(xnj - i’j) ) (13)
01 n=1 =1

rather than with the least squares predictors themselves. Note that (1.1) (1.2)
imply that the coefficients, but not the means, of the (OLS) estimates are modified.

To simplify notation in all derivations that follow, we assume that the response
and predictor variables are all centered by their corresponding training sample
means {y; «— y; — yi}{, {v; « x; — z;}]. As a result, all response estimates
are centered at the corresponding response sample means {g; « y; — y;}1, {9; «—
y; — Ui }1, and reference the centered predictor variables.

Assuming that (1.1) is an interesting possibility, the trick is to find what {b;;}
to use. It turns out that there is a nearly optimal set of {b;.} that are given by
what we call the “curds and whey” (C&W) procedure. Using vector and matrix
notation for the respective (centered) quantities

y={u}i, y=1{4:}], and B = [by] € R, (1.4)

(1.1) can be expressed as
y - By. (15)

We derive estimates of the matrix B that take the form B = T™'DT where T is
the ¢ x ¢ matrix whose rows are the response canonical coordinates (see Section
2.2) and D = diag(dy, - - -, d,) is a diagonal matrix. Two prescriptions are derived
for calculating {di}]. A generalized cross-validation approach (Section 3.1) yields
a simple formula (3.12) (3.13). This works surprisingly well. Using regular (5 or
10 - fold) cross-validation (Section 3.2) to obtain the {dj}] gives slightly better
prediction.



1.2. Statistical background.

The curds and whey (C&W) procedure is a form of multivariate shrinking. It
transforms (T), shrinks (multiplies by D = {d;}}), and then transforms back
(T1). Tt derives its power by shrinking in the right coordinate system (canonical
coordinates), and can be viewed as a multivariate generalization of proportional
shrinkage based on cross-validation [Stone (1974)].

In the case of a single response variable (¢ = 1) it is well known that the
OLS estimate (1.2)(1.3) can be outperformed in terms of prediction accuracy by
biased (regularized) shrinkage estimates. Examples include proportional shrink-
age [James and Stein (1961), Stone (1974), Copas (1983) (1987)], ridge regression
[Hoerl and Kennard (1970)], principal components regression [Massey (1965)], and
partial least squares (“PLS”) regression [Wold (1975)]. These results suggest that
there may be gains associated with treating the collection of responses as a vec-
tor valued variable in the context of a combined shrinkage estimation procedure.
Such procedures have been proposed: reduced rank regression [Izenman (1975)],
two-block PLS [Wold (1975)], FICYREG [van der Merwe and Zidek (1980)], and
multivariate forms of ridge regression [Brown and Zidek (1980) (1982)]. How-
ever they have seen little use in statistical practice. An exception is two-block
PLS which is widely applied in the field of chemometrics. C&W differs from
the methods cited in that it has roots in both a theoretical and a cross-validation
foundation. Furthermore, simulation results indicate that its performance exceeds
that of the several (previous) methods to which we have compared it.

1.3. Outline of paper.

In Section 2 we assume (centered) predictors of the form (1.5). Taking the data to
be generated from linear models plus noise, we derive (under idealized conditions)
the optimal shrinkage matrix B* = T™'DT where T is the canonical transfor-
mation and D is a diagonal “shrinking” matrix. However, due to the idealized
setting, the matrix D derived there underestimates the amount of shrinkage nec-
essary. Section 3 takes a cross-validation approach to estimation of the shrinkage
factors, derives a simple approximate formula, and then describes the V - fold
cross-validation estimates of D.

Section 4 gives a brief description of some other methods proposed in the lit-
erature for estimating multiple responses, and these are compared to C&W in the
simulation study covered in Section 5. In some fields, chemometrics for example,
it is not unusual to have fewer observations than predictor variables (N < p).



The C&W method can be extended to these under-determined systems. This
procedure is described in Section 6, together with results of another simulation
comparing prediction methods in this p = N situation. Section 7 illustrates the
application of the C&W method to two published data sets, one from chemo-
metrics and the other from Scottish election results. Section 8 gives concluding
remarks.

2. Multivariate proportional shrinkage.

For a single response variable y, the (centered) proportional shrinkage estimate i
can be expressed as

y=>by = Zi: (ba;)x (2.1)

where § and {a;}] are the OLS estimates (1.2) (1.3). Each OLS coefficient a; is
scaled by the same factor b and the overall biased estimate is a linear function of
the OLS solution y. Several prescriptions have been proposed for estimating the
degree of shrinkage (value for b) so as to obtain improved expected mean-squared
error

Ely - 7° < Bly — 31" (2.2)
where the expected value is over the joint distribution F'(x,y) of the predictors x
and the response y [see James and Stein (1961), Stone (1974), and Copas (1983)
(1987)].

A natural extension of (2.1) to the multivariate setting is to express each biased
estimate ; as a general linear function (1.1) of the OLS estimates {g,;}] (1.2). In
vector notation (1.4) this is expressed by (1.5) where B can be regarded as a
“shrinking” matrix that transforms the (vector valued) OLS estimate y to the
biased one y. The goal is to obtain an estimate B of the optimal shrinking matrix
B* whose elements are defined by

{03} imn = arg{rgl}%E Zﬂkyk ye=1,--+4q. (2.3)
k

Here (2.3) the expected value is over the joint distribution F(x,y) of the data
to be predicted. Note that the use of B* (2.3) in (1.5) will result in reduced
mean-squared prediction error for each response



with equality in (2.4) obtaining only in the (unlikely) event B* = I, where I, is
the ¢ x ¢ identity matrix. Therefore, expected (squared-error) loss will be reduced
for every response individually, rather than only with respect to an amalgamated
loss criterion involving all of the responses (such as weighted average quadratic
loss).

2.1. Optimal proportional shrinkage.

In order to gain insight into the nature of the problem and its solution, we derive
the optimal shrinking matrix B* in an idealized setting. Here we assume that
each response is a linear function of the predictors with additive (i.i.d.) error

yi = fi(x) + &, (2.5)
with )
fz(X) :Z:aijxjv @ = 177q (26)

The predictors x € R? and the errors € € R? are random samples with respective
(population) distributions F,(x) and F.(e) with their joint distribution given by

Pix,e) = Fu(x)Fule) 2.7)
that is, the errors are independent of the predictor variables. Let
B(x)=E(e) =0, E(xx') =V € R, Bee') =X € R (2.8)

where the expected values are over the joint distribution (2.7). In this setting
the errors are assumed to be independent between (random) observations, but
(possibly) correlated among the responses for each observation.

The solution to (2.3) is a least squares regression (through the origin) of each
response y; on the (sample based) OLS estimates {g;}! over the (population)
distribution (2.7),

A _1 o~
B = [EFy)|  E(yy) (2.9)
In order to simplify this derivation (only) we further assume that the sample
means and covariance matrix of the predictor variables are the same as that of
the population distribution. This would be the case if we condition on the design

and only the errors are random. Otherwise, this can be viewed as a simplifying
approximation. Denoting the “signal” covariance matrix as

F = E[f(x)f'(x)] = AVA' (2.10)
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where f(x) = {fi(x)}], and A € R?*? is the matrix of (true) coefficients {a;;}
(2.6), one has
g9 = F + S, By =F. (2.11)

where

r=p/N (2.12)

is the ratio of the number of predictor variables to training sample size. Therefore,
from (2.9)
B*=(F++%)'F=(I,+rR)™" (2.13)

where

R=F'Y% (2.14)

is the “noise / signal” matrix. This result shows that the optimal shrinking matrix
B* is determined by the noise to signal structure in the response space as reflected
by the matrix R € R?*?. Since both ¥ and F are unknown this result is of no
direct use except to illustrate that they need not be separately determined; only
an estimate of the product (2.14) is required. In the next section we show that R
is related to the canonical coordinates of the joint distribution of the predictors
and responses.

