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ABSTRACT

A prediction algorithm is consistent if given a large enough
sample of instances from the underlying distribution, it can
achieve nearly optimal generalization accuracy. In practice, the
training set is finite and does not give an adequate representation
of the underlying distribution. Our work is based on a simple
method for generating additional data from the existing data.
Using this new data (convex pseudo-data) it is shown
empirically that on a variety of data sets prediction accuracy of
an algorithm can be significantly improved. This is shown first
in classification using the CART algorithm. Similar results are
shown in regression. Then pseudo-data is applied to bagging
CART. Although CART is being used as a test bed, the idea of
generating convex psuedo-data can be applied to any prediction
method.

1. Convex Pseudo-Data

Given a training set T={(yn,xn), n=1, ... ,N} where the y are either class labels or numerical
values and the x are M-dimensional input vectors, consider an algorithm that uses T to construct
a predictor h(x) of future y-values given the input values x. If the algorithm is consistent i.e.
CART, C4.5, Neural Nets, then the larger the size N of the training set, the smaller the
generalization error.

One dream, assuming the training set consists of independent draws from the same underlying
distribution P(dy,dx) is that we can keep drawing as long as we want--constructing a large
training set. But generally, we are confined to a training set of given size. One way around this
restriction is to try and manufacture new data from the given training set.

Another approach is to use T to estimate P(dy,dx) (Shang and Breiman[1996b]). Using the
estimated probability distribution, an infinite number of instances can be generated.  This
method gave promising results but ran into serious technical difficulties. Kernel density
estimates were used for the numerical estimates, and ad hoc methods for categorical values.
Numerous parameters had to be estimated to plug into the probability estimate, and the result
was an complex and unwieldy procedure.

Our method for generating new data from the old is relatively simple and depends only on a
single parameter d, 0<d<1. To create a new data instance, these steps are followed:

I) Select two instances (y,x ), (y',x') at random from the training set.
ii) Select a random number v from the interval [0,d], and let u=1-v.
iii) The new instance is (y",x") where y"=y, and x"=ux+vx'".



If x contains some categorical values, then iii) needs to be revised as follows: if xy, is the value
of a categorical variable in x, and x'm its value in x', then x"'m, equals xy, with probability u and
x'm with probability v.

In general, no attempt is made to optimize over all values of d. The generalization error is
estimated only at 2-3 values of d, ands the best one of these is selected. In spite of the

simplicity of this method, significant reductions in error are realized.

2. Application to CART Classification

CART trees are grown using convex pseudo-data (CPD) as follows: pseudo-data is generated
and sent down the current tree until the particular unsplit node being studied has N instances in
it--recall that there are N instances in the original training set. Then this node is optimally
split using the Gini criterion. If either of the two children nodes contain no member of the
original training set, then the parent node is declared terminal.

After a large tree is grown this way, then 1000*N instances of pseudo data are generated and
passed down the tree. This data results in a cost estimate for every node, and using these cost
estimates a sequence of pruned trees is computed. Tree selection is done as per CART
methodology. The program was run on 9 data sets of which one (wave) used synthetic data.
For wave, in each iteration, a new 300 instance training and 3000 instance test set were
generated. Brief descriptions of the data sets are given in Table 1. They are all in the UCI
repository.

Table 1 Data Set Summaries

Data Set Size No. Inputs No. Classes
sonar 208 60 2
glass 214 9 6
breast(Wis) 699 9 2
ionosphere 351 34 2
soybean 683 35 19
vehicle 846 18 4
vowel 990 10 11
wave 300 21 3
dna 3186 60 3

With the exception of the dna data set, all inputs are real. Each of the 60 inputs for dna is a
four-valued categorical.

Estimates of generalization error on various data sets were gotten as follows: in each one of 50
iterations, a random 10% of the data was set aside and two trees were grown on the remaining
90%. One was the usual CART tree. The other was a tree grown using pseudo-data as described
above (CPD-CART). Then the 10% test set was passed down each tree and associated a test set
error with each value of the cost parameter. For each set of 50 trees, the value of the cost
parameter was found that minimized the average test set error. This latter average is
reported in Table 2.

Both the CART trees and the pseudo-data trees were grown using exactly the same data and
the same method of estimating generalization error. This minimized the variability of
extraneous factors. Three values of d were tried, .10,.25 and .50. The results in Table 2 below
reports the results using the most effective of the three values.



