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Abstract

The Minimum Description Length (MDL) principle is an important tool for retrieving knowledge
from data as it embodies the scientific strife for simplicity in describing the relationship among
variables. As MDL and other model selection criteria penalize models on their dimensionality, the
estimation problem involves a combinatorial search over subsets of predictors and quickly becomes
computationally cumbersome.

Two approximation frameworks are: convex relaxation and greedy algorithms. In this article, we
perform extensive simulations comparing two algorithms for generating candidate models that mimic
the best subsets of predictors for given sizes (Forward Stepwise and the Least Absolute Shrinkage
and Selection Operator - LASSO). From the list of models determined by each method, we consider
estimates chosen by two different model selection criteria (AICc and the generalized MDL criterion
- gMDL). The comparisons are made in terms of their selection and prediction performances.

In terms of variable selection, we consider two different metrics. For the number of selection
errors, our results suggest that the combination Forward Stepwise+gMDL has a better performance
over different sample sizes and sparsity regimes. For the second metric of rate of true positives among
the selected variables, LASSO+gMDL seems more appropriate for very small sample sizes, while
Forward Stepwise+gMDL has a better performance for sample sizes at least as large as the number
of factors being screened. Moreover, we found that, asymptotically, Zhao and Yu’s ((1)) irrepresen-
tibility condition (index) has a larger impact on the selection performance of Lasso than on Forward
Stepwise. In what refers to prediction performance, LASSO+AICc results in good predictive models
over a wide range of sample sizes and sparsity regimes. Last but not least, these simulation results
reveal that one method often can not serve for both selection and prediction purposes.

1 Introduction

The practice of statistics often refers to making efficient use of observed data to infer relationships among
variables in order to either gain insight into an observed phenomenon (interpretation) or be able to make
predictions based on partial information (prediction). In this paper, we focus on models designed to
uncover how a dependent or response variable Y ∈ Y is affected by a set of p predictor variablesX ∈ Rp.
Whether the goal is prediction or interpretation, the important task is to learn some “meaningful” or stable
characteristics of the data across different samples of the data.

A traditional approach consists of postulating a class of models F indexed by a parameter β. An
estimate β̂ is often defined as:

β̂ = arg minβ∈F
∑

i L(Zi, XT
i β), (1)

where Zi = (Xi, Yi), i = 1, . . . , n denotes then n observed data samples; Y ∈ Rn and is a vector
containing the observed values for the dependent variable;X ∈ Rn×p is a matrix containing the observed



values of the predictors in its rows; β is a model within the postulated class; and L is a loss function
measuring the goodness of fit to the data Z for the model indexed by β. In this paper, we restrict
attention to loss functions L defined by the negative log-likelihood (neg-loglikelihood) of probabilistic
models. This framework is general enough to accommodate both regression and classification models
and encompasses all Generalized Linear Models (2; 3). In this paper we will focus attention on the
standard Gaussian linear regression model:

Y = Xβ + ε, with ε ∼ N(0, σ2). (2)

The minimization in (1) translates in this case to the L2-loss:

β̂ = arg min
β

{
‖Y −Xβ‖2

}
. (3)

Some of the information criteria we will be dealing with below also require an estimate of the variance
σ2. Unless otherwise stated, we use the likelihood estimate:

σ̂2 =
‖Y −Xβ̂‖2

n
. (4)

However reasonable the estimate defined by (1) may be, this approach does not account for the fact
that we often ignore what is an appropriate class of models in which to fit the data, that is, F should also
be estimated. On the one hand, if we rely solely on the observable empirical neg-loglikelihood L(Z, .) to
decide between two classes of model F1 ⊂ F2, the larger class will be trivially preferred. On the other
hand, the simpler model class F1 may be more representative of any structure contained the data and less
sensitive to noise. The Minimum Description Length (MDL) principle introduced by Jorma Rissanen
(4–6) addresses this problem by including the cost of coding the model itself into the picture. As more
complex models are costlier to describe, parsimony is now rewarded.

The problem of identifying an adequate model class on which to search for an estimate β̂ has been
recognized since the seventies. It has since motivated developments of model (variable) selection crite-
ria that penalize the neg-loglikelihood by measures of complexity of the model including the Minimum
Message Length criterion (MML, 7), Cp (8), Akaike’s Information Criterion (AIC, 9), Bayesian Infor-
mation Criterion (BIC, 10), and various MDL methods (e.g. the generalized MDL criterion, gMDL,
11).