2.2. Canonical analysis.

In terms of a population distribution, canonical analysis can be formulated as
follows. Let F(x,y) be the (population) joint distribution of the (population
centered) predictors x and the responses y. The goal is to find vectors t € R?
and v € RP such that the correlation between the linear combinations t'y and
vix is maximized. More generally, canonical analysis seeks K = min(p, ¢) such
pairs of linear combinations such that each successive pair maximizes correlation
under the constraint of being uncorrelated with the previous pairs

(t,vy) = arg { (t;nt?; g corr(t'y, vix). (2.15)
corr by)=07p,

k—
{cow(vtx,vltx)zo}1 !

The vectors {tk}{( and {Vk}{( are (respectively) called the y and x canonical
coordinates, and their respective correlations

K
{ck = corr(t}y, V};X)}l (2.16)



are known as the canonical correlations of F/(x,y). The criterion (2.15) is invariant
to, and thus does not restrict, the scales of the linear combinations; this ambiguity
is usually resolved by standardizing them to all have unit variances

Bty =E(vx?=1, k=1, K. (2.17)

It is well known [see for example Anderson (1957)] that the solutions to (2.15)
(2.17) for {tk}f are obtained from an eigenanalysis of the (¢ x ¢) matrix

Q = [E(yy")] " B(yx")[E(xx")] " E(xy') = T'C*T € R™". (2.18)

(Although Q is not symmetric, it is the product of two symmetric matrices, so
that the eigen-decomposition (2.18) exists and is straightforward to obtain [see
Golub and van Loan (1989)]). The rows of the (¢ x ¢) matrix T (eigenvectors)
are the y - canonical coordinates {t;}] and the diagonal matrix

C? = diag {c%, v c?(} (2.19)

contains the respective squared canonical correlations (2.16). The x - canonical
coordinates are obtained by an eigenanalysis of a matrix analogous to Q (2.18)
where x and y are interchanged.

Generally, canonical analysis is used to obtain a set of descriptive statistics
for the joint distribution F(x,y). However, in the case of our regression model
(2.5) (2.6) (2.7) it provides a means for obtaining the optimal shrinking matrix
B~ (2.13). Under that model Q (2.18) becomes

Q=F+%)"'F=(I,+R)"' (2.20)

so that
-1

B = |(1-7)L+rQ7"| (2.21)

where is r is given by (2.12). This result (2.21) shows that B* is diagonal in the
y - canonical coordinate system (2.18)

B* =T 'DT, D = diag(d,, ..., d,) (2.22)

with
d & 1 9.93
Z_CQ_I_r(l_cz)? L= 7”'7q ( )



where by definition {¢; = 0}, ;. Substituting (2.22) into (1.5) one has
Ty = D(Ty) (2.24)

so that (1.5) reduces to separate proportional shrinking of each OLS solution in
the y - canonical coordinate system. This leads to the following prescription for
optimal multivariate proportional shrinking:

1. Transform y to the canonical coordinate system, y’ = Ty.

2. Perform a separate OLS regression of each y! on x, (¢ =1, -, ¢), obtaining
{131

3. Separately scale (shrink) each ¢! by the factor d; (2.23), obtaining §' =
{d:gi}1-

4. Transform back to the original y - coordinate system, y = T71y’.

Figure 1 shows graphs of the canonical coordinate shrinkage factors d; (2.23)
as a function of the corresponding squared canonical correlations ¢?, for various
values of r (2.12). For small values of r there is very little shrinking of the

OLS solutions in the canonical coordinate system, except for very small values of

c?, whereas for large values the shrinkage factor decreases roughly linearly with
decreasing ¢?. In all cases, 0 < d; < 1.
In order to estimate B* (2.21) one needs a sample based estimate of Q (2.18).

A natural choice would be the “plug-in” estimate
Q= (Y'Y)'Y'X(X'X)"'X'Y (2.25)

where

Y = [yu] € RY* and X = [2n;] € RNxP (2.26)

are the respective (centered) data matrices. Although this choice does improve the
OLS estimates, it does not provide enough shrinkage, and more improvement is
possible. The reason is that the sample canonical correlations {¢;}] overestimate
their corresponding population values {¢;}7 (2.19) so that using these sample
based estimates in (2.23) reduces the amount of shrinkage from that which would
be obtained by using the correct (unbiased) population values. The problem is
that the same sample is used to estimate both the OLS solution, and its goodness-
of-fit as reflected by the inflated (resubstitution) {¢;}{ values. This is a common
problem in model selection. In order to estimate the proper amount of shrinkage
a better (less biased) estimate of goodness-of-fit is needed. One commonly used
method for this is cross-validation [Stone (1974)].
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3. Cross-validatory multivariate shrinkage (C&W).

The optimal shrinking matrix B* (2.3) is obtained by a regression of the re-
sponses {y;}] on the (sample based) OLS estimates {y; }{ over (all future) data not
part of the training sample. This procedure can be approximated through cross-
validation. Fach observation (y,,Xy,) is (in turn) removed from the training sam-
ple and treated as a “future” observation. The corresponding (cross-validation)
analog to (2.3) then becomes

N g 2
{bik}zzl = arg mlf(l] Z |}/m - Z ﬂk?j\nk] ) 1= 17 g, (31)
{ﬁkh n=1 k=1

where 7\, is the OLS prediction of the kth response for the nth observation, ob-
tained with it removed from the training sample. For the case of a single response
(¢ = 1) this approach was proposed by Stone (1974) and called “flattening”. From
standard matrix updating formulae one obtains

Yo = (1= 90)¥n + 9n¥n (3.2)

where y,, is the OLS estimate on the full sample, and

o 3.3
I =1 (3:3)
with {hm}iv being the diagonal elements of the “hat” matrix

H = X(X'X)'X! ¢ RNV, (3.4)

where X is the predictor data matrix (2.26). Substituting (3.2) into (3.1) one
obtains the cross-validated estimate of the shrinking matrix B.

3.1. GCV based multivariate shrinking (C&W-GCV).

To simplify this estimate (3.1) we first consider an approximation to the cross-
validation procedure(3.2 - 3.4). We approximate each h,, (3.3) by its average over
the N observations

N 1
Z P, = ﬁtraceH =r (3.5)
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with r given by (2.12). This approximation is equivalent to “generalized” cross-
validation (GCV) proposed by Craven and Wahba (1979). Using this approxima-
tion the solution for the elements of the shrinking matrix B (3.1) becomes

N g 2
{bik}Z:l = arg {Igll}% Z {ym - Zﬂk[(l - g)ynk ‘I’ggnk]} ) 1= 17 g, (36)

kES1 p=1 k=1

where

1
I

The normal equations for the solution (in matrix notation) are

g (3.7)

(1= )Y +gY'[(1 = g)Y + gY]B = (1 - g) Y'Y 4+ gY'Y (3.8)

where Y is the response data matrix (2.26) and Y = HY € RVxd (3.4) is the cor-
responding matrix of OLS predictions. After a little matrix algebra (3.8) reduces
to

[(1-9)*L,+ (29 — ¢*)QIB = (1 — g)I, + ¢Q (3.9)

where Q is the sample canonical correlation matrix (2.25). This (3.9) shows the
solution B is a diagonal matrix in the same coordinate system that diagonalizes

Q, L

Q=T'C’T, C*=diag{ci,---, ¢} (3.10)
Here (3.10) T is the matrix of sample canonical coordinates and {¢;}] are the
sample canonical correlations. Using (3.10) in (3.9) the solution for the GCV

shrinkage matrix becomes
B =T 'DT, D = diag{dy,- - -.d,} (3.11)

with ( J@ )
~ 1 —r)e —r ,
d; = (1—T)25?+T2(1—EZ2)7 v=1,--+4q. (3'12)

