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settings used in the manufacturing. Or, given the mass spectra of a sample, thegoal may be to predict the concentrations of several chemical constituents in thesample.Some years ago, the authors were involved in a project trying to predict changesin the valuations of the stocks in 60 industry groups using over 100 econometricvariables as predictors. In our state of knowledge at that time, prediction equa-tions for each one of the 60 groups were derived not using the data on the other 59responses. However, the changes in the 60 groups were strongly correlated. If weknew then what we know now, we could have taken advantage of the correlationsto produce more accurate predictors.To give a simple example of the potential improvement in estimation, supposethat the data is of the form fyn1; yn2;xngN1 where each xn = (xn1; � � �; xnp) is a p- vector of predictor variables and there are two responses y1 and y2. Taking theusual path, we get predictors for y1; y2 by doing separate regressions on (x1; ���; xp).That is, the estimated regression coe�cients â1 = (â11; � � �; â1p) and â2 = (â21; � ��; â2p) are solutions to â1 = argmina NXn=1(yn1 � atxn)2â2 = argmina NXn=1(yn2 � atxn)2where all variables have been centered. The prediction equations for y1 and y2are ŷ1(x) = �y1 + ât1(x� �x) and ŷ2(x) = �y2 + ât2(x� �x) where (�yi; �x) are thecorresponding sample means (before centering). Now suppose further that the(unknown) truth happens to be yn1 = b10+btxn + "n1 and yn2 = b20+btxn+ "n2where f"n1gN1 and f"n2gN1 are independent i.i.d. N(0; �2): Here y1 and y2 arecorrelated because they have the same dependence on the predictor variables,btx. It is also clear that accuracy is improved for each of the two responses byusing the predictors ~yi = �yi + 12(ŷ1 � �y1) + 12(ŷ2 � �y2) (i = 1; 2); instead of ŷ1 andŷ2 respectively.1.1. The curds and whey (C&W) procedure.In general, if there are q responses y = (y1; � � �; yq) with separate least squaresregressions ŷ = (ŷ1; � � �; ŷq), then the above example raises the possibility that ifthe responses are correlated, we may be able to get a more accurate predictor ~yi2



of each yi by using a linear combination~yi = �yi + qXk=1 bik(ŷk � �yk); i = 1; � � �; q (1.1)of the ordinary least squares (OLS) predictorsbyi = �yi + pXj=1 baij(xj � �xj) , (1.2)fbaijgpj=1 = arg minfajgp1 NXn=124yni � �yi � pXj=1 aj(xnj � �xj)352 ; (1.3)rather than with the least squares predictors themselves. Note that (1.1) (1.2)imply that the coe�cients, but not the means, of the (OLS) estimates are modi�ed.To simplify notation in all derivations that follow, we assume that the responseand predictor variables are all centered by their corresponding training samplemeans fyi  yi � �yigq1, fxj  xj � �xjgp1. As a result, all response estimatesare centered at the corresponding response sample means fŷi  ŷi � �yigq1, f~yi  ~yi � �yigq1; and reference the centered predictor variables.Assuming that (1.1) is an interesting possibility, the trick is to �nd what fbikgto use. It turns out that there is a nearly optimal set of fbikg that are given bywhat we call the \curds and whey" (C&W) procedure. Using vector and matrixnotation for the respective (centered) quantitiesey = feyigq1 ; by = fbyigq1 ; and B = [bik] 2 Rq�q , (1.4)(1.1) can be expressed as ey = Bcy: (1.5)We derive estimates of the matrix B that take the form B = T�1DT where T isthe q � q matrix whose rows are the response canonical coordinates (see Section2.2) and D = diag(d1; � � �; dq) is a diagonal matrix. Two prescriptions are derivedfor calculating fdkgq1. A generalized cross-validation approach (Section 3.1) yieldsa simple formula (3.12) (3.13). This works surprisingly well. Using regular (5 or10 - fold) cross-validation (Section 3.2) to obtain the fdkgq1 gives slightly betterprediction. 3



1.2. Statistical background.The curds and whey (C&W) procedure is a form of multivariate shrinking. Ittransforms (T), shrinks (multiplies by D = fdkgq1), and then transforms back(T�1). It derives its power by shrinking in the right coordinate system (canonicalcoordinates), and can be viewed as a multivariate generalization of proportionalshrinkage based on cross-validation [Stone (1974)].In the case of a single response variable (q = 1) it is well known that theOLS estimate (1.2)(1.3) can be outperformed in terms of prediction accuracy bybiased (regularized) shrinkage estimates. Examples include proportional shrink-age [James and Stein (1961), Stone (1974), Copas (1983) (1987)], ridge regression[Hoerl and Kennard (1970)], principal components regression [Massey (1965)], andpartial least squares (\PLS") regression [Wold (1975)]. These results suggest thatthere may be gains associated with treating the collection of responses as a vec-tor valued variable in the context of a combined shrinkage estimation procedure.Such procedures have been proposed: reduced rank regression [Izenman (1975)],two-block PLS [Wold (1975)], FICYREG [van der Merwe and Zidek (1980)], andmultivariate forms of ridge regression [Brown and Zidek (1980) (1982)]. How-ever they have seen little use in statistical practice. An exception is two-blockPLS which is widely applied in the �eld of chemometrics. C&W di�ers fromthe methods cited in that it has roots in both a theoretical and a cross-validationfoundation. Furthermore, simulation results indicate that its performance exceedsthat of the several (previous) methods to which we have compared it.1.3. Outline of paper.In Section 2 we assume (centered) predictors of the form (1.5). Taking the data tobe generated from linear models plus noise, we derive (under idealized conditions)the optimal shrinkage matrix B� = T�1DT where T is the canonical transfor-mation and D is a diagonal \shrinking" matrix. However, due to the idealizedsetting, the matrix D derived there underestimates the amount of shrinkage nec-essary. Section 3 takes a cross-validation approach to estimation of the shrinkagefactors, derives a simple approximate formula, and then describes the V - foldcross-validation estimates of D.Section 4 gives a brief description of some other methods proposed in the lit-erature for estimating multiple responses, and these are compared to C&W in thesimulation study covered in Section 5. In some �elds, chemometrics for example,it is not unusual to have fewer observations than predictor variables (N � p).4



The C&W method can be extended to these under-determined systems. Thisprocedure is described in Section 6, together with results of another simulationcomparing prediction methods in this p � N situation. Section 7 illustrates theapplication of the C&W method to two published data sets, one from chemo-metrics and the other from Scottish election results. Section 8 gives concludingremarks.2. Multivariate proportional shrinkage.For a single response variable y, the (centered) proportional shrinkage estimate eycan be expressed as ey = bby = pXj=1(bbaj)xj (2.1)where by and fbajgp1 are the OLS estimates (1.2) (1.3). Each OLS coe�cient baj isscaled by the same factor b and the overall biased estimate is a linear function ofthe OLS solution by. Several prescriptions have been proposed for estimating thedegree of shrinkage (value for b) so as to obtain improved expected mean-squarederror E[y � ey]2 < E[y � by]2; (2.2)where the expected value is over the joint distribution F (x; y) of the predictors xand the response y [see James and Stein (1961), Stone (1974), and Copas (1983)(1987)].A natural extension of (2.1) to the multivariate setting is to express each biasedestimate eyi as a general linear function (1.1) of the OLS estimates fbyigq1 (1.2). Invector notation (1.4) this is expressed by (1.5) where B can be regarded as a\shrinking" matrix that transforms the (vector valued) OLS estimate by to thebiased one ey. The goal is to obtain an estimateB of the optimal shrinking matrixB� whose elements are de�ned byfb�ikgqk=1 = arg minf�kgq1 E[yi � qXk=1 �k byk]2; i = 1; � � �; q: (2.3)Here (2.3) the expected value is over the joint distribution F (x;y) of the datato be predicted. Note that the use of B� (2.3) in (1.5) will result in reducedmean-squared prediction error for each responseE[yi � (B�by)i]2 � E[yi � byi]2; i = 1; � � �; q; (2.4)5