Table 2 Estimated Generalization Error (%)

Data Set CART CPD-CART % Reduction Bestd
sonar 27.5 22.0 20.0 .25
glass* 29.8 27.0 9.7 .25
breast (Wis.) 5.9 47 20.0 .25
ionosphere 111 94 15.3 .25
soybean 8.3 7.2 13.3 .10
vehicle 19.4 17.9 7.7 .10
vowel 19.4 15.6 19.6 .25
wave 28.6 27.2 49 .50
dna 5.5 45 18.2 .50

* On the initial run on the glass data, there was a 1.3% reduction in error, but we noticed that
there some terminal nodes in the maximal trees that contained relatively large numbers of the
original training set. On the rerun, the size of terminal nodes was constraining to hold 3 or
fewer of the original training set. The number in the table is for the rerun. Constraining the
size of the terminal nodes did not make much difference on the other data sets.

It has proven difficult in the past to improve on CART's performance inside the single decision
tree context. So an interesting question is what accounts for the significantly improved
accuracies reflected in Table 1. In particular, did the improved accuracy result in much larger
trees? We computed the number of terminal nodes in each of the 50 trees corresponding to the
optimal value of the cost parameter and averaged. The result is given in table 2.

Table 2 Average Number of Terminal Nodes

Data Set CART CPD-CART
sonar 12.4 19.0
glass 9.7 37.8
breast (Wis.) 16.6 11.2
ionosphere 17.5 20.8
soybean 53.7 52.5
vehicle 90.4 101.6
vowel 137.8 149.3
wave 13.1 28.3
dna 13.6 34.2

Table 2 shows that using CPD-CART generally resulted in larger trees. But the story is not
universal. In two of the data sets accuracy was improved using smaller trees. In the other data
sets, except for the glass data, the trees are not much larger. This would indicate that most of
the increased accuracy is due to the better splits given by use of the psuedo-data.

3. Application to CART Regression

In regression, convex pseudo-data is generated in a way similar to classification i.e. to generate
a new instance

i) Select two instances (y,x ), (y',x') at random from the training set.
ii) Select a random number v from the interval [0,d], and let u=1-v.
iii) The new instance is (y",x") where y"'=uy+vy', and x"'=ux+vx'.



The only difference is in the 3rd step. Our experiments were conducted on the data sets
summarized in Table 3.

Table 3 Data Set Summaries

Data Set Size No. Inputs
Ozone 330 8
Housing 506 12
Servo 167 4
Friedman #1 200 10
Friedman #2 200 4
Friedman #3 200 4

The Servo data set has two 5-valued categorical inputs. All other inputs are numerical. The
last three data sets are synthetic, and are fully described in Breiman[1996a]. In each of 50
runson the synthetic data a freshly generated training and a 2000 instance test set was used. In
the real data sets, 10% was set aside as a test set in each of the 50 runs. As in the classification
runs, pruning and minimal cost estimation was done via CART methodology. The d values
.25,.50,.75,1.00 were tried and the best reported in Table 4.

Table 4 Estimated Mean Squared Generalization Error

Data Set CART CPD-CART % Reduction Bestd
Ozone 23.4 19.9 15.0 .50
Housing 18.2 15.7 13.7 .50
Servo* 98.4 414 69.8 .50
Friedman #1 12.0 8.5 29.0 .75
Friedman #2 30.6 21.5 29.7 .75
Friedman #3  41.9 36.7 12.4 1.00

* on the initial run on servo, there was about 40% reduction in error, but just as with the glass
data, some terminal nodes in the maximal trees contained relatively large numbers of the
original training set. On the rerun, the size of terminal nodes was constraining to hold 3 or
fewer of the original training set. The number in the table is for the rerun.

Table 5 Average Number of Terminal Nodes

Data Set CART CPD-CART
Ozone 10.2 26.6
Housing 21.2 80.4
Servo 2.0 39.4
Friedman#1 14.1 1425
Friedman#2 16.8 614
Friedman#3 23.7 117.0

The differences in tree sizes is large. But considerably smaller trees can be grown without too
much of a loss in accuracy. For example, in pruning up the CPD trees grown for the Friedman #1
data, an increase in 10% over the minimum test set error was allowed. This cut the percent error
decrease (compared to CART) from 29% to 22%. The number of terminal nodes decreased from
142 to 51.



4. Application to Bagging

In bagging, altered training sets of the same size as the original are constructed by random
sampling with replacement from the original. Then a classifier is grown on each of the altered
training sets and the ensemble of classifiers then votes to predict the class of any new input.
Breiman [1996a],[1997] pointed out that the bootstrap training sets were imitations of
independent replicas of the training sets--each replica consisting of N instances drawn from the
same underlying distribution. That is, the underlying distribution is approximated by the
bootstrap distribution which places probability 1/N at each of the N training instances.

