
HOW TO USE SURVIVAL FORESTS (SFPDV1)

This program in f77 is an unorthodox approach to survival analysis.
it allows the analyst to view the importance of the covariates as the
experiment evolves over time. It is model-free.  Its basis is an
accurate method to estimate (nonparametrically) individual survival

curves Ŝ(t,x) for any set of covariates x . in the data base.  This
is done using a survival forest, details of which will appear in a later
paper in Statistical Science.

It has been tested on a variety of simulated data sets where the true
S(t,x) are known and the accuracy of the estimates were validated.
some of these had time varying covariate strengths and the output
from SF tracked these in a reasonable approximation.

Here, the purpose is to instruct the user on how to set up and get
output from SF.  First of all, categorical values must be declared.
This is done by specifying cat(m), for every covariate m. (see the
read in of vet-lung data)   Cat(m)=1 indicates that the mth covariate
is numerical, cat(m)=J>1 indicates that the mth variable is categorical
with J values.  If the mth variable is categorical with J values, these
must be coded as 1,2, ..., J.  This recoding can be done at read time
(see the read for the vet-lung data set).

The user must also supply names for the output files.  This is done
immediately following the array dimensionality specifications.

Now look at the parameter statement:

parameter(ns=136,mdim=6,jbt=100,
     1 ndsize=1,nrnodes=2*ns+1,ntsm=100,
     1 look=10,itime=1,
     1  isurv=1,indsurv=0,
     1  icor=0, ireg=0,
     1 iscale=0,mdimsc=3)

ns:: the sample size of the data set.

mdim: the number of covariates.



jbt: the number of trees to be used in the forest.   Use at least
  100, for accuracy, 200 is better.

ntsm: he number of time points at which the survival curves 
are evaluated.  These are equally spaced order statistics 
from the non-censored death times

look:    there is a method in SF that gives test set estimates 
t̂ (n)of times of death. t(n) .  The accuracy of these

estimates is measured by err=av( |t(n)−t̂ (n)|/ t̂ (n) ) 
where the average is over non-censored times of death. 
If look=10, then at every tenth tree, err  is computed and
what is outputted is 100*(1-err ),  the larger this number,
the smaller the error.  It is a measure of the information
in the data set.

itime:  there are two parameter settings in SF.  Setting itime=1
will give the most accuracy to estimates of the survival 
curves over the time domain,.  Setting itime=1 with give
the most accurate estimate of the cross-section of the 
survival curves at a given time point.   Use itime=1 only 
if isurv=1 and possibly if indsurv=1.

isurv: isurv=1 gives a two column output of length ntsm.  The
first column at the selected ntsm time points.  The second
is the average survival curve at that time point.

indsurv: indsurv=1 sends a lot of information to a file (name 
specified by user).  The file has ns rows--one for each
case in the data.  In each row, the first ntsm entries are 
the values of the survival curve for that individual.  The
next variable is the censoring indicator--zero if censored,
one otherwise.  Next is the time of death or censoring.  
The next mdim variables are the covariate values.

The next two switches are at the heart of the analysis.  The Cox
model assumes that the effects of the covariates are constant over
time.  Other models assume a fixed form for the time dependence.

Given the estimates Ŝ(t,x)we can explore the evolution over time of
the effects of the covariates.



The data set used for illustration is the vet-lung data with 136 cases,
6 covariates and 7% censoring,  The variables are are:

#       Treatment  1=standard,  2=test
#       Celltype   1=squamous,  2=smallcell,  3=adeno,  4=large
#       Survival in days
#       Status     1=dead, 0=censored
#       Karnofsky score
#       Months from Diagnosis
#       Age in years
#       Prior therapy  0=no, 10=yes

icor: this switch has the values 0,1,2.  If 1, then at each of the
ntsm time points it computes the correlation between

log( Ŝ(t,xn )) and each of the covariates.  Setting icor =2 
does the following:  at each time point, that monotone 
transformation of each covariate is found which 

maximises the correlation with log( Ŝ(t,xn ))
)

The output from icor consists first of a line which gives the average
values of the correlations over time with the covariates.  Then there
is a line space followed by a matrix with mdim+1 columns and ntsm
deep.   The first column are the values of the ntsm time points in
ascending order.  The other mdim columns are the values of the
correlations corresponding to the time point.  Here is a graph of the
correlations vs. time for the data set vet-lung for icor=1.
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CORREELATIONS FOR VET-LUNG DATA

There are two dominant variables  with some change in time.  The
effect of x3 is weakening, and x2 has a bulge around time 200.;

NOTE:  The noise near t=0 should not be taken seriously.  This is the

region where the estimates log( Ŝ(t,xn )) are the noisiest.