with equality in (2.4) obtaining only in the (unlikely) event B� = Iq, where Iq isthe q�q identity matrix. Therefore, expected (squared-error) loss will be reducedfor every response individually, rather than only with respect to an amalgamatedloss criterion involving all of the responses (such as weighted average quadraticloss).2.1. Optimal proportional shrinkage.In order to gain insight into the nature of the problem and its solution, we derivethe optimal shrinking matrix B� in an idealized setting. Here we assume thateach response is a linear function of the predictors with additive (i.i.d.) erroryi = fi(x) + "i; (2.5)with fi(x) = pXj=1 aijxj; i = 1; � � �; q: (2.6)The predictors x 2 Rp and the errors " 2 Rq are random samples with respective(population) distributions Fx(x) and F"(") with their joint distribution given byF (x; ") = Fx(x)F"("); (2.7)that is, the errors are independent of the predictor variables. LetE(x) = E(") = 0; E(xxt) = V 2 Rp�p; E(""t) = � 2 Rq�q (2.8)where the expected values are over the joint distribution (2.7). In this settingthe errors are assumed to be independent between (random) observations, but(possibly) correlated among the responses for each observation.The solution to (2.3) is a least squares regression (through the origin) of eachresponse yi on the (sample based) OLS estimates fbyigq1 over the (population)distribution (2.7), B� = hE(bybyt)i�1E(ybyt): (2.9)In order to simplify this derivation (only) we further assume that the samplemeans and covariance matrix of the predictor variables are the same as that ofthe population distribution. This would be the case if we condition on the designand only the errors are random. Otherwise, this can be viewed as a simplifyingapproximation. Denoting the \signal" covariance matrix asF = E[f(x)f t(x)] = AVAt (2.10)6



where f(x) = ffi(x)gq1 ; and A 2 Rq�p is the matrix of (true) coe�cients faijg(2.6), one has E[bybyt] = F+ r�; E[ybyt] = F: (2.11)where r = p=N (2.12)is the ratio of the number of predictor variables to training sample size. Therefore,from (2.9) B� = (F+ r�)�1F = (Iq + rR)�1 (2.13)where R = F�1� (2.14)is the \noise / signal" matrix. This result shows that the optimal shrinking matrixB� is determined by the noise to signal structure in the response space as re
ectedby the matrix R 2 Rq�q. Since both � and F are unknown this result is of nodirect use except to illustrate that they need not be separately determined; onlyan estimate of the product (2.14) is required. In the next section we show that Ris related to the canonical coordinates of the joint distribution of the predictorsand responses.2.2. Canonical analysis.In terms of a population distribution, canonical analysis can be formulated asfollows. Let F (x;y) be the (population) joint distribution of the (populationcentered) predictors x and the responses y. The goal is to �nd vectors t 2 Rqand v 2 Rp such that the correlation between the linear combinations tty andvtx is maximized. More generally, canonical analysis seeks K = min(p; q) suchpairs of linear combinations such that each successive pair maximizes correlationunder the constraint of being uncorrelated with the previous pairs(tk;vk) = arg maxfcorr(tty;ttly)=0gk�11fcorr(vtx;vtlx)=0gk�11 corr(tty;vtx): (2.15)The vectors ftkgK1 and fvkgK1 are (respectively) called the y and x canonicalcoordinates, and their respective correlationsnck = corr(ttky;vtkx)oK1 (2.16)7



are known as the canonical correlations of F (x;y). The criterion (2.15) is invariantto, and thus does not restrict, the scales of the linear combinations; this ambiguityis usually resolved by standardizing them to all have unit variancesE(ttky)2 = E(vtkx)2 = 1; k = 1; � � �;K: (2.17)It is well known [see for example Anderson (1957)] that the solutions to (2.15)(2.17) for ftkgK1 are obtained from an eigenanalysis of the (q � q) matrixQ = [E(yyt)]�1E(yxt)[E(xxt)]�1E(xyt) = T�1C2T 2 Rq�q: (2.18)(Although Q is not symmetric, it is the product of two symmetric matrices, sothat the eigen-decomposition (2.18) exists and is straightforward to obtain [seeGolub and van Loan (1989)]). The rows of the (q � q) matrix T (eigenvectors)are the y - canonical coordinates ftkgq1 and the diagonal matrixC2 = diag nc21; :::; c2Ko (2.19)contains the respective squared canonical correlations (2.16). The x - canonicalcoordinates are obtained by an eigenanalysis of a matrix analogous to Q (2.18)where x and y are interchanged.Generally, canonical analysis is used to obtain a set of descriptive statisticsfor the joint distribution F (x;y): However, in the case of our regression model(2.5) (2.6) (2.7) it provides a means for obtaining the optimal shrinking matrixB� (2.13). Under that model Q (2.18) becomesQ = (F +�)�1 F = (Iq +R)�1 (2.20)so that B� = h(1 � r)Iq + rQ�1i�1 (2.21)where is r is given by (2.12). This result (2.21) shows that B� is diagonal in they - canonical coordinate system (2.18)B� = T�1DT; D = diag(d1; :::; dq) (2.22)with di = c2ic2i + r(1� c2i ) ; i = 1; � � �; q (2.23)8



where by de�nition fci = 0gqK+1. Substituting (2.22) into (1.5) one hasTey = D(Tby) (2.24)so that (1.5) reduces to separate proportional shrinking of each OLS solution inthe y - canonical coordinate system. This leads to the following prescription foroptimal multivariate proportional shrinking:1. Transform y to the canonical coordinate system, y0 = Ty.2. Perform a separate OLS regression of each y0i on x; (i = 1; � � �; q), obtainingfŷ0igq1.3. Separately scale (shrink) each ŷ0i by the factor di (2.23), obtaining ~y0 =fdiŷ0igq1.4. Transform back to the original y - coordinate system, ~y = T�1~y0.Figure 1 shows graphs of the canonical coordinate shrinkage factors di (2.23)as a function of the corresponding squared canonical correlations c2i , for variousvalues of r (2.12). For small values of r there is very little shrinking of theOLS solutions in the canonical coordinate system, except for very small values ofc2i , whereas for large values the shrinkage factor decreases roughly linearly withdecreasing c2i . In all cases, 0 � di � 1.In order to estimate B� (2.21) one needs a sample based estimate of Q (2.18).A natural choice would be the \plug-in" estimatecQ = (YtY)�1YtX(XtX)�1XtY (2.25)where Y = [yni] 2 RN�q and X = [xnj] 2 RN�p; (2.26)are the respective (centered) data matrices. Although this choice does improve theOLS estimates, it does not provide enough shrinkage, and more improvement ispossible. The reason is that the sample canonical correlations fbcigq1 overestimatetheir corresponding population values fcigq1 (2.19) so that using these samplebased estimates in (2.23) reduces the amount of shrinkage from that which wouldbe obtained by using the correct (unbiased) population values. The problem isthat the same sample is used to estimate both the OLS solution, and its goodness-of-�t as re
ected by the in
ated (resubstitution) fbcigq1 values. This is a commonproblem in model selection. In order to estimate the proper amount of shrinkagea better (less biased) estimate of goodness-of-�t is needed. One commonly usedmethod for this is cross-validation [Stone (1974)].9



