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ABSTRACT

Classification trees are attractive in that they present a simple  and easily
understandable structure.  But on many data sets their accuracy is far from
optimal.  Much of this lack of accuracy is due to their instability--small
changes in the data can lead to large changes in the resulting tree.  This
instability is the reason that combining many trees by voting can lead to
dramatic decreases in test set error (Breiman[1995]).  But combining trees loses
the simple structure.  To keep the simple structure and improve accuracy, a way
must be found to reduce the instability in the construction.   If we knew the true
probability distribution of the inputs and outputs,  then the splits in the tree
could be based on this distribution and give more accuracy then the splits based
on a finite data set.  So we turn the tree procedure around--instead of basing the
splits on the data, the data is used to estimate the input-output probability
distribution and the splits are then based on this estimate.  We give the details
of this construction.  The experimental results on a number of well-know data
sets indicate that this procedure has potential for producing much more
accurate trees.

1.  Introduction

Classification and regression trees ala  CART and C4.5 are sensitive to small changes in the
data.  A small change may result in a substantially altered tree.  Because of this, tree
predictors have high variance (Breiman [1995], [1996]) which results in inflated test set error
rates.   Tree construction proceeds by recursively splitting the data.  Thus the sample size
available for determining the splits decreases rapidly with the depth of the tree.  The result is
increasingly noisy and poorly determined splits.

Denote the output, numerical or a class label, by Y and the multivariate inputs by X.  If we knew
the joint probability distribution of Y,X then we could determine the optimal splits at each
node using this distribution.  We would have, essentially, infinite sample size to use in tree
construction.   This suggests the following possibility--

Instead of using the given data set to determine the splits, use the data set to estimate the Y,X
distribution and then use this estimate to determine the splits.

This idea works and gives some dramatic decreases in test set error as compared with the
standard method of tree construction.  In this paper, we focus on classification trees, but the
same methods (actually simplified) hold for regression.  In classification, we construct a
separate density estimate for each class using a  kernel density estimate of the Y,X distribution.
Then optimal splits are found in each node by using the estimated distributions to compute the
Gini criterion for a grid of splits points on each variable.  We will refer to this procedure as DB-
CART where DB stands for distribution based.

Note that because we are using the estimated probability and not the data points to split with,
that when a parent is split, the influence of a single data point may be divided between the



two children nodes.  Thus, the splits in the lower nodes may be influenced by probability
contributions from many data points.

Tree construction, consisting of the determination of node splits and node class probabilities is
based on the estimated probabilities.  The rest of the procedure is standard.  Using the
estimates a large tree is grown and a sequence of pruned subtrees determined.   To select one of
these subtrees, either a test set or 10-fold cross-validation is used.  If a large enough test set is
available, it is run down the sequence of pruned trees and the tree with lowest test set error
selected.   If not, 10% of the data is deleted, a tree grown on the other 90% using estimated
probabilities, and the 10% run down it to give test set error estimates.  Then a different 10% is
let out, and so on.

The layout for this paper is as follows:  Section 2 has experimental results concerning error rates
of DB-CART compared to CART on a number of well-known data sets.  In Section 3 we review
how splits and node class probabilities would be determined if we knew  the Y,X distribution.
Section 4 gives the details of the probability estimates and Section 5 has comments.

2.  Experimental Results for DB-CART Compared to CART

DB-CART was compared to CART on some well-known data sets summarized in table 1.

             Table 1  Summary of Data Sets

Data Set            #Classes       #Predictors         #training               #test

Waveform   3 21 300                3000
Vowel 11 10 990
Ionosphere 2 33 351
Sonar 2 60 208
Diabetes 2   8                   786
Glass 6   9 214
Breast Cancer 2 30 569

All of these data sets are in the UCI repository and are documented there.   Waveform is
artificial data.     Test set errors were computed as follows:   for the waveform data a 300 case
training set and 3000 case test set were independently generated 10 times.  The test set error rate
was computed as the average over the 10 runs.   In the other data sets the data was divided at
random in 90%-10%.  The tree was grown  and pruned on the 90%, and the 10% then used to
measure test set error.  This was repeated 50 times and the test set errors averaged.  The results
are given in Table 2.

         Table 2    Test Set Error(%) for CART and DB-CART

Data Set       CART Error   DB-CART Error          Decrease

Waveform 28.4 24.7 13%
Vowel 21.8 10.0 54%
Ionosphere 11.1    8.7 22%
Sonar 32.1 18.2 43%
Diabetes 26.3 25.6   3%
Glass 28.6 29.4 -3%
Breast Cancer    6.5   3.8 42%



Using the estimated distribution to construct trees can produce surprisingly large decreases in
error rates.    But in two of the data set, glass and diabetes,  there is no significant difference.
We are studying these two to try and understand the problem.  Because using the estimated
distribution emulates a larger sample size, the trees grown by DB-CART are generally larger
than those grown by CART.  The comparison of sizes is in Table 5.

Table 5   Number of Terminal Nodes in Trees Constructed by CART and DB-CART

Data Set                CART         DB-CART

Waveform* 15 49
Vowel 107 244
Ionosphere 6 16
Sonar 6 41
Diabetes 11 33
Glass 11 26
Breast Cancer 7 40

3.  Using the Distribution to Construct the Tree

Suppose we know the joint distribution of the random vector Y,X where Y is the class label and
X is a vector of M predictor variables, i.e. X = (X1, ... ,XM). That is, suppose we know P(Y=j, X ∈
dx).  Let P(j)=P(Y=j).  A node t of the tree corresponds to X ∈   I where I is a multidimensional
rectangle.