For linear models, many model selection criteria involve a penalty in the dimensionality of the model
under evaluation (i.e., number of non-zero terms in β̂), that is, the selected estimate is of the form:

β̂(λn) = arg min
β
{2L(Z, β) + λn‖β‖0} , (5)

where ‖β‖0 = #{j : βj 6= 0} and λn is a tuning parameter trading-off summarization performance and
“complexity” of the model. We will refer to such penalties as `0-penalties in what follows. Perhaps the
two most popular examples of model selection criteria within this family are AIC (9) and BIC (10) for
which λn = 2 and λn = log(n) respectively. In this paper, we will be working with two criteria related
to AIC and BIC: the AICc criterion (12) is a finite-sample corrected version of AIC; and the gMDL
criterion (11) that tries to combine the virtues of AIC and BIC.

The strict computation of `0-penalized estimates leads to a costly combinatorial search over all sub-
sets of the largest model: the best subset search problem is an NP hard problem in the number of predic-
tors p as established by a recent formal proof (13). Exact solutions to this problem are computationally
infeasible for modern massive data sets where the number of predictors p is in the orders of thousands
as in gene expression data analysis and even millions as in text processing applications. Even if the



computation of models involving all subsets were feasible, it would still be wasteful. As the number of
models to be compared is large, many of them are indistinguishable within the precision afforded by the
number of samples practically available. As an example, a regression model involving 50 predictors (a
modest size for many modern data sets) would require the comparison of 250 ∼ 1015 models.

Computationally feasible approximations to the `0-penalized estimates are currently a very active
and exciting field of research in statistics. In this paper, we perform extensive simulations to compare
the prediction and variable selection performance of models picked by AICc and gMDL from lists of
candidate models generated by algorithms that identify subsets that are “approximately” the best for
their dimension.

The first approximation we consider is the greedy Forward Stepwise regression for selecting vari-
ables. Forward Stepwise regression is an eminently algorithmic procedure. Starting from the null model,
it selects the predictor whose coefficient corresponds to the largest sized term on the loss function gradi-
ent and refits the model involving the selected parameters at each step. For linear models and under the
squared error loss (L2-loss), that corresponds to picking the variables most correlated with the residuals
at each step (see 14). The second approximation we study is the convex relaxation approach in which the
`0-penalization is replaced by the `1-norm of the candidate vector of coefficients β. Early examples of
the use of `1-norm as a penalization are the non-negative garrote (15), the Least Absolute Shrinkage and
Selection Operator (LASSO, 16) and basis pursuit (17). The soft-thresholding rule used in VisuShrink
(18) is also intimately related to the `1-penalty. This relaxation results in a convex penalization, easing
the burden of computing estimates defined as the solution to an optimization problem (19).

The remainder of this paper is organized as follows. Section 2 reviews some of the theoretical
results concerning exact `0 and `1 penalized estimates. Section 3 presents a brief overview of the greedy
(Forward Stepwise) and relaxed (LASSO) regularization paths. There, we also present the selection
criteria we will consider in our later simulation experiments. In Section 4, we present our simulation
setup and results obtained for the squared error loss. Section 5 presents our conclusions.

2 Properties of `0 and `1-penalized estimates

The properties of `0-penalized estimates are well understood as various theoretical results have been
obtained since their introduction in the seventies (e.g. 20–22). Two important examples of `0-penalized
estimates are AIC (9) and BIC (10). These two criteria reflect a tension that exists between prediction
performance and model selection accuracy. Well known results show that AIC-type criteria have the
property of yielding the minimax-rate optimal of the regression function under the predictive L2-loss
(23–28), while BIC like criteria are consistent in terms of model selection (21).