The time average of the correlations over the 6 covariates are:

.043 - .001 - .637 .316 - .044 .071

The graph for icor=2 looks similar.  The time averaged correlations
a r e

.146 .038 - .648 .406 - .106 .170

Note  that the average correlations of x1,x4,x5,x6 have significantly

increased--suggesting a nonlinear relationship with log( Ŝ(t,xn )) .



ireg  This switch also has the values 0,1,2. At ireg=1,  
ordinary LS linear regression is done using the covariates

with response log( Ŝ(t,xn )) normalized to mean zero and
sd one.  With ireg=2 a monotone transformation is found
for each covariate at each time point so as the minimize 

the RSS in fitting  the normalized log( Ŝ(t,xn )) .

The output file consists of a header line which gives the average
value of rsq and the average coefficient for each covariate,
Then there is a blank line and a matrix with mdim+2 columns and
ntsm rows.  The first column are the time points in ascending order.
The next column is the value of rsq for the regression at hat time
point.  The next mdim columns are the  regression coefficients for
each covariate.

Here is a graph of the regression coefficients as a function of time
using ireg=1.:
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REGRESSION COEFFICIENTS VET-LUNG DATA

 There appears to be a definite time trend in the dominant covariates
x2 and x3.

The average rsq and the average values of the coefficients are:



.750 . 060 .  296    -.680 1 5 7  -.054   .042

Using ireg=2 leads to similar results.

The vet-lung data set is small with little censoring.  Graphs for icor=2
for three other data sets show the diversity of results.

i) a breast cancer data set sent to me from England.  It
has 272 cases, 6 covariates and 17% censoring.

ii) a return to drugs data set with 575 cases, 8 covariates
and 19% censoring. (see the  book "Applied Survival
Analysis" by Hosmer and Lemeshow)

iii) the German cancer study with 686 cases, 7 covariates,
and 56% censoring.
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The summary results are:

       .905 .    129 .042 .   .772 .228 .   181 .062



- . 5

- . 4

- . 3

- . 2

- . 1

0

.1

.2

.3

.4

.5

.6
co

ef
fic

ie
nt

s

0 100 200 300 400 500
time

x8

x7

x6

x5

x4

x3

x2

x1

REGRESSION COEFFICIENTS DRUG RETURN DATA

- . 4

- . 3

- . 2

- . 1

0

.1

.2

.3

.4

.5

.6

.7

co
ef

fic
ie

nt
s

0 250 500 750 1000 1250 1500 1750 2000 2250
time

x8

x7

x6

x5

x4

x3

x2

x1

REGRESSION COEFFICIENTS GERMAN CANCER STUDY



Are the variabilities in time artifacts of the estimation process?   One
of the simulated data sets used was based on a Cox model with five
covariates and x(1)-2.0*x(4)+2*x(5) in the exponential.  The
covariates were all uniform [0,1}.  The ireg=2 graph is given below.
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The summary  statistics are:

.807     .164 .016     -.041 -.584     .561

On average the error rates for the simulated data sets were higher
than  the real data sets analyzed.   Therefore, the expectation is that
the accuracy seen in the output from the simulated data sets should
carry over to the real data sets.

NOTE  Because icor=2 and ireg=2 try to find optimum monotone
transformations, they are more sensitive to noise than icor=1 and
ireg=1.

iscale, mdimsc define the proximity between two cases in the data 
set to be the total number of times that they occupy the 
 same terminal node summed over all trees in the 
forest.  These proximities, appropriated normalized, form
Euclidean distances in the space of dimension ns.  
Extracting the first few eigenvectors from a modification



of the proximity matrix,  allows us to project the 
proximity structure of the data into low dimensions.  The
projection vectors are called scaling coordinates.  The 
number of such coordinates computed is mdimsc.  Usually
mdimsc=3 gives most of the relevant information.

The format of the output is a matrix with ns rows.  The columns are:

1) case number
2) censoring variable
3) time of death or censoring
4) to(4+mdimsc-1).  the mdimsc scaling coordinates
4+mdimsc) to (4 + mdimsc+mdim-1) covariate values

The use of the scaling diagrams has not been fully developed.  But
there is one illustration we can give of its usefulness.  One of the
simulated data sets has a switching coordinate.  It has 300 cases, 5
covariates, 19% censoring, and its hazard function h(t,x) is given by

if x1≤.5, h(t,x)=0 if .5≤t≤2.5, else exp(x2 )

if x1>.5, h(t,x)=0 if 2.5≤t≤4.5, else exp(x3)

The covariates are uniform [0,1].  Running icor=1 on this data gives
the following graph:
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CORRELATIONS FOR SWITCHING DATA

This shows that something odd is going on with x1, but doesn't reveal
its switching character.

Here is a diagram of the second scaling coordinate vs. the first.
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Noting that it looked symmetric above and below the zero of 2nd
coordinate, I constructed the histograms of x1 above and below this



zero point The result was that the data above the zero of the 2nd
scaling coordinate contained only the values of x1<.5 and below
contained only the values of x1<.5.  This is a strong hint that x1
functions as a switching variable.