Suppose we want to split I by a split of the form Xm ≤  c.  Let

PL = P(Xm ≤ c|X ∈ I) PR = P(Xm > c|X ∈ I)
 qjL = P( j| Xm ≤ c,X ∈ I) qjR = P( j| Xm > c,X ∈ I)

The optimal split is defined to be the one minimizing the Gini criterion (see Breiman et. al
[1984]).  This is equivalent to maximizing

G = PL
j

∑ qjL
2 + PR

j
∑ qjR

2
  (3.1)

Look at the first term

P(Xm ≤ c|X ∈ I) P2
j

∑ ( j | Xm ≤ c,X ∈ I)

This equals

          [ P2

j
∑ (Xm ≤ c,X ∈ I| j)P2 ( j)] / P(I)P(Xm ≤ c,X ∈ I)     (3.2)

Note that

                 P(Xm ≤ c,X ∈ I) = P
j

∑ (Xm ≤ c,X ∈ I| j)P( j)



The second term in (2.1) has an expression similar to (2.2) but uses Xm > c.  A search is made over

all m,c to find the values that maximize (21.).  Call these m*,c*.  Now the new left and right
nodes become

                       
  
tL = II{Xm* ≤ c*}              

  
tR = II{Xm* > c*}

and the process is iterated.

Using the probability distribution to construct the tree is  equivalent to having an infinite
number of samples available from the Y,X distribution.  By known consistency proofs (see
Breiman et.al [1984]), trees constructed this way converge toward the minimal obtainable error
rate as they are grown larger.

4.  Estimating the Distribution.

But given a finite training data set T, the distribution isn't known.   However, it can be
estimated.   Let T ={(jn,xn), n= 1, ... ,N}, Lj the set of all indices n such that jn=j, and Nj the

number of instances in class j.   We will estimate the density of P(dx|j) by a kernel density
estimate:

 f̂j(x) = 1
Nj

K
n∈ Lj
∑ (x − xn)

4.1 Numerical Variables

To begin with, normalize all numerical variables to have range 0 to 1.  Let f(x) be a Gaussian
density with mean zero and standard deviation h > 0, and define

      K(x) = f (xm)
m
∏ (4.1)

where the product is over all numerical variables. Thus, the cumulative distribution function
Fj(x) of the estimated density is

Fj(x) = 1
Nj

F((xm − xm, n) / h)
m
∏

n∈ Lj
∑

where F is the standard N(0,1) cumulative distribution function.  For any interval I = [a,b], let

F(I)=F(a)-F(b).  If I = I1 ⊗ I2 ⊗ ... ⊗ IM then

Pj(I) = 1
Nj

F(( Im − xm, n) / h)
m
∏

n∈ Lj
∑      (4.2)

Define

    q(n,I) = F(( Im − xm, n) / h)
m
∏



Now using these estimated probabilities, we want to evaluate the Gini (3.1) for splits of the

form {Xm≤c}  Denote by I(m,c) the interval {xm ≤c}, and let Rn(m,c)  be the ratio

  
Rn(m,c) = F(( ImI I(m,c) − xm, n) / h)) / F(( Im − xm, n) / h)

Then

  

Pj(II I(m,c)) = 1
Nj

q(n,I)
n∈ Lj
∑ Rn(m,c) (4.3)

Putting P(j)=Nj/N and using the (4.3) estimate in (3.2) gives the first term in the Gini.  The
second term is gotten by using the complement of I(m,c) in the expression for Rn(m,c).

3.2 Non-numeric  Variables

Suppose x takes on non-numerical values we label as 1,2, ..., I.  The density f(x,xn) that appears

in the product (4.1)  is then a probability distribution on these values.   This distribution is
defined in the following way:  let the proportion of categories 1,2, ... ,I for instances in class j be
given by p(i,j).  Suppose xn is in class j and xn = i0.  Then , for  0<q<1, set

    
f (x, xn) =

(1 − q) + q ⋅ p(i0, j),   if  x = i0

q ⋅ p(i, j)               ,   if  x = i ≠ i0       







4.3 Maximization search

If the variable x has many distinct values, then the search over splits of the form {x≤c} is
confined to a grid of 100 equally spaced c values.  If x has only a few distinct values, then the
search is confined to splits for which c is at the midpoint between two x-values.

4.4 Setting parameter values.

For numerical variables, the value of  h needs to be selected, and for non-numerical, the value of
q.   This is done by cross-validation.  Our current procedure is to search over a small grid of h and
q values values to find those giving the lowest cross-validation error rates.    This is expensive
computationally since for each grid point examined, a tree is grown and its error rate estimated
using 10-fold cross-validation.   One current research priority is to find a faster method for
locating optimal parameter values.

5. Comments

Given the training data  T ={(jn,xn), n= 1, ... ,N}, if we estimate the Y,X  distribution by the

empirical distribution that puts weight 1/N at each of the points  (jn,xn), then using this

estimate gets us back to CART.    If an oversmoothed estimate is used,  then it's too far away
from the "true" distribution and the accuracy drops.   Density estimates in high dimensional
spaces are known  to be quite noisy.  In particular, kernel density estimates do not perform well.
But the evidence seems to be that the accuracy of CART is significantly enhanced by using an
estimated distribution.



We believe that the reason is that the relevant estimates needed are low dimensional.   CART
splits are univariate.  So what is needed are fairly good univariate density estimates together
with rough estimates of interactions.   Kernel density estimation does this well enough to
produce increased test set accuracy.   We are encouraged by these preliminary results and will
explore further along this direction.   Our distribution estimate is admittedly a first
approximation and  we plan to see if it can be improved.  Its possible, for instance, that variable
kernel estimates will provide better accuracy.    But the results to date are encouraging in that
they shown that accuracy can be improved without loss in simplicity and interpretability.
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