3. Cross-validatory multivariate shrinkage (C&W).The optimal shrinking matrix B� (2.3) is obtained by a regression of the re-sponses fyigq1 on the (sample based) OLS estimates fbyigq1 over (all future) data notpart of the training sample. This procedure can be approximated through cross-validation. Each observation (yn;xn) is (in turn) removed from the training sam-ple and treated as a \future" observation. The corresponding (cross-validation)analog to (2.3) then becomesfbikgqk=1 = arg minf�kgq1 NXn=1 "yni � qXk=1 �k bynnk#2 ; i = 1; � � �; q; (3.1)where bynnk is the OLS prediction of the kth response for the nth observation, ob-tained with it removed from the training sample. For the case of a single response(q = 1) this approach was proposed by Stone (1974) and called \
attening". Fromstandard matrix updating formulae one obtainsbynn = (1� gn)yn + gnbyn (3.2)where byn is the OLS estimate on the full sample, andgn = 11 � hnn (3.3)with fhnngN1 being the diagonal elements of the \hat" matrixH = X(XtX)�1Xt 2 RN�N ; (3.4)where X is the predictor data matrix (2.26). Substituting (3.2) into (3.1) oneobtains the cross-validated estimate of the shrinking matrix B.3.1. GCV based multivariate shrinking (C&W-GCV).To simplify this estimate (3.1) we �rst consider an approximation to the cross-validation procedure(3.2 - 3.4). We approximate each hnn (3.3) by its average overthe N observations hnn � h = 1N NXm=1hmm = 1N traceH = r (3.5)10



with r given by (2.12). This approximation is equivalent to \generalized" cross-validation (GCV) proposed by Craven and Wahba (1979). Using this approxima-tion the solution for the elements of the shrinking matrix B (3.1) becomesfbikgqk=1 = arg minf�kgq1 NXn=1(yni � qXk=1 �k[(1� g)ynk + gbynk])2 ; i = 1; � � �; q; (3.6)where g = 11 � r : (3.7)The normal equations for the solution (in matrix notation) are[(1� g)Yt + gcYt][(1� g)Y + gcY]B = (1� g)YtY + gYtcY (3.8)where Y is the response data matrix (2.26) and cY = HY 2 RN�q (3.4) is the cor-responding matrix of OLS predictions. After a little matrix algebra (3.8) reducesto [(1� g)2Iq + (2g � g2)cQ]B = (1 � g)Iq + gcQ (3.9)where cQ is the sample canonical correlation matrix (2.25). This (3.9) shows thesolution B is a diagonal matrix in the same coordinate system that diagonalizescQ, cQ = bT�1 bC2 bT, bC2 = diagfbc21; � � �; bc2qg: (3.10)Here (3.10) bT is the matrix of sample canonical coordinates and fbcigq1 are thesample canonical correlations. Using (3.10) in (3.9) the solution for the GCVshrinkage matrix becomesB = bT�1cD bT, cD = diagf bd1; � � �; bdqg (3.11)with bdi = (1 � r)(bc2i � r)(1� r)2bc2i + r2(1 � bc2i ) , i = 1; � � �; q: (3.12)Examination of (3.12) shows that bdi is negative whenever bc2i < r. As is usuallydone, we perform \positive part" shrinkage in this case by setting bdi = 0; so thatbdi  max( bdi;0) (3.13)in (3.12). 11



Comparing these results (3.11 - 3.13) with those of (2.22 - 2.24), one sees thatmultivariate proportional shrinking based on GCV leads to the same prescriptionas that for (population) optimal proportional shrinking derived in Section 2.2, butwith all population quantities replaced by their sample based estimates, and using(3.12) (3.13) in place of (2.23) for the shrinking factors in the (sample) canonicalcoordinate system. Figure 2 shows graphs of bdi (3.12 - 3.13) as a function of thecorresponding (sample) squared-canonical correlations bc2i , for the same values ofr as in Fig. 1. The GCV canonical shrinkage factors bdi are universally smallervalued (more shrinkage) than the corresponding population based values di (2.23)(assuming ci = ĉi) for all values of bc2i and r. This compensates for the upward biasin the estimates fbcigq1 of the population values fcigq1. This e�ect becomes morepronounced as r increases because the GCV estimate of the upward bias becomeslarger with increasing r (2.12).Although GCV optimal shrinking (3.11 - 3.13) results in a similar prescriptionto that of Section 2.2, it was derived without recourse to the speci�c model andassumptions of Section 2.1, except for the i.i.d. assumption required for cross-validation. The validity of the GCV result rests on suitability of (3.1) as anestimate of (2.3), and the GCV approximation (3.5). This latter approximationcan be removed by the use of full cross-validation to estimate the shrinkage matrixB.3.2. Fully cross-validated multivariate shrinking (C&W-CV).As shown in Section 3.1, the GCV approximation (3.5) leads to a very simple andinterpretable solution for the shrinking matrixB in terms of the sample canonicalcoordinates, and shrinking based on a simple formula. Resulting prediction accu-racy (2.4) may be impaired however by the lack of validity of (3.5). To overcomethis, we de�ne B by B = bT�1D bT, D = diagfd1; � � �; dqg; (3.14)with bT being the sample y� canonical coordinate transformation matrix (3.10),and D the solution toD = arg min�=diag: qXi=1 NXn=1 hyni � ( bT�1nn� bTnnbynn)ii2 : (3.15)Here (3.15) the subscript nn on a quantity refers to that quantity calculated withthe nth observation removed. Note that (3.15) is a purely quadratic criterion in12



� = diagf�1; � � �; �qg so that the solution for D is unique and can be obtained bystraightforward linear algebra given the other quantities appearing in (3.15).For the cases studied previously (Sections 2.2 and 3.1) the solution values (2.23)and (3.12) for the canonical coordinate shrinkage factors were monotone functionsof the respective canonical correlations. We impose a similar constraint on (3.14)(3.15) by replacing the elements of D, fdigq1, by the closest �t to those values thatare monotone in the sample canonical correlations fbcigq1 (3.10). Positivity is thenimposed by replacing all negative elements of D by zero,di  max(di; 0); (3.16)in (3.14).This (3.14 - 3.16) generalizes the GCV approach by removing the approxi-mation (3.5), and accounting for the variability in the estimate of the samplecanonical coordinate transformation bT (3.10), in the estimation of the canonicalcoordinate shrinkage factors fdigq1 (3.14). This usually results in increased shrink-age. This is accomplished at the expense of considerably increased computationalcomplexity. The quantities bT=n and by=n must be calculated for each observation(n = 1; � � �; N) removed. In practice this \N� fold" cross-validation procedureis approximated by V� fold cross-validation in which successive subsets of N=Vobservations are removed and the values of bT and by; computed on the remaining(training) observations, are used for all the observations in the left out subset.This reduces the computation by a factor of V=N . Common choices are V = 5 or10.4. Competitors.In terms of common statistical practice the primary competitor to the proceduresthat we propose (C&W-GCV and C&W-CV) is OLS. That is, a separate least-squares regression (1.2) (1.3) of each response yi on the predictor variables x.However, it is well known that OLS is inadmissible [James and Stein (1961)] andin fact can be (sometimes) substantially dominated, in terms of (single response)prediction accuracy, by a variety of biased (regularized) alternatives [Frank andFriedman (1993)]. Thus, when comparing our multivariate approaches to a strat-egy of separate marginal univariate regressions, the best among these biased meth-ods should provide worthier competition.As noted in Section 1.2 several multivariate multiple regression procedureshave been proposed in the past with the same goal as ours; they attempt to13



exploit the correlational structure among the responses to improve predictionaccuracy. In Sections 4.2 - 4.4 (below) we include a brief description of some ofthese and examine their relationship to our procedures. In Section 5 we compareperformance through an extensive simulation study.4.1. Separate ridge regressions.Ridge regression \RR" [Hoerl and Kennard (1970)] is one of the more popularand best performing [Frank and Friedman (1993)] alternatives to (single response)OLS. A reasonable multiple response strategy would be to perform a separate RRon each individual response yi (1.2). The regression coe�cient estimates are thesolution to a penalized least squares criterionfâijgpj=1 = arg minfajgp1 NXn=1[yni � pXj=1 ajxnj]2 + �i pXj=1 a2j , i = 1; � � �; q: (4.1)This (4.1) biases the coe�cient estimates toward smaller absolute values and dis-courages dispersion among their values. The \ridge" parameters f�igq1 (4.1) reg-ulate the strength of this e�ect and their values are estimated through modelselection. We employed cross-validation to estimate each (separate) ridge param-eter �̂i = arg min� NXn=1[yni � ŷnni]2, i = 1; � � �; q; (4.2)with ŷnni being the RR estimate (1.2) (4.1) obtained with the nth observation re-moved from the training sample. Although this separate RR approach ignores thecorrelational structure of the response variables fyigq1, it can provide considerablymore accurate estimates than OLS (see Section 5).4.2. Reduced rank regression.Reduced rank regression [Izenman (1975)] places a rank constraint on the matrixof estimated regression coe�cients (1.2). Consider the regression model (2.5)(2.6) and suppose one wishes to �nd the coe�cient matrix ~Ar 2 Rq�p of rankr � min(p; q) that minimizes~Ar = arg minrank(A)=rE(y �Ax)t��1(y�Ax) (4.3)14