If a better approximation to the underlying distribution was available, then sampling from it
to form the new training set will give lower generalization error. This was shown in
Breiman[1997] where kernel density estimates were used to approximate some simple
multivariate Gaussian distributions. This type of approximation does not easily generalize to
more complex data. But we can try using convex psuedo-data.

In the following experiments, the altered training sets consisted of N convex pseudo-data
instances. In each run 10% of the data was held out, 100 altered data sets constructed using the
other 90% and a CART tree grown on each. Then the accuracy was checked on the 10% test set.
Fifty runs were done, and the test set results averaged. There were 6 potential values of d;
.05,.1,.25,.5,.75,1.0. Usually, only 3-5 of these were tried. Because as soon as a value of d was
found at which the test set error was less than that at the two adjacent d values, it was
adopted. The results are compared to straight bagging in Table 5 which also gives the best d

value.
Table 5. Test Set Error Rates(%)--Bagging Classifiers

Data Set Baggin CPD-bagging Bestd
sonar 22.2 17.8 .75
glass 23.1 22.1 .10
breast (Wis) 3.8 34 .25
ionosphere 8.5 6.7 .10
soybean 6.2 59 .10
vehicle 15.6 15.2 : .10
vowel 8.0 7.2 .10
dna 5.1 4.0 .75
wave 19.3 17.7 .75

Table 5 shows that substantial gains in accuracy can be made by using convex pseudo-data in
bagging classifiers. But, oddly enough, the same is not true in regression. These latter results
are given in Table 6.

Table 6 Mean-squared Test Error--Bagging Regressions

Data Set Baggin CPD-bagging Best d
Ozone 19.8 18.0 .50
Housing 10.9 11.0 .05
Servo 82.8 81.3 .10
Friedman #1 63.2-1 62.7-1 .05
Friedman #2 21.7-2 19.7-2 .50

Friedman #3 24.7+2 25.842 .05



In two of the data sets, using convex pseudo-data increased the error. In the remaining four,
there were small decreases.

5. A Simple Experiment

To get more insight into how CPD works, we examine a single input variable with values {xn}.
Suppose the density of the distribution underlying the {xp} is estimated using a kernel density
estimator. Then this density is sampled from by first sampling one of the {xn}, then by
sampling from the kernel, and adding the two together. If we sample repeatedly many times,
then we can think of each xp, as a seed, surrounded by many other values whose differences from
xp are distributed according to the kernel.

Now sample repeatedly from ux+vx' where x,x' are independently drawn from the set {xp}, v is
drawn from the uniform distribution on [0,d] and u=1-v. Each time x=xp, there is a scattering of
samples around it with the differences from xp, drawn from the distribution of v(x'-xp). Denote

the mean of the {xp} by X and their variance by 0%. Then the scatter about xn has mean

(d/2)(Xx-x,) and variance (d2/3)(62+(>?—xn)2/4). The scatter has a density that is
asymmetric about xp with a sharp peak at zero. The probability that the scatter around xpn
will go to the right of xn equals the proportion of the x-values that are less than or equal to xp.

There are two apparent problems with these CPD kernels:

1) The mean and variance of the kernel depend on xp, whereas in a kernel density estimate
they are constant. To compare CPD to the use of a standard kernel density estimate, we sample
repeatedly from x+d 0z, where z is a normal N(0,1) variable.. Then the scatter at any seed is a

Gaussian with mean zero and variance d26 2, Call this kernel data.

2) The variance of the CPD kernel depends on the variance of all of the data regardless of
class. It would be desirable to have the variance of the kernel for the data in a given class
depend only on the variance of the data in that class. This can be done as follows: say our first
pick of x is in class j, then sample at random from the other class j instances to get x' and let the
x-value of the new instance be ux+vx'. Then for xp in class j, the mean and variance for the

scatter around xp is (d/2)(X;—X,) and (d2/3)(5j2+(Xj —Xn)2/4) where X; and 5j2 are the

mean and variance of the class j x-data. The data generated this way we call convex within-
class data..

Here is a simple experiment that was conducted to compare these different sampling methods:
All data consisted of two classes with one input variable and equal apriori probability for both
class Two distributions were used--two normals with variances equal to 1,1: two normals with
variances equal to 1,4. Their separation was determined so that the Bayes error was 2.28%, i.e.
for variances equal to 1, the distance between means was 4. We used sample sizes 5,10,25,50,100
for the training sets, with the restriction that any acceptable training set had to have at least
two instances of each class.