Examination of (3.12) shows that d; is negative whenever ¢ < r. As is usually
done, we perform “positive part” shrinkage in this case by setting d; = 0, so that

d; « max(d; 0) (3.13)

in (3.12).
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Comparing these results (3.11 - 3.13) with those of (2.22 - 2.24), one sees that
multivariate proportional shrinking based on GCV leads to the same prescription
as that for (population) optimal proportional shrinking derived in Section 2.2, but
with all population quantities replaced by their sample based estimates, and using
(3.12) (3.13) in place of (2.23) for the shrinking factors in the (sample) canonical
coordinate system. Figure 2 shows graphs of d; (3.12 - 3.13) as a function of the
corresponding (sample) squared-canonical correlations ¢?, for the same values of
r as in Fig. 1. The GCV canonical shrinkage factors d; are universally smaller
valued (more shrinkage) than the corresponding population based values d; (2.23)
(assuming ¢; = ¢;) for all values of ¢? and r. This compensates for the upward bias
in the estimates {¢;}! of the population values {¢;}]. This effect becomes more
pronounced as r increases because the GCV estimate of the upward bias becomes
larger with increasing r (2.12).

Although GCV optimal shrinking (3.11 - 3.13) results in a similar prescription
to that of Section 2.2, it was derived without recourse to the specific model and
assumptions of Section 2.1, except for the i.i.d. assumption required for cross-
validation. The validity of the GCV result rests on suitability of (3.1) as an
estimate of (2.3), and the GCV approximation (3.5). This latter approximation
can be removed by the use of full cross-validation to estimate the shrinkage matrix

B.

3.2. Fully cross-validated multivariate shrinking (C&W-CV).

As shown in Section 3.1, the GCV approximation (3.5) leads to a very simple and
interpretable solution for the shrinking matrix B in terms of the sample canonical
coordinates, and shrinking based on a simple formula. Resulting prediction accu-
racy (2.4) may be impaired however by the lack of validity of (3.5). To overcome
this, we define B by

B =T 'DT, D = diag{dy,---,d,}, (3.14)

with T being the sample y— canonical coordinate transformation matrix (3.10),
and D the solution to

9 N N N 9
D = arg min 33" (i — (TLLAT 300 (3.15)

=1 n=1

Here (3.15) the subscript \n on a quantity refers to that quantity calculated with
the nth observation removed. Note that (3.15) is a purely quadratic criterion in

12



A = diag{éy,- -, 6,} so that the solution for D is unique and can be obtained by
straightforward linear algebra given the other quantities appearing in (3.15).

For the cases studied previously (Sections 2.2 and 3.1) the solution values (2.23)
and (3.12) for the canonical coordinate shrinkage factors were monotone functions
of the respective canonical correlations. We impose a similar constraint on (3.14)
(3.15) by replacing the elements of D, {d;}], by the closest fit to those values that
are monotone in the sample canonical correlations {¢;}} (3.10). Positivity is then
imposed by replacing all negative elements of D by zero,

d; — max(d;,0), (3.16)

in (3.14).

This (3.14 - 3.16) generalizes the GCV approach by removing the approxi-
mation (3.5), and accounting for the variability in the estimate of the sample
canonical coordinate transformation T (3.10), in the estimation of the canonical
coordinate shrinkage factors {d;}} (3.14). This usually results in increased shrink-
age. This is accomplished at the expense of considerably increased computational
complexity. The quantities T/n and y,, must be calculated for each observation
(n =1,---,N) removed. In practice this “N— fold” cross-validation procedure
is approximated by V — fold cross-validation in which successive subsets of N/V
observations are removed and the values of T and y, computed on the remaining
(training) observations, are used for all the observations in the left out subset.
This reduces the computation by a factor of V/N. Common choices are V =5 or

10.

4. Competitors.

In terms of common statistical practice the primary competitor to the procedures
that we propose (C&W-GCV and C&W-CV) is OLS. That is, a separate least-
squares regression (1.2) (1.3) of each response y; on the predictor variables x.
However, it is well known that OLS is inadmissible [James and Stein (1961)] and
in fact can be (sometimes) substantially dominated, in terms of (single response)
prediction accuracy, by a variety of biased (regularized) alternatives [Frank and
Friedman (1993)]. Thus, when comparing our multivariate approaches to a strat-
egy of separate marginal univariate regressions, the best among these biased meth-
ods should provide worthier competition.

As noted in Section 1.2 several multivariate multiple regression procedures
have been proposed in the past with the same goal as ours; they attempt to

13



exploit the correlational structure among the responses to improve prediction
accuracy. In Sections 4.2 - 4.4 (below) we include a brief description of some of
these and examine their relationship to our procedures. In Section 5 we compare
performance through an extensive simulation study.

4.1. Separate ridge regressions.

Ridge regression “RR” [Hoerl and Kennard (1970)] is one of the more popular
and best performing [Frank and Friedman (1993)] alternatives to (single response)
OLS. A reasonable multiple response strategy would be to perform a separate RR
on each individual response y; (1.2). The regression coefficient estimates are the
solution to a penalized least squares criterion

N p p
{&ij}le = arg {Hll}r}lg Z[ym - Zajxnj]z + )\z Zaiv 1= 17 4. (41)
71=1 71=1

@551 p=1

This (4.1) biases the coefficient estimates toward smaller absolute values and dis-
courages dispersion among their values. The “ridge” parameters {\;}] (4.1) reg-
ulate the strength of this effect and their values are estimated through model
selection. We employed cross-validation to estimate each (separate) ridge param-
eter

N

)\i = arg Hl/\an[ym - ﬁ\m]zv 1= 17 9, (42)
n=1

with ¢\,; being the RR estimate (1.2) (4.1) obtained with the nth observation re-

moved from the training sample. Although this separate RR approach ignores the

correlational structure of the response variables {y;}}, it can provide considerably

more accurate estimates than OLS (see Section 5).

4.2. Reduced rank regression.

Reduced rank regression [Izenman (1975)] places a rank constraint on the matrix
of estimated regression coefficients (1.2). Consider the regression model (2.5)
(2.6) and suppose one wishes to find the coefficient matrix A, € R7*? of rank
r < min(p, ¢) that minimizes

A, = arg ril(iAr;_ E(y — Ax)'2 Ny — Ax) (4.3)

14



with ¥ given by (2.8). The solution to (4.3) is
A, =B,A (4.4)

where A € R?*? is the matrix of OLS estimates and the reduced rank “shrinking”
matrix B, € R?*? is given by

B, = T'IL T (4.5)
with T being the (population) canonical coordinate matrix (2.18) and
I, = diag{1(z < r)}{. (4.6)

In applications of reduced rank regression the sample canonical coordinates
T (2.25) (3.10) are taken as estimates of the corresponding population quantities
in (4.5) and the rank value r (4.6) is regarded as a regularization parameter of
the procedure whose value is estimated through model selection. We employed
cross-validation (analog of (4.2)). This estimate (2.25) (3.10) (4.5) (4.6) has the
same form as C&W-GCV but with a different diagonal matrix [I, (4.6) versus D

(3.11-3.13)].