with � given by (2.8). The solution to (4.3) is~Ar = BrÂ (4.4)where Â 2 Rq�p is the matrix of OLS estimates and the reduced rank \shrinking"matrix Br 2 Rq�q is given by Br = T�1IrT (4.5)with T being the (population) canonical coordinate matrix (2.18) andIr = diagf1(i � r)gq1: (4.6)In applications of reduced rank regression the sample canonical coordinatesT̂ (2.25) (3.10) are taken as estimates of the corresponding population quantitiesin (4.5) and the rank value r (4.6) is regarded as a regularization parameter ofthe procedure whose value is estimated through model selection. We employedcross-validation (analog of (4.2)). This estimate (2.25) (3.10) (4.5) (4.6) has thesame form as C&W-GCV but with a di�erent diagonal matrix [Ir (4.6) versus D(3.11-3.13)].4.3. FICYREG.Filtered canonical y - variate regression (\FICYREG") was proposed by van derMerwe and Zidek (1980). The estimated coe�cient matrix ~A 2 Rq�p takes theform ~A = BfÂ (4.7)where again Â 2 Rq�p is the matrix of OLS estimates and the \shrinking" matrixBf 2 Rq�q is given by Bf = T̂�1FT̂: (4.8)Here (4.8) T̂ is the sample canonical coordinate matrix (2.25) (3.10) andF = diagff1; � � �; fqg (4.9)with fi = ĉ2i � p�q�1Nĉ2i (1� p�q�1N ) (4.10)and fi  max(0; fi): (4.11)15



The fĉ2igq1 in (4.10) are the sample (squared) canonical correlations (3.10).Like reduced rank regression FICYREG shrinkage (4.7 - 4.11) also has thesame form as C&W-GCV, here with the matrix F (4.9 - 4.11) replacing D (3.11- 3.13). One di�erence between (4.10) and (3.12) is that the canonical coordinateshrinkage factors ffigq1 (4.10) depend on the number of responses q as well asthe number of predictor variables p and corresponding squared sample canonicalcorrelations fĉ2i gq1. For the same values of ĉ2i and p, (4.10) (4.11) shrink less fora larger number of responses. The corresponding C&W-GCV factors fdigq1 (3.12)(3.13) depend only on fĉ2i gq1 and p irrespective of the number of responses. Forall values q � 1 one has fdi < figq1; (4.12)that is FICYREG always shrinks less than C&W-GCV. As the number of re-sponses increases this e�ect (4.12) becomes more pronounced. In fact, if one setsq = �1 in (4.10) (4.11) almost identical shrinkage values are produced as those of(3.12) (3.13) for the same value of ĉ2i and p.4.4. Two-block partial least squares.Partial least squares (\PLS") regression [Wold (1975)] is very popular in the �eldof chemometrics. The multiple (q > 1) response version (\two-block" PLS) be-gins with a \canonical covariance" analysis. This is similar to canonical correlationanalysis (Section 2.2) with the covariance between the linear combination pairscov(tty;vtx) replacing corr(tty;vtx) in (2.15), and the constraints in (2.17) re-placed byfttktk = vtkvk = 1gq1: The (ordered) set of canonical covariance x - linearcombinations fzk = vtkxgp1 (4.13)are then used to form an ordered sequence of coe�cient estimates for each responsef~a(K)ik gKk=1 = arg minfakgK1 NXn=1[yni � KXk=1 akznk]2; (4.14)~y(K)i = KXk=1 ~a(K)ik zk; i = 1; q: (4.15)This (4:14) (4.15) is a separate OLS regression of each response yi on the �rst Kx - canonical covariance linear combinations (4.13). The coe�cients (4.14) ref-erence the linear combinations (4.13) as predictor variables. They can be easily16



transformed to reference the original predictors fxjgp1. The number of \compo-nents" K (4.14) (4.15) is a regularization parameter of the procedure; its value isdetermined through cross-validation (analog of (4.2)).The relationship between two-block PLS and other multiple response regres-sion procedures is not obvious. It was introduced by Wold (1975) as an iterativecomputational algorithm and much e�ort has been expended since then tryingto understand it statistically. Frank and Friedman (1993) provide some insightby comparing its results to that of a particular formulation of multivariate ridgeregression derived from a particular joint prior on the true regression coe�cientsand assumptions on the error covariance matrix � (2.8).4.5. Discussion.Our proposals, C&W-GCV and C&W-CV, were introduced in Sections 3.1 and3.2 respectively. Four additional approaches (separate ridge regressions, reducedrank regression, FICYREG, and two-block PLS) were described in Sections 4.1- 4.4. These are not the only ones that have been proposed. Brown and Zidek(1980) (1982) suggest a variety of multivariate generalizations of ridge regressionalong the lines of FICYREG. The four competitors described above have seen useon data and two (separate ridge regressions and two-block PLS) are very popular.Of the six procedures described above, four (C&W-CV, reduced rank regres-sion, separate ridge regressions, and two-block PLS) require sample reuse (cross-validation) to estimate regularization parameters. Therefore they can be expectedto be much more computationally intense than the other two (C&W-GCV andFICYREG) which do not require sample reuse to estimate such parameters. All ofthe procedures but two (separate ridge regressions and two-block PLS) are equiv-ariant under all non-singular a�ne (translation, rotation and/or scaling) transfor-mations of either the responses y or the predictors x. Separate ridge regressionsare clearly equivariant under response scale changes but not under rotations inthe response space. They are equivariant under (rigid) rotations of the x - coor-dinates, but not equivariant under scale changes of the predictors or their linearcombinations. Two-block PLS is rotationally equivariant in both the y and xspaces, but not equivariant under scale changes in either space. Both ridge andPLS are equivariant under translation in both spaces.Although motivated from very di�erent perspectives, four of the six proceduresdiscussed above (the a�ne equivariant ones) all have the same (generic) form~y = (T̂�1GT̂)Âx (4.16)17



where T̂ is the matrix of sample canonical coordinates (2.25) (3.10), and the diag-onal (q� q) matrixG contains the shrinkage factors for scaling the OLS solutionsÂ in the canonical coordinate system. C&W-GCV (3.11-3.13) and C&W-CV(3.14-3.16) were motivated by the cross-validation approximation (3.1) to opti-mal proportional shrinking (2.3). Reduced rank regression (4.5) (4.6) derives itsmotivation from the \naturalness" of regularizing OLS through a rank restrictionon the matrix of estimated coe�cients (4.3). FICYREG is based on Zidek (1978)which contains the only previous theoretical justi�cation for transforms of theform (4.16). Zidek assumes that the data fyn;xngN1 are an i.i.d. sample froma joint normal distribution. A set of transformations of the data is de�ned to-gether with a particular (amalgamated) invariant loss function. The equivariantcoe�cient estimates are then given by (4.16) where the elements of G dependonly on the sample canonical correlations. Zidek (1978) then shows that for theparticular loss function de�ned, the form of G used in FICYREG (4.10) (4.11)gives estimates dominating OLS. It is perhaps no surprise that many multivariatemultiple regression procedures involve canonical coordinates at a basic level, since,as shown in Sections 2.1 and 2.2, the canonical coordinate system emerges as thenatural one for optimal proportional shrinkage (2.22) (2.24).5. Simulation study.An important issue is whether any of the multivariate multiple regression proce-dures o�er su�cient improvement over separate (uniresponse) multiple regressions(OLS or separate ridge) to justify their consideration as viable alternatives. And,among those that do, which ones provide the best trade-o� between accuracy im-provement and increased complexity, both in terms of implementation and com-putation. The answers to these questions may well depend on the detailed natureof the problem at hand in terms of the number of observations N , the number ofresponse variables q, their correlational structure, signal to noise ratio, collinearityof the predictor variables, etc. In this section (below) we attempt to provide someanswers to these questions by means of an extensive simulation study.5.1. Design.In all situations covered by this study the number of predictor variables was takento be p = 50. There were two training sample sizes: N = 100 and N = 400, andthree values for the number of responses: q = 5; q = 10; and q = 20. For18