In each of 200 iterations, a training set was generated together with a test set of size 10000.
Using the Gini criterion on the training set, the best single cut of the data was found, and the
test set used to estimate the generalization error given by this cut. Then 5000 instances of
pseudo-data were generated from the training set, Gini again used to find the optimum cut on
the pseudo data, and the same test set run down this cut. The test set errors for the 200
iterations were averaged and the percent reduction resulting from the use of pseudo-data
computed.



For each distribution and each method of generating pseudo-data (but not sample size) we
choose the value of d from the set {.05,.10,.25,.50,75,1.00} that gave the best performance on
sample size 100. The test set results are summarized in Table 7 where the numbers in
parentheses are the best value of d.

Table 7 Estimated Reduction in Generalization Error (%)

Method Convex Kernel Convex Within-Class
Distribution #1 (.50) (.25) (.75)
ss.100 15.2 13.1 6.1
ss.50 19.4 10.0 4.4
ss 25 20.7 9.7 2.4
ss 10 13.8 2.8 1.2
ss5 19.3 0.1 2.0
distribution #2 (.25) (.10) (.50)
ss 100 3.6 6.4 3.7
ss 50 11.9 45 3.7
ss 25 12.7 44 -5
ss 10 7.7 1.0 0.4
ss5 8.2 0.8 0.8

It is surprising how well use of convex pseudo-data holds up even at small sample sizes, where
the kernel and within-class convex loss advantage quickly. This experiment is small, but since
CART makes use of univariate splits only, the increased accuracy of CPD shown in the table
may be reflected in the increased accuracy of trees built using CPD. This leaves unsolved the
problem of what gives the CPD kernel its increased accuracy as compared, say, to a Gaussian
kernel. I have not come up with a satisfactory explanation yet.

6 . Discussion
After arriving at the method described above and the encouraging results tabled, I tried some
other ideas that did not work out--that is, did not result in any significant increases in

accuracy:

i) Both in regression and classification, take y"=y with probability u and equal to y' with
probability v.

ii) Generate a random number z. If z<u, set all categorical xm," equal to xpy,, otherwise to xm .
iii) In regression set y"=y instead of a convex combination of y and y'

iv) Letting the number of instances used to split each node be larger--say a multiple of N.
Using CPD does not guarantee improvement. In particular, it does not seem to give improved
accuracy on large data bases. I tried it on the letters, satellite and zip code data without
success. These contain 15,000, 4,435, and 7,921 instances respectively. Failure may be due to the

fact that the data is already packed so tight in these data sets that augmenting it with
pseudo-data is not helpful.



Still, given that efforts over the past 15 years have succeeded in producing trees only slightly
more accurate than the basic CART trees, use of pseudo-data seems a promising new possibility.

References

Breiman, L. [1997] Bias, Variance, and Arcing Classifiers, Technical Report 460, Statistics
Department, University of California (available at www .stat.berkeley.edu)

Breiman, L. [1996a] Bagging predictors , Machine Learning 26, No. 2, pp. 123-140

Shang, N and Breiman, L.[1996b]Distribution Based Trees are More Accurate (with ), Proceedings
ICONIP,September, 1996, Hong Kong.

APPENDIX Programming Notes

Building a CPD-tree takes considerably more computing time than ordinary tree building. The
additional time is in filling the unsplit nodes with N instances of pseudo-data. In a deep tree,
as pseudo-data is generated, only a very small fraction may drop into the unsplit node under
scrutiny. The direct approach of computing pseudo-data and continuing until the node is filled
is cycle intensive.

This computation is cut down by an order of magnitude using the following device: As the data
is being generated to fill the current unsplit node, those instances that miss the current node
have two destinations. They can either wind up in nodes already designated as terminal or in
other, as yet unsplit, nodes. Our program stores the data falling into the other unsplit nodes up
to a maximum of N instances in each unsplit node. Then when these nodes come under scrutiny,
they are often filled or almost filled with data.

The maximum number of unsplit nodes that data generation will fill is specified in advance.
The usual default is 50. Another piece of code in our program functions as a safety valve. If the
current unsplit node cannot be filled after 1000 N additional instances are generated, the node is
declared terminal, and we move on to the next unsplit node.

To handle larger data sets, two other modifications were made. For the node under scrutiny, let
K be the number of instances of the original training set falling into the node. A multiplicative
factor M is preset and the number of pseudo-data instances required for the node is min(N,MK).
Our usual default for M has been either 50 or 100.  This serves to limit the amount of data
required in very small nodes. The other modification is that memory may not be available to
store 50 data sets of size N that fall into the unsplit nodes. Therefore, since the problem is
filling the smaller nodes, only data up to No<N instances have space reserved for them in the
unsplit nodes. When MK gets to be smaller, on average, than Ng a large portion of the nodes are
already filled or nearly filled.