4.3. FICYREG.

Filtered canonical y - variate regression (“FICYREG”) was proposed by van der
Merwe and Zidek (1980). The estimated coefficient matrix A € R?*? takes the
form

A =B/A (4.7)
where again A € R?*? is the matrix of OLS estimates and the “shrinking” matrix
B, € R?1 is given by

B, = T7'FT. (4.8)
Here (4.8) T is the sample canonical coordinate matrix (2.25) (3.10) and
F = diaglfi,- - f,) (4.9)
with
- (1.10)
fi= o 4.10
(1l — =)
and
fi < max(0, f;). (4.11)
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The {¢7}] in (4.10) are the sample (squared) canonical correlations (3.10).

Like reduced rank regression FICYREG shrinkage (4.7 - 4.11) also has the
same form as C&W-GCV, here with the matrix F (4.9 - 4.11) replacing D (3.11
- 3.13). One difference between (4.10) and (3.12) is that the canonical coordinate
shrinkage factors {f;}] (4.10) depend on the number of responses ¢ as well as
the number of predictor variables p and corresponding squared sample canonical
correlations {¢7}]. For the same values of ¢ and p, (4.10) (4.11) shrink less for
a larger number of responses. The corresponding C&W-GCV factors {d;}{ (3.12)
(3.13) depend only on {&?}] and p irrespective of the number of responses. For
all values ¢ > 1 one has

{di < [i}i; (4.12)
that is FICYREG always shrinks less than C&W-GCV. As the number of re-

sponses increases this effect (4.12) becomes more pronounced. In fact, if one sets
g = —11in (4.10) (4.11) almost identical shrinkage values are produced as those of
(3.12) (3.13) for the same value of ¢ and p.

4.4. Two-block partial least squares.

Partial least squares (“PLS”) regression [Wold (1975)] is very popular in the field
of chemometrics. The multiple (¢ > 1) response version (“two-block” PLS) be-
gins with a “canonical covariance” analysis. This is similar to canonical correlation
analysis (Section 2.2) with the covariance between the linear combination pairs
cov(tly, v'x) replacing corr(t'y, v'x) in (2.15), and the constraints in (2.17) re-
placed by{tit, = viv, = 1}]. The (ordered) set of canonical covariance x - linear
combinations

{21 = vix}! (4.13)

are then used to form an ordered sequence of coefficient estimates for each response

o N K
(@SN = arg min Y [ye — 3. arzal?, (4.14)
{ak}{\ n=1 k=1
e K -
gt =3 ala, i= 1. (4.15)
k=1

This (4.14) (4.15) is a separate OLS regression of each response y; on the first K
X - canonical covariance linear combinations (4.13). The coefficients (4.14) ref-
erence the linear combinations (4.13) as predictor variables. They can be easily
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transformed to reference the original predictors {x;}]. The number of “compo-
nents” K (4.14) (4.15) is a regularization parameter of the procedure; its value is
determined through cross-validation (analog of (4.2)).

The relationship between two-block PLS and other multiple response regres-
sion procedures is not obvious. It was introduced by Wold (1975) as an iterative
computational algorithm and much effort has been expended since then trying
to understand it statistically. Frank and Friedman (1993) provide some insight
by comparing its results to that of a particular formulation of multivariate ridge
regression derived from a particular joint prior on the true regression coefficients
and assumptions on the error covariance matrix 3 (2.8).

4.5. Discussion.

Our proposals, C&W-GCV and C&W-CV, were introduced in Sections 3.1 and
3.2 respectively. Four additional approaches (separate ridge regressions, reduced
rank regression, FICYREG, and two-block PLS) were described in Sections 4.1
- 4.4. These are not the only ones that have been proposed. Brown and Zidek
(1980) (1982) suggest a variety of multivariate generalizations of ridge regression
along the lines of FICYREG. The four competitors described above have seen use
on data and two (separate ridge regressions and two-block PLS) are very popular.

Of the six procedures described above, four (C&W-CV, reduced rank regres-
sion, separate ridge regressions, and two-block PLS) require sample reuse (cross-
validation) to estimate regularization parameters. Therefore they can be expected
to be much more computationally intense than the other two (C&W-GCV and
FICYREG) which do not require sample reuse to estimate such parameters. All of
the procedures but two (separate ridge regressions and two-block PLS) are equiv-
ariant under all non-singular affine (translation, rotation and/or scaling) transfor-
mations of either the responses y or the predictors x. Separate ridge regressions
are clearly equivariant under response scale changes but not under rotations in
the response space. They are equivariant under (rigid) rotations of the x - coor-
dinates, but not equivariant under scale changes of the predictors or their linear
combinations. Two-block PLS is rotationally equivariant in both the y and x
spaces, but not equivariant under scale changes in either space. Both ridge and
PLS are equivariant under translation in both spaces.

Although motivated from very different perspectives, four of the six procedures
discussed above (the affine equivariant ones) all have the same (generic) form

= (T7'GT)Ax (4.16)
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where T is the matrix of sample canonical coordinates (2.25) (3.10), and the diag-
onal (¢ x ¢) matrix G contains the shrinkage factors for scaling the OLS solutions
A in the canonical coordinate system. C&W-GCV (3.11-3.13) and C&W-CV
(3.14-3.16) were motivated by the cross-validation approximation (3.1) to opti-
mal proportional shrinking (2.3). Reduced rank regression (4.5) (4.6) derives its
motivation from the “naturalness” of regularizing OLS through a rank restriction
on the matrix of estimated coefficients (4.3). FICYREG is based on Zidek (1978)
which contains the only previous theoretical justification for transforms of the
form (4.16). Zidek assumes that the data {y,,x,} are an i.i.d. sample from
a joint normal distribution. A set of transformations of the data is defined to-
gether with a particular (amalgamated) invariant loss function. The equivariant
coefficient estimates are then given by (4.16) where the elements of G depend
only on the sample canonical correlations. Zidek (1978) then shows that for the
particular loss function defined, the form of G used in FICYREG (4.10) (4.11)
gives estimates dominating OLS. It is perhaps no surprise that many multivariate
multiple regression procedures involve canonical coordinates at a basic level, since,
as shown in Sections 2.1 and 2.2, the canonical coordinate system emerges as the
natural one for optimal proportional shrinkage (2.22) (2.24).

5. Simulation study.

An important issue is whether any of the multivariate multiple regression proce-
dures offer sufficient improvement over separate (uniresponse) multiple regressions
(OLS or separate ridge) to justify their consideration as viable alternatives. And,
among those that do, which ones provide the best trade-off between accuracy im-
provement and increased complexity, both in terms of implementation and com-
putation. The answers to these questions may well depend on the detailed nature
of the problem at hand in terms of the number of observations N, the number of
response variables ¢, their correlational structure, signal to noise ratio, collinearity
of the predictor variables, etc. In this section (below) we attempt to provide some
answers to these questions by means of an extensive simulation study.

5.1. Design.

In all situations covered by this study the number of predictor variables was taken
to be p = 50. There were two training sample sizes: N = 100 and N = 400, and
three values for the number of responses: ¢ = 5, ¢ = 10, and ¢ = 20. For
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each (random) replication of each situation the predictor variables were generated
according to a normal distribution with zero mean and covariance matrix V,

x ~ N(0,V). (5.1)

The covariance matrix V (5.1) was itself random with a different realization for
each replication

Vi = rli=dl (5.2)

with r a random number generated from a uniform distribution
r~U[-1,1]. (5.3)

Thus for some replications (|r| ~ 1) there was a high degree of collinearity among
the predictors, whereas for others (|r| ~ 0) they are nearly independent. A range
of possibilities (5.3) in between these extremes was also produced.