each (random) replication of each situation the predictor variables were generatedaccording to a normal distribution with zero mean and covariance matrix V;x � N(0;V): (5.1)The covariance matrix V (5.1) was itself random with a di�erent realization foreach replication Vij = rji�jj (5.2)with r a random number generated from a uniform distributionr � U [�1; 1]: (5.3)Thus for some replications (jrj ' 1) there was a high degree of collinearity amongthe predictors, whereas for others (jrj ' 0) they are nearly independent. A rangeof possibilities (5.3) in between these extremes was also produced.Each response yi was computed from (2.5) (2.6). The errors f"igq1 were gener-ated from a normal distribution with zero mean and covariance matrix � (2.8)f"igq1 � N(0;�): (5.4)Two covariance structures among the errors were studied:� = �2 � Iq and � = �2 � diagfi2gq1: (5.5)In the �rst, the error variance associated with each response is the same, whereasin the second they are very di�erent. More complicated (nondiagonal) error co-variance structures were not considered since they are included for the signalcovariance matrix F (2.10) (see below), and the relevant quantity is the relation-ship between the signal and noise covariances as captured by the noise/signalmatrix R (2.14). Two values of �2 (5.5) were studied. They were chosen so that(on average) signal/noise ratios of 1:0 and 3:0 respectively were produced.The (\true") coe�cients aij (2.6) were generated throughaij = 10Xk=1 cikg(j; k) (5.6)with g(j; k) = hk � (lk � jj � jkj)2+ (5.7)19



where the value of hk is adjusted so that50Xj=1 g(j; k) = 1: (5.8)The quantities jk and lk (5.7) are integers with random values sampled fromuniform distributions in the ranges [1; 50] and [1; 6] respectively. The coe�cientsfcikgqi=1 (5.6) are each randomly sampled (separately) from a (q - dimensional)Gaussian distribution fcikgqi=1 � N(0;�) (5.9)with the covariance matrix being �mn = �jm�nj: (5.10)Thus, the coe�cients cik (5.6) are independent for di�erent k but correlated amongthe responses i, with the degree of that correlation controlled by the value of theparameter � (5.10). Finally, all coe�cient values were normalized by the samescale factor so that the average (\signal") variance for each response was equal to1:0.Each g(j; k) (5.7), when viewed as a function of the predictor variable indexj, represents a (normalized) \bump" centered at jk with support (nonzero val-ues) in the interval [jk � lk; jk + lk]. Thus the coe�cient vector (5.6) for eachresponse is a (di�erent) random superposition of the (same) 10 such bumps, eachbump centered at a random location jk, with (random) width lk. Since the coef-�cients multiplying each of the individual bumps are independent of each other,the (average) correlation among the response variables is completely determinedby the covariance matrix � (5.9) controlled by the parameter � (5.10). Therefore,the (\true") response functions (2.6) are (randomly) di�erent for each replication(of each situation). Some have coe�cients faijg50j=1 that have roughly the same(absolute) values, whereas others have coe�cients with very di�erent (absolute)values (e.g. a few large values and the others very small). A variety of sets ofcoe�cient values in between these extremes are also realized.The design of this simulation is comprised of two sample sizes (N = 100; 400),three values for the number of responses (q = 5; 10; 20); �ve values for the averagecorrelation among the response functions (2.6)avei 6=jjcorr(fi; fj)j = �0:7;�0:35; 0:0 (5.11)20



(controlled by � (5.10)), two error covariance structures (5.5), and two signal tonoise ratios (1:0; 3:0). A complete factorial design over all of these levels gives riseto 2 � 3 � 5 � 2 � 2 = 120 situations. Each situation was replicated 250 timesgiving rise to 30000 runs. Each of the competitors (OLS, separate ridge, reducedrank, FICYREG, two-block PLS, C&W-GCV, and C&W-CV) were applied to thedata for each run. Thus, the entire simulation study consists of 210000 (multipleresponse) regressions.5.2. Performance measures.For each replication, the mean-squared estimation error of the ith response for aparticular method m is given bye2i (m) = Z [(ai � ~ai(m))tx]2p(x)dx= (ai � ~ai(m))tV(ai � ~ai(m)) (5.12)where ai = fai1; � � �; aipg is the \true" coe�cient vector (2.6) (5.6) for the ithresponse and ~ai(m) is the corresponding estimate for each method. Here p(x) isthe probability density (5.1) from which the predictors x are sampled and V isthe corresponding (population) covariance matrix (2.8) (5.2). Several summarymeasures of relative performance are derived based on di�erent combinations offe2i (m)gq1 (5.12). The �rst is the overall average mean-squared errorA(m) = Pqi=1 e2i (m)Pqi=1 e2i (OLS) (5.13)relative to the overall average of the OLS mean-squared estimation errors fe2i (OLS)gq1.The second performance measure is the average of the individual ratios of eachresponse mean-squared error to that of its OLS estimateI(m) = 1q qXi=1 e2i (m)e2i (OLS) : (5.14)The third measure is the worst individual mean-squared error relative to OLSW (m) = maxm=1;q e2i (m)e2i (OLS) : (5.15)21



The fourth and �fth measures are derived from the �rst two; they are the ratio ofeach to the corresponding minimum value over all six methods being comparedRA(m) = A(m)mink=1;6A(k) ; (5.16)RI(m) = I(m)mink=1;6 I(k) : (5.17)The �rst two criteria (5.13) (5.14) provide a means of comparing each of thesix methods to OLS in terms of how much average (squared) error reduction eachgives relative to OLS. The third criterion (5.15) measures the degree of cautionassociated with each method. Values of W (m) > 1 indicate that the methodproduced at least one response estimate less accurate than its corresponding OLSestimate. The last two measures (5.16) (5.17) allow comparisons among the sixbiased methods themselves. For each individual replication, the value of (5.16)or (5.17) is 1.0 for the corresponding best (minimum error) method, and greaterthan that for the other methods. If a particular method happened to be best forevery replication then the corresponding distribution of its values (5.16) (5.17)over all replications would be a point mass at the minimum value (1.0).5.3. Results.The results of the simulation study are summarized by the respective means ofthe performance measure values (5.13-5.17) for each method over the 250 repli-cations for each situation. Figures 3 - 6 display box plots of the mean values of(5.13), (5.14), (5.16), and (5.17) respectively over all of the 120 situations coveredby the simulation study. That is, each box plot summarizes the distribution of120 (mean) values. Figure 3 summarizes the distribution of the average overallmean-squared error ratio A(m) (5.13) for each of the six methods. All are seen toprovide substantial improvement over OLS (A(OLS) = 1). All of the multivariatemethods, except two-block PLS, also show substantial improvement over separate(uniresponse) ridge regressions. The average overall mean-squared error associ-ated with reduced rank regression and FICYREG are comparable, with the latterexhibiting considerably less variability. C&W-CV and C&W-GCV show compa-rable performance with each other, and somewhat better than the rest. The bestof these methods C&W-CV provides over a factor of two improvement over OLS,as averaged over all 120 situations, and about a 61% improvement over separateridge regressions. 22