Fach response y; was computed from (2.5) (2.6). The errors {£;}] were gener-
ated from a normal distribution with zero mean and covariance matrix X (2.8)

{e:}] ~ N(0,X). (5.4)
Two covariance structures among the errors were studied:
Y =01, and ¥ = o* - diag{i*}!. (5.5)

In the first, the error variance associated with each response is the same, whereas
in the second they are very different. More complicated (nondiagonal) error co-
variance structures were not considered since they are included for the signal
covariance matrix F (2.10) (see below), and the relevant quantity is the relation-
ship between the signal and noise covariances as captured by the noise/signal
matrix R (2.14). Two values of o2 (5.5) were studied. They were chosen so that
(on average) signal /noise ratios of 1.0 and 3.0 respectively were produced.
The (“true”) coefficients a;; (2.6) were generated through

10
ai; =Y cing(j, k) (5.6)
k=1
with
g(j k) = hi - (I — |7 — Ji|)% (5.7)
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where the value of hy is adjusted so that

50

> 9 k) =1 (5.8)

J=1

The quantities ji and [; (5.7) are integers with random values sampled from
uniform distributions in the ranges [1,50] and [1, 6] respectively. The coefficients
{cit}lZy (5.6) are each randomly sampled (separately) from a (¢ - dimensional)
Gaussian distribution

{eintizi ~ N(O,T) (5.9)

with the covariance matrix being
T, = pmml, (5.10)

Thus, the coefficients ¢, (5.6) are independent for different k but correlated among
the responses ¢, with the degree of that correlation controlled by the value of the
parameter p (5.10). Finally, all coefficient values were normalized by the same
scale factor so that the average (“signal”) variance for each response was equal to
1.0.

Each ¢(j, k) (5.7), when viewed as a function of the predictor variable index
J, represents a (normalized) “bump” centered at j, with support (nonzero val-
ues) in the interval [ji — i, j& + [x]. Thus the coefficient vector (5.6) for each
response is a (different) random superposition of the (same) 10 such bumps, each
bump centered at a random location ji, with (random) width /. Since the coef-
ficients multiplying each of the individual bumps are independent of each other,
the (average) correlation among the response variables is completely determined
by the covariance matrix I' (5.9) controlled by the parameter p (5.10). Therefore,
the (“true”) response functions (2.6) are (randomly) different for each replication
(of each situation). Some have coefficients {a;}?2; that have roughly the same
(absolute) values, whereas others have coefficients with very different (absolute)
values (e.g. a few large values and the others very small). A variety of sets of
coefficient values in between these extremes are also realized.

The design of this simulation is comprised of two sample sizes (N = 100, 400),
three values for the number of responses (¢ = 5, 10, 20), five values for the average
correlation among the response functions (2.6)

avegzjlcorr(f;, f;j)| = £0.7,£0.35,0.0 (5.11)
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(controlled by p (5.10)), two error covariance structures (5.5), and two signal to
noise ratios (1.0,3.0). A complete factorial design over all of these levels gives rise
to 2 x 3 x 5 x 2 x 2 = 120 situations. Each situation was replicated 250 times
giving rise to 30000 runs. Each of the competitors (OLS, separate ridge, reduced
rank, FICYREG, two-block PLS, C&W-GCV, and C&W-CV) were applied to the
data for each run. Thus, the entire simulation study consists of 210000 (multiple
response) regressions.

5.2. Performance measures.

For each replication, the mean-squared estimation error of the ith response for a
particular method m is given by

where a; = {a;1,- - -, a;} is the “true” coefficient vector (2.6) (5.6) for the ith
response and &;(m) is the corresponding estimate for each method. Here p(x) is
the probability density (5.1) from which the predictors x are sampled and V is
the corresponding (population) covariance matrix (2.8) (5.2). Several summary
measures of relative performance are derived based on different combinations of
{e}(m)}{ (5.12). The first is the overall average mean-squared error

;1:1 e?(m)

Alm) = S " oLs)

(5.13)

relative to the overall average of the OLS mean-squared estimation errors {e?(OLS)}{.
The second performance measure is the average of the individual ratios of each
response mean-squared error to that of its OLS estimate

1 & e _el(m)

- 5.14
g ; e2(OLS) (5:14)
The third measure is the worst individual mean-squared error relative to OLS

(5.15)
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The fourth and fifth measures are derived from the first two; they are the ratio of
each to the corresponding minimum value over all six methods being compared

A(m)

A =
f (m) miﬂk:176 A(k) ’

(5.16)
I(m)
miﬂk:176 ](k) ’

The first two criteria (5.13) (5.14) provide a means of comparing each of the
six methods to OLS in terms of how much average (squared) error reduction each

RI(m) = (5.17)

gives relative to OLS. The third criterion (5.15) measures the degree of caution
associated with each method. Values of W(m) > 1 indicate that the method
produced at least one response estimate less accurate than its corresponding OLS
estimate. The last two measures (5.16) (5.17) allow comparisons among the six
biased methods themselves. For each individual replication, the value of (5.16)
or (5.17) is 1.0 for the corresponding best (minimum error) method, and greater
than that for the other methods. If a particular method happened to be best for
every replication then the corresponding distribution of its values (5.16) (5.17)
over all replications would be a point mass at the minimum value (1.0).

5.3. Results.

The results of the simulation study are summarized by the respective means of
the performance measure values (5.13-5.17) for each method over the 250 repli-
cations for each situation. Figures 3 - 6 display box plots of the mean values of
(5.13), (5.14), (5.16), and (5.17) respectively over all of the 120 situations covered
by the simulation study. That is, each box plot summarizes the distribution of
120 (mean) values. Figure 3 summarizes the distribution of the average overall
mean-squared error ratio A(m) (5.13) for each of the six methods. All are seen to
provide substantial improvement over OLS (A(OLS) = 1). All of the multivariate
methods, except two-block PLS, also show substantial improvement over separate
(uniresponse) ridge regressions. The average overall mean-squared error associ-
ated with reduced rank regression and FICYREG are comparable, with the latter
exhibiting considerably less variability. C&W-CV and C&W-GCV show compa-
rable performance with each other, and somewhat better than the rest. The best
of these methods C&W-CV provides over a factor of two improvement over OLS,
as averaged over all 120 situations, and about a 61% improvement over separate
ridge regressions.
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Figure 4 shows the distribution of average individual mean-squared error ratio
I(m) (5.14). These distributions are fairly similar to the corresponding ones for
the A(m) (5.13) values, except for two-block PLS. The I(m) values for two-block
PLS tend to be substantially larger than its A(m) values. This indicates that two-
block PLS suffers a “Robin Hood” effect where responses that are well estimated
by OLS (low error) are made substantially worse (relatively) by PLS in order to
achieve modest (relative) improvement in those that are poorly estimated by OLS
(and PLS). Comparing Figs. 3 and 4 one sees that the other methods do not
exhibit the Robin Hood effect; they produce roughly equal relative improvement
across all responses.

Figures 5 shows the distributions of RA(m) (5.16), and Fig. 6 the logarithm
of RI(m) (5.17). C&W-CV is seen to have the best average performance, or
within a few percent of the best, in every one of the 120 situations. C&W-GCV is
seen to be next closest to the best, with median performance only 2% worse than
C&W-CV and seldom more than 10% worse. The other methods substantially
lag behind these two, relative to the best performer.

Figures 3 and 4 show that, averaged over all responses, all of the six biased
methods considered here provide improved performance over OLS. That improve-
ment was fairly dramatic for some of the methods. From a perspective of caution
one might ask how probable it is that an individual response estimate by one of
these methods will be less accurate that its OLS estimate. That is, how often
do they make things worse. We already have an indication that two-block PLS
has a tendency to degrade the most accurate OLS estimates. Figure 7 addresses
this issue for all of the methods by showing the distribution (over all 30,000 repli-
cations associated with the 120 situations) of the fraction of responses (in each
replication) for which the accuracy of the biased estimate was worse than that
for OLS. One sees that the most cautious method by this measure is FICYREG.
On average less than 3% of its response estimates are worse than OLS. C&W-
GCYV is seen to be only slightly less cautious, its estimates being worse than the
corresponding OLS estimates an average of 5% of the time. C&W-CV also ex-
hibits fairly cautious behavior by this measure, degrading the OLS estimate on
average 7% of the time. At the other extreme is two-block PLS which degrades
the OLS estimate an average of 35% of the time, providing further evidence of its
susceptibility to the Robin Hood effect.

Another measure of caution is the worst individual mean-squared error ratio
W(m) (5.15). Figure 8 shows the distribution of the logarithm of this quantity
for each method, separately for each of the two error variance structures (5.5).
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The left box plot for each method m summarizes the distribution of the averages
of W(m) for the 60 situations in which the (population) error variances are all
equal, ¥ = o?-1,, and the right box plot is the corresponding distribution over
the other 60 for which they are very unequal, ¥ = o2 - diag{i*}. One sees
that for the most cautious methods (FICYREG, C&W-GCV, and C&W-CV)
W (m) seldom becomes much larger than 1.0, indicating that these methods seldom
produce a substantial degradation of the OLS estimate for any response for either
error variance structure. These methods are seen to be slightly less cautious for
highly dissimilar error variances than for equal variances. On the other hand,
the caution associated with two-block PLS is seen to dramatically depend on
the structure of the error variances of the respective responses. Although even
for equal error variances, it is the least cautious of the methods considered here,
PLS at least does not produce disastrous results in this case. When the errors of
the individual responses have highly unequal variances however, two-block PLS
typically degrades the OLS error (squared) of at least one of the responses (usually
the best one(s)) by a factor of 10, and factors of 20 are not uncommon. Frank and
Friedman (1993) argued that an intrinsic (implicit) assumption associated with
two-block PLS is the simple error covariance structure ¥ = ¢ - I,. The results
shown in Fig. 8 tend to confirm this.

Asnoted in Section 4.3, FICYREG always shrinks less than C&W-GCV (4.12),
which in turn shrinks less (on average) than C&W-CV. Shrinking less aggressively
causes less modification of the OLS estimates resulting in less chance of making
things worse. On the other hand, this more cautious approach limits the gains
that are possible as a result of the shrinking strategy. If caution is an important
issue, C&W-GCV would appear to be the best compromise since it results in
nearly as much caution as the most cautious method FICYREG (Fig. 7), while
at the same time providing nearly as much accuracy as the most accurate one
C&W-CV (Figs. 5 and 6).

Figure 9 shows the (first order) interaction effects between the method (m)
and the factors of the simulation design. Plotted on the vertical scale is the
average of A(m) (5.13) over all situations for which the particular factor was at
the given level indicated on the horizontal axis. One sees from the upper left
frame that separate ridge regressions are unaffected by the degree of correlation
among the responses (5.11) whereas the multivariate methods all perform better
with higher (positive or negative) correlation, as would be expected. The middle
left frame shows that the performance (relative to OLS) of all methods, except
two-block PLS, is better with highly unequal error variances (5.5). As one would
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expect all methods improve (relative to OLS) with decreasing sample size (middle
right frame) and decreasing signal to noise ratio (lower left frame), but FICYREG
seems to enjoy less improvement than the others. The lower right frame shows
the dependence of A(m) on the number of responses ¢. The performance of
separate ridge regressions is independent of ¢ (as would be expected), whereas
that of all the multivariate methods, except FICYREG, improves (monotonically)
with more response variables. FICYREG’s relative inability to take advantage of
increasing number of responses ¢ is probably due to the dependence of its shrinkage
factors (4.10) on ¢, as discussed in Section 4.3. Two-block PLS shows only modest
performance gain with increasing ¢ while reduced rank regression shows the most
rapid (relative) gain. Note that the two C&W procedures dominate the others
at all levels of all the design factors, with C&W-CV always being (slightly) the
better.

5.4. Discussion.

Overall, the simulation studies demonstrate that some multivariate multiple re-
gression methods can produce increased (expected) prediction accuracy (for each
response) over separate multiple regressions (OLS or ridge regression). Of the
methods compared here, only two-block PLS provided inferior results to separate
ridge regressions. If prediction accuracy were the only criterion for choosing a
method then Figs. 5 and 6 suggest C&W-CV as the method of choice. It attained
the highest average accuracy, or very close to it, in every one of the 120 situations
comprising our simulation study. However C&W-GCV is a worthy contender,
typically performing almost as well as C&W-CV in relation to the best method
in every situation.

If (minimax) caution were a primary concern then FICYREG might be a good
choice. However, C&W-GCV is only slightly less cautious (Figs. 7 and 8) while
producing substantially greater gains in accuracy (Figs. 5 and 6). C&W-CV is also
seen to be fairly cautious, being only slightly less so than C&W-GCV. In terms of
implementational simplicity and computational speed FICYREG and C&W-GCV
stand out. Neither requires sample reuse (cross-validation) to estimate the values
of model selection parameters, and both are easily implemented in any statistical
package that provides canonical correlation analysis. Again, C&W-GCV would
appear to be the logical choice among these two owing to its higher performance
in terms of accuracy in our simulation study.

Two-block PLS emerges from this simulation study as consistently the poorest
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performer from every perspective. It is the least cautious and produces the least
accuracy among all the biased methods considered here. In fact, it is dominated
in accuracy by separate ridge regressions. This, coupled with the fact that it is
(by far) the computationally slowest method, and that it is affine equivariant in
neither the predictor nor the response space, would tend to exclude it from consid-
eration. This is somewhat surprising since it is one of the most popular and highly
promoted methods for multivariate multiple regression, especially in the field of
chemometrics. By contrast, single response PLS is competitive with other (single
response) biased regression methods, performing almost as well as ridge regres-
sion [Frank and Friedman (1993)]. This together with the fact that separate ridge
regressions substantially outperform two-block PLS, suggest that in environments
where PLS for some reason must be used, performing separate (uniresponse) PLS
regressions on each individual response would be a better strategy than employ-
ing (multivariate) two-block PLS. This is especially the case if the error variances
among the responses are not equal (Fig. 8). The superiority of separate PLS re-
gressions over two-block PLS has been noted by Frank and Friedman (1993) and
Garthwaite (1994). The simulation results of Section 5.3 suggest however that
using one of the better multivariate multiple regression procedures should provide
considerably enhanced performance over a strategy of separate uniresponse PLS
regressions since they consistently outperformed separate ridge regressions.

It is important to note that all of these conclusions are based on the results of
the simulation study described in Section 5.1. Although considerable effort was
involved in attempting to make it as comprehensive as possible, every conceivable
situation cannot be covered by any such study. Just as one can seldom verify
whether a particular data set conforms to the assumptions associated with any
theoretical result, one cannot be sure that it is represented within the scope of
our simulation study. It is possible that for factor values very different than those
represented in our design the results would be different, in the same way that
violation of the assumptions of a theorem may alter its conclusions.

6. Under-determined systems.

Separate ridge regressions and two-block PLS do not require the response and/or
predictor sample covariance matrices, Y'Y and X'X (2.26) respectively, to be
nonsingular. Therefore no special problems arise with these procedures when ¢ >
N and/or p > N. However the other multivariate multiple regression procedures

considered here (reduced rank regression, FICYREG, C&W-GCV, and C&W-
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CV) are not strictly defined when either Y'Y or XX is singular. Therefore these
methods must be suitably generalized to be applicable to such settings. Situations
for which p > N, especially, represent an important class of applications.