Figure 4 shows the distribution of average individual mean-squared error ratioI(m) (5.14). These distributions are fairly similar to the corresponding ones forthe A(m) (5.13) values, except for two-block PLS. The I(m) values for two-blockPLS tend to be substantially larger than its A(m) values. This indicates that two-block PLS su�ers a \Robin Hood" e�ect where responses that are well estimatedby OLS (low error) are made substantially worse (relatively) by PLS in order toachieve modest (relative) improvement in those that are poorly estimated by OLS(and PLS). Comparing Figs. 3 and 4 one sees that the other methods do notexhibit the Robin Hood e�ect; they produce roughly equal relative improvementacross all responses.Figures 5 shows the distributions of RA(m) (5.16), and Fig. 6 the logarithmof RI(m) (5.17). C&W-CV is seen to have the best average performance, orwithin a few percent of the best, in every one of the 120 situations. C&W-GCV isseen to be next closest to the best, with median performance only 2% worse thanC&W-CV and seldom more than 10% worse. The other methods substantiallylag behind these two, relative to the best performer.Figures 3 and 4 show that, averaged over all responses, all of the six biasedmethods considered here provide improved performance over OLS. That improve-ment was fairly dramatic for some of the methods. From a perspective of cautionone might ask how probable it is that an individual response estimate by one ofthese methods will be less accurate that its OLS estimate. That is, how oftendo they make things worse. We already have an indication that two-block PLShas a tendency to degrade the most accurate OLS estimates. Figure 7 addressesthis issue for all of the methods by showing the distribution (over all 30,000 repli-cations associated with the 120 situations) of the fraction of responses (in eachreplication) for which the accuracy of the biased estimate was worse than thatfor OLS. One sees that the most cautious method by this measure is FICYREG.On average less than 3% of its response estimates are worse than OLS. C&W-GCV is seen to be only slightly less cautious, its estimates being worse than thecorresponding OLS estimates an average of 5% of the time. C&W-CV also ex-hibits fairly cautious behavior by this measure, degrading the OLS estimate onaverage 7% of the time. At the other extreme is two-block PLS which degradesthe OLS estimate an average of 35% of the time, providing further evidence of itssusceptibility to the Robin Hood e�ect.Another measure of caution is the worst individual mean-squared error ratioW (m) (5.15). Figure 8 shows the distribution of the logarithm of this quantityfor each method, separately for each of the two error variance structures (5.5).23



The left box plot for each method m summarizes the distribution of the averagesof W (m) for the 60 situations in which the (population) error variances are allequal, � = �2 � Iq, and the right box plot is the corresponding distribution overthe other 60 for which they are very unequal, � = �2 � diagfi2gq1. One seesthat for the most cautious methods (FICYREG, C&W-GCV, and C&W-CV)W (m) seldom becomes much larger than 1.0, indicating that these methods seldomproduce a substantial degradation of the OLS estimate for any response for eithererror variance structure. These methods are seen to be slightly less cautious forhighly dissimilar error variances than for equal variances. On the other hand,the caution associated with two-block PLS is seen to dramatically depend onthe structure of the error variances of the respective responses. Although evenfor equal error variances, it is the least cautious of the methods considered here,PLS at least does not produce disastrous results in this case. When the errors ofthe individual responses have highly unequal variances however, two-block PLStypically degrades the OLS error (squared) of at least one of the responses (usuallythe best one(s)) by a factor of 10, and factors of 20 are not uncommon. Frank andFriedman (1993) argued that an intrinsic (implicit) assumption associated withtwo-block PLS is the simple error covariance structure � = �2 � Iq. The resultsshown in Fig. 8 tend to con�rm this.As noted in Section 4.3, FICYREG always shrinks less than C&W-GCV (4.12),which in turn shrinks less (on average) than C&W-CV. Shrinking less aggressivelycauses less modi�cation of the OLS estimates resulting in less chance of makingthings worse. On the other hand, this more cautious approach limits the gainsthat are possible as a result of the shrinking strategy. If caution is an importantissue, C&W-GCV would appear to be the best compromise since it results innearly as much caution as the most cautious method FICYREG (Fig. 7), whileat the same time providing nearly as much accuracy as the most accurate oneC&W-CV (Figs. 5 and 6).Figure 9 shows the (�rst order) interaction e�ects between the method (m)and the factors of the simulation design. Plotted on the vertical scale is theaverage of A(m) (5.13) over all situations for which the particular factor was atthe given level indicated on the horizontal axis. One sees from the upper leftframe that separate ridge regressions are una�ected by the degree of correlationamong the responses (5.11) whereas the multivariate methods all perform betterwith higher (positive or negative) correlation, as would be expected. The middleleft frame shows that the performance (relative to OLS) of all methods, excepttwo-block PLS, is better with highly unequal error variances (5.5). As one would24



expect all methods improve (relative to OLS) with decreasing sample size (middleright frame) and decreasing signal to noise ratio (lower left frame), but FICYREGseems to enjoy less improvement than the others. The lower right frame showsthe dependence of A(m) on the number of responses q. The performance ofseparate ridge regressions is independent of q (as would be expected), whereasthat of all the multivariate methods, except FICYREG, improves (monotonically)with more response variables. FICYREG's relative inability to take advantage ofincreasing number of responses q is probably due to the dependence of its shrinkagefactors (4.10) on q, as discussed in Section 4.3. Two-block PLS shows only modestperformance gain with increasing q while reduced rank regression shows the mostrapid (relative) gain. Note that the two C&W procedures dominate the othersat all levels of all the design factors, with C&W-CV always being (slightly) thebetter.5.4. Discussion.Overall, the simulation studies demonstrate that some multivariate multiple re-gression methods can produce increased (expected) prediction accuracy (for eachresponse) over separate multiple regressions (OLS or ridge regression). Of themethods compared here, only two-block PLS provided inferior results to separateridge regressions. If prediction accuracy were the only criterion for choosing amethod then Figs. 5 and 6 suggest C&W-CV as the method of choice. It attainedthe highest average accuracy, or very close to it, in every one of the 120 situationscomprising our simulation study. However C&W-GCV is a worthy contender,typically performing almost as well as C&W-CV in relation to the best methodin every situation.If (minimax) caution were a primary concern then FICYREG might be a goodchoice. However, C&W-GCV is only slightly less cautious (Figs. 7 and 8) whileproducing substantially greater gains in accuracy (Figs. 5 and 6). C&W-CV is alsoseen to be fairly cautious, being only slightly less so than C&W-GCV. In terms ofimplementational simplicity and computational speed FICYREG and C&W-GCVstand out. Neither requires sample reuse (cross-validation) to estimate the valuesof model selection parameters, and both are easily implemented in any statisticalpackage that provides canonical correlation analysis. Again, C&W-GCV wouldappear to be the logical choice among these two owing to its higher performancein terms of accuracy in our simulation study.Two-block PLS emerges from this simulation study as consistently the poorest25



performer from every perspective. It is the least cautious and produces the leastaccuracy among all the biased methods considered here. In fact, it is dominatedin accuracy by separate ridge regressions. This, coupled with the fact that it is(by far) the computationally slowest method, and that it is a�ne equivariant inneither the predictor nor the response space, would tend to exclude it from consid-eration. This is somewhat surprising since it is one of the most popular and highlypromoted methods for multivariate multiple regression, especially in the �eld ofchemometrics. By contrast, single response PLS is competitive with other (singleresponse) biased regression methods, performing almost as well as ridge regres-sion [Frank and Friedman (1993)]. This together with the fact that separate ridgeregressions substantially outperform two-block PLS, suggest that in environmentswhere PLS for some reason must be used, performing separate (uniresponse) PLSregressions on each individual response would be a better strategy than employ-ing (multivariate) two-block PLS. This is especially the case if the error variancesamong the responses are not equal (Fig. 8). The superiority of separate PLS re-gressions over two-block PLS has been noted by Frank and Friedman (1993) andGarthwaite (1994). The simulation results of Section 5.3 suggest however thatusing one of the better multivariate multiple regression procedures should provideconsiderably enhanced performance over a strategy of separate uniresponse PLSregressions since they consistently outperformed separate ridge regressions.It is important to note that all of these conclusions are based on the results ofthe simulation study described in Section 5.1. Although considerable e�ort wasinvolved in attempting to make it as comprehensive as possible, every conceivablesituation cannot be covered by any such study. Just as one can seldom verifywhether a particular data set conforms to the assumptions associated with anytheoretical result, one cannot be sure that it is represented within the scope ofour simulation study. It is possible that for factor values very di�erent than thoserepresented in our design the results would be di�erent, in the same way thatviolation of the assumptions of a theorem may alter its conclusions.6. Under-determined systems.Separate ridge regressions and two-block PLS do not require the response and/orpredictor sample covariance matrices, YtY and XtX (2.26) respectively, to benonsingular. Therefore no special problems arise with these procedures when q >N and/or p > N . However the other multivariate multiple regression proceduresconsidered here (reduced rank regression, FICYREG, C&W-GCV, and C&W-26



CV) are not strictly de�ned when either YtY or XtX is singular. Therefore thesemethods must be suitably generalized to be applicable to such settings. Situationsfor which p > N , especially, represent an important class of applications.Singular YtY causes no special problem. The response linear combinations(eigenvectors of YtY) corresponding to zero variance (eigenvalues) are simplyde�ned to have zero (canonical) correlation with the predictors, and the usualcanonical correlation analysis (2.25) (3.10) is then con�ned to the nonzero vari-ance subspace of the responses by using the generalized inverse of YtY in (2.25).Dealing with singular XtX on the other hand must be done with care.One possibility for treating singular XtX is in analogy with that for singularYtY. One performs an eigenanalysis of the predictor covariance matrixXtX = UE2Ut, UtU = UUt = Ip; E2 = diagfe21; � � �; e2r; 0; � � �g (6.1)where r < p is the rank of XtX, and the eigenvalues fe21; � � �; e2rg are in descendingorder. The matrix Zr 2 RN�r formed by �rst r columns of the rotated predictordata matrix Z = XU 2 RN�p (6.2)is then used in (2.25) in place of X. The regression coe�cient estimates associatedwith the last p � r columns are then all de�ned to have zero value. This isequivalent to using the generalized inverse of XtX in (2.25).A problem with this approach is that the resulting (nonzero) coe�cient esti-mates are likely to be highly variable owing to the fact that ZtrZr is still likelyto be poorly conditioned. This can be remedied by making the rank value r amodel selection parameter to be estimated through cross-validation in analogywith (single response) principal components regression [Massey (1965)]. This ap-proach would tend to rule out reduced rank regression and C&W-CV since severalmodel selection parameters would then have to be estimated through sample reusewith limited data. Since it consistently outperformed FICYREG for p < N , wechose C&W-GCV for this combined implementation.6.1. C&W-ridge.Although the technique described above for combining C&W-GCV with principalcomponents regression provided satisfactory performance, we found that usinga similar strategy based on ridge regression worked consistently better. Withthis approach the coe�cient matrix Â� 2 Rq�p is obtained from separate ridge27



regressions of each response on the predictorsÂ� = (XtX+ �Ip)�1XtY (6.3)using a common value of the ridge parameter � for all responses. This leads tothe corresponding ridge regression response estimates ŷ(�) 2 Rq throughŷ(�) = Â�x: (6.4)The value �̂ of the (common) ridge parameter � is chosen by (5-fold) cross-validation �̂ = argmin� qXi=1 NXn=1[yni � ŷnni(�)]2: (6.5)The C&W-ridge estimates are then given by~y = (T̂�1DT̂)Â�̂x, (6.6)D = diagfd1; � � �; dqg; (6.7)where T̂ 2 Rq�q is obtained by a canonical correlation analysis between the sampleresponses Y and their corresponding ridge estimates Ŷ�̂ 2 RN�q(YtY)�1YtŶ�̂(Ŷt̂�Ŷ�̂)�1Ŷt̂�Y = T̂�1Ĉ2T̂; (6.8)Ĉ2 = diagfĉ21; � � �; ĉ2qg: (6.9)The diagonal matrix D (6.7) is given by the C&W-GCV formula (3.12) (3.13)with fĉ2igq1 given by (6.9) and withr̂ = 1N trace[X(XtX + �̂Ip)�1Xt] (6.10)replacing r (2.12) in (3.12). Note that this C&W-ridge procedure generalizesC&W-GCV in the sense that it reduces to C&W-GCV when �̂ = 0.Unlike C&W-GCV, C&W-ridge is not a�ne equivariant in either the responseor predictor spaces. Although it is equivariant under (rigid) rotations in bothspaces, changing the relative scales of the responses and/or the predictors (or theirlinear combinations) changes the predictivemodel. As in ordinary ridge regression,principal components regression, and PLS, this ambiguity is usually resolved bystandardizing (\autoscaling") all variables before the analysis is performed.28



For poorly-determined systems ( p=N �= 1) the least-squares estimates (thoughde�ned) can be highly variable, potentially causing di�culty for procedures basedon proportional shrinking like C&W-GCV and C&W-CV. The ridge estimates (6.3- 6.5) have less variance at the expense of (additional) bias. It is therefore possiblethat C&W-ridge may outperform C&W-GCV and C&W-CV in such poorly (butnot ill-) conditioned situations. In the simulation study described in Section 5(p=N = 1=2 and 1=4) C&W-ridge exhibited substantially inferior performance tothat of both C&W-GCV and C&W-CV. However for substantially larger values ofp=N (�= 1) C&W-ridge may have the best performance. This will likely dependother aspects of the problem such as sample size and (unknown) signal-to-noise ra-tio. A reasonable strategy would be to compare the methods using cross-validatederror estimates as a guide.6.2. Simulation study.For p > N the competitors to C&W-ridge (Section 6.1) are separate ridge re-gressions (Section 4.1) and two-block PLS (Section 4.4). In order to study theirrespective performance in a variety of situations we performed another (less ambi-tious) simulation study. For all replications the training sample size was N = 25.There were two values for the number of responses: q = 5 and q = 10, and twovalues for the number of predictor variables: p = 50 and p = 100. Two errorcovariance structures were studied (5.4) (5.5) each with two values of �2 chosen togive (average) signal/noise ratios of 1:0 and 3:0 respectively. Three di�erent signalcovariance structures F (2.10) were studied corresponding to average correlationsamong the signals (2.6) (5.11) of 0:0, 0:35, and 0:70. For each replication thepredictors were generated from (5.1) (5.2) with r assigned three values: r = 0:0,r = 0:90, and r = 0:99. The response values were computed from (2.5) (2.6) withthe true coe�cient values faijg generated in the same manner described in Section5.1. A full factorial design over all of the above levels gives rise to 144 situations;100 replications were performed for each one. Thus, the entire simulation studyis comprised of 14400 replications.The performance measure used to compare the three methods isRA(m) = Pqi=1 e2i (m)mink=1;3Pqi=1 e2i (k) ; m = 1; 2; 3 (6.11)with fe2i (m)gq1 given by (5.12). This measures the error squared (averaged over theresponses) of each method relative to the corresponding minimum over all of the29



methods. For each replication (6.11) will have the value 1.0 for the best (minimumaverage error squared) method and larger values for the other two methods. Theresults of this simulation study are summarized by the average of (6.11) over the100 replications for each of the 144 situations.Figure 10 shows box plots for each method of the distribution of the 144averages of (6.11) over all situations. C&W-ridge is seen to produce the bestaverage error (squared), or within a few percent of the best, in every situation.The corresponding quantity for separate ridge regressions is typically 22% largerthan the best, and that for two-block PLS is 30% larger. However, the dispersionof values for two-block PLS about its median is somewhat less than that forseparate ridge regressions.Figure 11 shows the (�rst order) interaction e�ects between method (m) andthe design factors of this simulation study, based on RA(m) (6.11), in the samemanner as that of Fig. 9. One can see from the upper left frame that for low(population) collinearity all three methods perform comparably, C&W holding aslight edge. This is due to the fact that for p � N and low collinearity none ofthe three methods is able to produce predictions that are much more accuratethan simply the response means. In higher (population) collinearity settings moreaccurate prediction is possible and the C&W procedure is seen to be much moredominant over the other two. This is especially the case for the highest collinearity(r = 0:99) where it is typically 42% better than two-block PLS and 75% betterthan separate ridge regressions.The relative advantage of C&W-ridge over the other two methods is seen (Fig.11) to increase with decreasing signal to noise ratio (upper right frame), andincreasing dispersion among the response error variances (middle left frame). Itscompetitive advantage is slightly less for more responses (middle right frame) andmore predictor variables (lower right frame). The degree of correlation among theresponses does not seem to strongly e�ect its advantage (lower left frame). Theperformance of C&W-ridge is seen to dominate that of separate ridge regressionsand two-block PLS for every level of every factor.7. ExamplesIn this section we illustrate the application of C&W to two published data sets andcompare its performance to OLS. In a simulation study one can consider a widerange of situations and accurately estimate expected performance by averagingaccuracy over many replicated samples drawn from each one. A real data set by30