Singular Y'Y causes no special problem. The response linear combinations
(eigenvectors of Y'Y') corresponding to zero variance (eigenvalues) are simply
defined to have zero (canonical) correlation with the predictors, and the usual
canonical correlation analysis (2.25) (3.10) is then confined to the nonzero vari-
ance subspace of the responses by using the generalized inverse of Y'Y in (2.25).
Dealing with singular X*X on the other hand must be done with care.

One possibility for treating singular XX is in analogy with that for singular
Y'Y. One performs an eigenanalysis of the predictor covariance matrix

3707"'} (6'1)

where r < p is the rank of X'X, and the eigenvalues {e?,--- €2} are in descending

X'X = UE?U!, U'U = UU' = 1,, E? = diag{e?,- - -, ¢

order. The matrix Z, € RN*" formed by first r columns of the rotated predictor
data matrix

Z =XU ¢ RN*? (6.2)

is then used in (2.25) in place of X. The regression coefficient estimates associated
with the last p — r columns are then all defined to have zero value. This is
equivalent to using the generalized inverse of XX in (2.25).

A problem with this approach is that the resulting (nonzero) coefficient esti-
mates are likely to be highly variable owing to the fact that Z.Z, is still likely
to be poorly conditioned. This can be remedied by making the rank value r a
model selection parameter to be estimated through cross-validation in analogy
with (single response) principal components regression [Massey (1965)]. This ap-
proach would tend to rule out reduced rank regression and C&W-CV since several
model selection parameters would then have to be estimated through sample reuse
with limited data. Since it consistently outperformed FICYREG for p < N, we
chose C&W-GCV for this combined implementation.

6.1. C&W-ridge.

Although the technique described above for combining C&W-GCV with principal
components regression provided satisfactory performance, we found that using
a similar strategy based on ridge regression worked consistently better. With
this approach the coefficient matrix A, € R™P is obtained from separate ridge
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regressions of each response on the predictors
A, = (XX 4+ AL)'X'Y (6.3)

using a common value of the ridge parameter A for all responses. This leads to
the corresponding ridge regression response estimates y(A) € R? through

F(\) = Ayx. (6.4)

The value A of the (common) ridge parameter A is chosen by (5-fold) cross-
validation
X g N
A = arg mAmZ > Y — Dai( M (6.5)
i=1n=1

The C&W-ridge estimates are then given by

A A

= (T'DT)A;x, (6.6)

D = diag{dy,- - -, d,}, (6.7)

where T € R?%? is obtained by a canonical correlation analysis between the sample
responses Y and their corresponding ridge estimates Y5 € R4

(Y'Y)'YOY (VLYY Y = TP, (6.8)

C? = diag{él,- -+, &2. (6.9)

The diagonal matrix D (6.7) is given by the C&W-GCV formula (3.12) (3.13)
with {¢?}{ given by (6.9) and with

1 )
r= Ntrace[X(XtX + AL) X (6.10)

replacing r (2.12) in (3.12). Note that this C&W-ridge procedure generalizes
C&W-GCV in the sense that it reduces to C&W-GCV when A = 0.

Unlike C&W-GCV, C&W-ridge is not affine equivariant in either the response
or predictor spaces. Although it is equivariant under (rigid) rotations in both
spaces, changing the relative scales of the responses and/or the predictors (or their
linear combinations) changes the predictive model. Asin ordinary ridge regression,
principal components regression, and PLS, this ambiguity is usually resolved by
standardizing (“autoscaling”) all variables before the analysis is performed.
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For poorly-determined systems ( p/N = 1) the least-squares estimates (though
defined) can be highly variable, potentially causing difficulty for procedures based
on proportional shrinking like C&W-GCV and C&W-CV. The ridge estimates (6.3
- 6.5) have less variance at the expense of (additional) bias. It is therefore possible
that C&W-ridge may outperform C&W-GCV and C&W-CV in such poorly (but
not ill-) conditioned situations. In the simulation study described in Section 5
(p/N =1/2 and 1/4) C&W-ridge exhibited substantially inferior performance to
that of both C&W-GCV and C&W-CV. However for substantially larger values of
p/N (= 1) C&W-ridge may have the best performance. This will likely depend
other aspects of the problem such as sample size and (unknown) signal-to-noise ra-
tio. A reasonable strategy would be to compare the methods using cross-validated
error estimates as a guide.

6.2. Simulation study.

For p > N the competitors to C&W-ridge (Section 6.1) are separate ridge re-
gressions (Section 4.1) and two-block PLS (Section 4.4). In order to study their
respective performance in a variety of situations we performed another (less ambi-
tious) simulation study. For all replications the training sample size was N = 25.
There were two values for the number of responses: ¢ = 5 and ¢ = 10, and two
values for the number of predictor variables: p = 50 and p = 100. Two error
covariance structures were studied (5.4) (5.5) each with two values of 0% chosen to
give (average) signal /noise ratios of 1.0 and 3.0 respectively. Three different signal
covariance structures F (2.10) were studied corresponding to average correlations
among the signals (2.6) (5.11) of 0.0, 0.35, and 0.70. For each replication the
predictors were generated from (5.1) (5.2) with r assigned three values: r = 0.0,
r =0.90, and r = 0.99. The response values were computed from (2.5) (2.6) with
the true coefficient values {a;;} generated in the same manner described in Section
5.1. A full factorial design over all of the above levels gives rise to 144 situations;
100 replications were performed for each one. Thus, the entire simulation study
is comprised of 14400 replications.
The performance measure used to compare the three methods is

;1:1 e?(m)

ming—1 33 g €2(k)’

RA(m) = m=1,23 (6.11)

with {e?(m)}{ given by (5.12). This measures the error squared (averaged over the
responses) of each method relative to the corresponding minimum over all of the
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methods. For each replication (6.11) will have the value 1.0 for the best (minimum
average error squared) method and larger values for the other two methods. The
results of this simulation study are summarized by the average of (6.11) over the
100 replications for each of the 144 situations.

Figure 10 shows box plots for each method of the distribution of the 144
averages of (6.11) over all situations. C&W-ridge is seen to produce the best
average error (squared), or within a few percent of the best, in every situation.
The corresponding quantity for separate ridge regressions is typically 22% larger
than the best, and that for two-block PLS is 30% larger. However, the dispersion
of values for two-block PLS about its median is somewhat less than that for
separate ridge regressions.

Figure 11 shows the (first order) interaction effects between method (m) and
the design factors of this simulation study, based on RA(m) (6.11), in the same
manner as that of Fig. 9. One can see from the upper left frame that for low
(population) collinearity all three methods perform comparably, C&W holding a
slight edge. This is due to the fact that for p < N and low collinearity none of
the three methods is able to produce predictions that are much more accurate
than simply the response means. In higher (population) collinearity settings more
accurate prediction is possible and the C&W procedure is seen to be much more
dominant over the other two. This is especially the case for the highest collinearity
(r = 0.99) where it is typically 42% better than two-block PLS and 75% better
than separate ridge regressions.

The relative advantage of C&W-ridge over the other two methods is seen (Fig.
11) to increase with decreasing signal to noise ratio (upper right frame), and
increasing dispersion among the response error variances (middle left frame). Its
competitive advantage is slightly less for more responses (middle right frame) and
more predictor variables (lower right frame). The degree of correlation among the
responses does not seem to strongly effect its advantage (lower left frame). The
performance of C&W-ridge is seen to dominate that of separate ridge regressions
and two-block PLS for every level of every factor.

7. Examples

In this section we illustrate the application of C&W to two published data sets and
compare its performance to OLS. In a simulation study one can consider a wide
range of situations and accurately estimate expected performance by averaging
accuracy over many replicated samples drawn from each one. A real data set by
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contrast represents only a single sample from one (unknown) situation. Also, the
mean-squared prediction error from that single sample is unknown and must be
estimated with uncertainty. This limits the substantive conclusions that can be
drawn. None-the-less, empirical success on real data, though not definitive, lends
some support to the merit of the approach.