contrast represents only a single sample from one (unknown) situation. Also, themean-squared prediction error from that single sample is unknown and must beestimated with uncertainty. This limits the substantive conclusions that can bedrawn. None-the-less, empirical success on real data, though not de�nitive, lendssome support to the merit of the approach.7.1. A chemometrics exampleThis data is taken from Skagerberg, et. al. (1992). There areN = 56 observations,each with p = 22 predictor variables and q = 6 responses. The data are takenfrom a simulation of a low density tubular polyethylene reactor. The predictorvariables consist of 20 temperatures measured at equal distances along the reactortogether with the wall temperature of the reactor and the feed rate. The responsesare the output characteristics of the produced polymers:y1: number-average molecular weighty2: weight-average molecular weighty3: frequency of long chain branchingy4: frequency of short chain branchingy5: content of vinyl groupsy6: content of vinylidene groups.Because the distributions of the values of all of the response variables are highlyskewed to the right, the analysis was performed using the logarithms of theircorresponding values. For interpretational convenience all were then standardizedto unit variance. The average (absolute) correlation between the (transformed)responses is 0:48 and the correlations between the individual pairs are given inTable 1. Responses y1 and y2 are seen to be strongly correlated, and y4, y5, y6form another strongly correlated group. The third response y3 is more weaklycorrelated with the others.The predictive accuracy of each method was estimated through leave-one-outcross-validation. That is, the predictive equations were estimated using 55 ofthe 56 observations and squared-error measured on the left out case. This was re-peated 56 times, each time leaving out a di�erent case, and the 56 errors (squared)averaged. Note that the predictive accuracy being estimated here is larger than31



the corresponding mean-squared estimation error (5.12) since it includes the con-tribution of the irreducible error " (2.5).Table 2 shows the estimated squared prediction error for OLS (second column)and C&W-GCV (third column) for each of the (transformed) responses (rows).C&W is seen to improve the predictive accuracy of all of the responses, with thatimprovement being substantial for three of them (y2, y5, and y6). On the wholeC&W decreased the squared-error by about 20%. The GCV shrinkage factors(3.11) (3.12) are D̂ = diagf0:994; 0:973; 0:864; 0:172; 0:142; 0:000g. This indicatesthat the e�ective response dimension is around three.7.2. Scottish electionsBrown (1980) lists electorial results for all 71 Scottish constituencies in two Britishgeneral elections of February and October 1974. The raw data given in the articleconsists of the total votes for each of the four parties (Conservative, Labour,Liberal, Nationalist) in each election, together with a categorical variable listingthe location of the constituency by six regions, and the size of the electorate ineach constituency. The constituencies are listed in the order that they declared inthe February election. The objective is to use the February and October resultsfrom part of the constituencies to predict the remaining October results from thecorresponding February data.Following Brown (1980), we use as response variables y = (y1; y2; y3; y4) thedi�erence between the October and February vote for each party divided by thesize of the electorate. There are p = 7 predictor variables. The �rst four are theFebruary votes for each party divided by the size of the electorate. The next threeare binary variables:x5 = 0:5 if Liberal intervenes (Lib. vote in Oct. � 0, Lib. vote in Feb.= 0), elsex5 = 0;x6 = 0:5 if constituency is in a rural area, else x6 = 0,x7 = 0:5 if Labour or Nationalist won in Feb. and jx2 � x4j � 0:2, else x7 = 0:The average (absolute) correlation between the responses is 0.435. The re-sponse correlation matrix is given in Table 3. We use the data from the �rst 30constituencies to form October prediction equations and then test these equationson the data from the remaining 41 constituencies. Table 4 gives the mean-squaredprediction error for OLS (third column) and C&W (fourth column) multiplied by32



1000. As a baseline, we include the predictor consisting of the average of each Oc-tober response over the 30 constituencies (second column). The GCV shrinkagefactors (3.11) (3.12) are D̂ = diagf0:96; 0:52; 0:20; 0:00g indicating an e�ectiveresponse dimensionality of less than two.8. ConclusionThe results presented in this paper strongly suggest that the conventional (statis-tical) wisdom, that one should avoid combining multiple responses and treatingthem in a multivariate manner, may not be the best advice. Our simulation stud-ies indicate that the best of the multiple response procedures considered here canprovide large gains in expected prediction accuracy (for each individual response),over separate single response regressions, with surprisingly little risk of makingthings worse. In the �elds of neural networks and chemometrics, by contrast, theconventional wisdom has always been in favor of combining multiple responses.The results of this paper generally validate that intuition, but it is not clear thatthe respective recommended approaches in each of those �elds best serve thatpurpose. For example, the two-block PLS approach commonly used in chemo-metrics was seen in our simulation studies to provide generally lower accuracythan separate ridge regressions.The C&W procedure tends to improve expected prediction accuracy for everyresponse. This suggests the intriguing prospect that even when there is only asingle response of interest, if there are variables available that are correlated withit, then prediction for the response of interest may be improved by introducingthe other variables as additional responses. Of course, if the values of thesevariables will also be available for (future) prediction, they should be regardedas predictors (rather than responses) and included in the regression equation. Insome circumstances however, the (training) data may include measurements ofvariables whose values will not be available in the prediction setting.In the neural network literature such variables are known as \coaches". Theseare variables whose values are available for use during training but not availablefor future prediction. Examples might be expensive or di�cult to obtain medicalmeasurements that were available at the hospital where the training data were col-lected, but not available in the �eld or at smaller hospitals where the predictionsare made. In �nancial forecasting, \future" values of other quantities, thought tobe correlated with the response, might be included as coaches. The results pre-sented in this paper suggest that the inclusion of such coaching variables as extra33
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Figure 5: Distribution over all 120 situations (p � N) of the ratio of overallaverage response mean-squared error for each method, to that of the bestmethod (5.16).Figure 6: Distribution over all 120 situations (p � N) of the logarithm of theratio of average individual response mean-squared error (relative to OLS)for each method, to that of the best method (5.17).Figure 7: Distributions over all the 30000 replications (p � N) of the fraction ofresponses in each, for which the respective biased methods were less accuratethan the corresponding OLS estimate.Figure 8: Distribution (p � N) of the logarithm of the worst individual responsemean-squared error relative to OLS (5.15) of each of the six biased methods,for each of the two error covariance matrix structures (5.5) (ERRVAR1,ERRVAR2, respectively).Figure 9: Interaction of method with the other factors of the (p � N) simu-lation design. Ordinate is average response mean-squared error relative toOLS (5.13). (Number = average response correlation, RESP = number ofresponses, SS = sample size, S/N = signal to noise ratio).Figure 10: Distribution over all 144 (p � N) situations of the ratio of theoverall average response mean-squared error for each method, to that of thebest method (6.11).Figure 11: Interactions of method with the other factors of the p � N simula-tion design. Ordinate is the ratio of overall average response mean-squarederror for each method, to that of the best method (6.11). XCORR is thepredictor variable collinearity (5.1) (5.2) (LOW: r = 0:0, MED: r = 0:9;HIGH: r = 0:99). SCORR is the average signal correlation (5.11) (LOW =0.0, MED = 0.35, HIGH = 0.70).
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