7.1. A chemometrics example

This data is taken from Skagerberg, et. al. (1992). There are N = 56 observations,
each with p = 22 predictor variables and ¢ = 6 responses. The data are taken
from a simulation of a low density tubular polyethylene reactor. The predictor
variables consist of 20 temperatures measured at equal distances along the reactor
together with the wall temperature of the reactor and the feed rate. The responses
are the output characteristics of the produced polymers:

y1: number-average molecular weight
y2: weight-average molecular weight
y3: frequency of long chain branching
y4: frequency of short chain branching
ys: content of vinyl groups

ye: content of vinylidene groups.

Because the distributions of the values of all of the response variables are highly
skewed to the right, the analysis was performed using the logarithms of their
corresponding values. For interpretational convenience all were then standardized
to unit variance. The average (absolute) correlation between the (transformed)
responses is 0.48 and the correlations between the individual pairs are given in
Table 1. Responses y; and y, are seen to be strongly correlated, and y4, ys, ys
form another strongly correlated group. The third response y3 is more weakly
correlated with the others.

The predictive accuracy of each method was estimated through leave-one-out
cross-validation. That is, the predictive equations were estimated using 55 of
the 56 observations and squared-error measured on the left out case. This was re-
peated 56 times, each time leaving out a different case, and the 56 errors (squared)
averaged. Note that the predictive accuracy being estimated here is larger than
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the corresponding mean-squared estimation error (5.12) since it includes the con-
tribution of the irreducible error £ (2.5).

Table 2 shows the estimated squared prediction error for OLS (second column)
and C&W-GCV (third column) for each of the (transformed) responses (rows).
C&W is seen to improve the predictive accuracy of all of the responses, with that
improvement being substantial for three of them (y2, ys, and ys). On the whole
C&W decreased the squared-error by about 20%. The GCV shrinkage factors
(3.11) (3.12) are D= drag{0.994,0.973,0.864,0.172,0.142,0.000}. This indicates

that the effective response dimension is around three.

7.2. Scottish elections

Brown (1980) lists electorial results for all 71 Scottish constituencies in two British
general elections of February and October 1974. The raw data given in the article
consists of the total votes for each of the four parties (Conservative, Labour,
Liberal, Nationalist) in each election, together with a categorical variable listing
the location of the constituency by six regions, and the size of the electorate in
each constituency. The constituencies are listed in the order that they declared in
the February election. The objective is to use the February and October results
from part of the constituencies to predict the remaining October results from the
corresponding February data.

Following Brown (1980), we use as response variables y = (y1,y2,¥3,y4) the
difference between the October and February vote for each party divided by the
size of the electorate. There are p = 7 predictor variables. The first four are the
February votes for each party divided by the size of the electorate. The next three
are binary variables:

x5 = 0.5 if Liberal intervenes (Lib. vote in Oct. > 0, Lib. vote in Feb.= 0), else
Ty = 0,

xe = 0.5 if constituency is in a rural area, else z¢ = 0,

xz7 = 0.5 if Labour or Nationalist won in Feb. and |zy — 24| < 0.2, else 27 = 0.

The average (absolute) correlation between the responses is 0.435. The re-
sponse correlation matrix is given in Table 3. We use the data from the first 30
constituencies to form October prediction equations and then test these equations
on the data from the remaining 41 constituencies. Table 4 gives the mean-squared
prediction error for OLS (third column) and C&W (fourth column) multiplied by
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1000. As a baseline, we include the predictor consisting of the average of each Oc-
tober response over the 30 constituencies (second column). The GCV shrinkage
factors (3.11) (3.12) are D = diag{0.96,0.52,0.20,0.00} indicating an effective

response dimensionality of less than two.

8. Conclusion

The results presented in this paper strongly suggest that the conventional (statis-
tical) wisdom, that one should avoid combining multiple responses and treating
them in a multivariate manner, may not be the best advice. Our simulation stud-
ies indicate that the best of the multiple response procedures considered here can
provide large gains in expected prediction accuracy (for each individual response),
over separate single response regressions, with surprisingly little risk of making
things worse. In the fields of neural networks and chemometrics, by contrast, the
conventional wisdom has always been in favor of combining multiple responses.
The results of this paper generally validate that intuition, but it is not clear that
the respective recommended approaches in each of those fields best serve that
purpose. For example, the two-block PLS approach commonly used in chemo-
metrics was seen in our simulation studies to provide generally lower accuracy
than separate ridge regressions.

The C&W procedure tends to improve expected prediction accuracy for every
response. This suggests the intriguing prospect that even when there is only a
single response of interest, if there are variables available that are correlated with
it, then prediction for the response of interest may be improved by introducing
the other variables as additional responses. Of course, if the values of these
variables will also be available for (future) prediction, they should be regarded
as predictors (rather than responses) and included in the regression equation. In
some circumstances however, the (training) data may include measurements of
variables whose values will not be available in the prediction setting.

In the neural network literature such variables are known as “coaches”. These
are variables whose values are available for use during training but not available
for future prediction. Examples might be expensive or difficult to obtain medical
measurements that were available at the hospital where the training data were col-
lected, but not available in the field or at smaller hospitals where the predictions
are made. In financial forecasting, “future” values of other quantities, thought to
be correlated with the response, might be included as coaches. The results pre-
sented in this paper suggest that the inclusion of such coaching variables as extra
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responses during training using C&W may indeed improve prediction accuracy.
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10. Figure captions.

Figure 1: Population canonical coordinate shrinkage factors (2.23) as a function
of squared (population) canonical correlation, for various ratios of parameter
to observation count.

Figure 2: Sample based canonical coordinate shrinkage factors (3.12) (3.13) as
a function of squared (sample) canonical correlation, for the same ratios of
parameter to observation count as in Fig. 1.

Figure 3: Distribution over all 120 situations (p < N) of the overall average
response mean-squared error relative to OLS (5.13) for each biased method.

Figure 4: Distribution over all 120 situations (p < N) of the average individual
response mean-squared error relative to OLS (5.14) for each biased method.
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Figure 5: Distribution over all 120 situations (p < N) of the ratio of overall
average response mean-squared error for each method, to that of the best

method (5.16).

Figure 6: Distribution over all 120 situations (p < N) of the logarithm of the
ratio of average individual response mean-squared error (relative to OLS)
for each method, to that of the best method (5.17).

Figure 7: Distributions over all the 30000 replications (p < N) of the fraction of
responses in each, for which the respective biased methods were less accurate
than the corresponding OLS estimate.

Figure 8: Distribution (p < N) of the logarithm of the worst individual response
mean-squared error relative to OLS (5.15) of each of the six biased methods,
for each of the two error covariance matrix structures (5.5) (ERRVARI,

ERRVAR2, respectively).

Figure 9: Interaction of method with the other factors of the (p < N) simu-
lation design. Ordinate is average response mean-squared error relative to
OLS (5.13). (Number = average response correlation, RESP = number of
responses, SS = sample size, S/N = signal to noise ratio).

Figure 10: Distribution over all 144 (p = N) situations of the ratio of the
overall average response mean-squared error for each method, to that of the

best method (6.11).

Figure 11: Interactions of method with the other factors of the p = N simula-
tion design. Ordinate is the ratio of overall average response mean-squared
error for each method, to that of the best method (6.11). XCORR is the
predictor variable collinearity (5.1) (5.2) (LOW: » = 0.0, MED: r = 0.9,
HIGH: r = 0.99). SCORR is the average signal correlation (5.11) (LOW =
0.0, MED = 0.35, HIGH = 0.70).
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