Penalization by the `1-norm of β aims at solving an approximate solution to a convex relaxation of
the optimization problem (5). The approximate estimate β̂LASSO(λn) is defined as:

β̂LASSO(λn) = arg min
β
L(Z, β) + λn‖β‖1, (6)

where ‖β‖1 =
∑

j |βj |. Despite its relative youth, `1-penalized estimation has undergone intensive
research in recent years and a series of theoretical results concerning its properties have been achieved
(e.g. 29–38; 1; 39–41). Many of these results are either asymptotic in nature or concern the behavior of
sparse approximation in the noiseless setting. In the deterministic setting, the use of convex relaxation
of the `0-norm by the `1-norm was shown to recover the correct sparse representation under incoherence
conditions (42; 31; 30; 32; 34).

In what concerns the predictive performance of `1-penalized estimates, results in (29) establish that,
based on observed data, the actual out-of-sample prediction error can be estimated with greater pre-



cision for the non-negative garrote (closely related to `1-penalized estimates) than for subset selection
procedures. As a result, non-negative garrote estimates can attain better predictive models than their `0
counterparts. As we will see in our experimental section, this seems to carry over to the LASSO.

In terms of model selection, asymptotic results by (38), (1) and (40) establish conditions for model
selection consistency for `1-penalized estimates under the L2-loss in the non-parametric setting (i.e.,
pn →∞ as n→∞). Here, we define the irrepresentability index as:

II(Σ, β) = 1− ‖Σ21Σ−1
11 sign(β)‖∞ (7)

where Σ11 is the covariance matrix of the covariates with non-zero coefficients and Σ21 is the partition of
the covariance matrix of the covariates accounting for the correlation between the irrelevant and relevant
covariates. Results from (1) show that a sufficient condition for the LASSO to be consistent in model
selection for some sequence λn as n→∞ is that:

II(Σ, β) > 0 (8)

Later in this paper, we will be investigating the effect of the irrepresentability index on the model selec-
tion performance in finite samples. Results in (39) refine the model selection consistency results for the
LASSO by determining at what rates the number of relevant covariates q and the number of measured
predictors p can increase as n grows for model selection consistency to be preserved.

3 Approximation algorithms and selection criteria

The strict implementation of model selection criteria of the form shown in (5) requires the computation
of estimates for all possible subsets. As mentioned before this is both computationally infeasible and
wasteful given the large number of candidates that must be compared. It does, however, suggest that two
tasks are involved in the selection of a model: generating a series of candidate models and applying a
criterion to pick the “best” among them.

We consider two algorithms (Forward Stepwise and LASSO) for generating candidate models based
on approximations to the combinatorial problem (5). For selecting estimates out of the lists of candidates
created by these two algorithms, we consider two different criteria: AICc (12) and gMDL (11).

Before we proceed, we point out that alternative algorithms for generating candidate models and
alternative selection criteria exist. Boosting algorithms (43) are an important tool for generating list of
candidate models. For an example of Boosting algorithms applied to model selection, see (44). Cross-
validation (45–47) is an important tool for choosing among different models, especially in what refers
to prediction. It is, however, limited by its computational cost and often inadequate for model selection
purposes (24).

3.1 Description of the path-tracing algorithms

Although the exact solution to problem (5) is a combinatorial problem, a natural greedy approximation
suggests itself. At first, initialize a set of active parameters A to be empty and set β̂0 = 0 – the sparsest
possible solution. Then repeat the following process until no parameters are left out or a local optimal
is attained. Pick the parameter corresponding to the entry in the gradient vector ∇βL with the largest
absolute value. Add the chosen parameter to the set A and refit the model adjusting the estimates of
parameters contained in A (i.e., set the new estimate to be a vector such that the gradient of all variables
in A are zero). We shall refer to this algorithm as the Forward Stepwise algorithm for the remainder of
this paper. It has close connections to the orthogonal greedy algorithms from approximation theory (see,



for instance, 48; 49). 1

The convex relaxation approximation takes a different route. As mentioned above, it replaces the
exact solution of the problem (5) by an approximation based on convex relaxation as defined in (6).
A series of candidate models is generated by letting λn vary over [0,∞). At a first glance, the convex
relaxation approach seems radically different from the Forward Stepwise regression algorithm. However,
the homotopy/LARS 2 algorithm introduced in (50; 51) to compute all LASSO candidates reveals a
close connection between them. The homotopy/LARS algorithm also starts by setting an active set A
of parameters to be empty and set β̂0 = 0. At each step, it then selects the parameters with the highest
gradients, computes a direction preserving the gradient with respect to all active parameters equal in size
and determines a step size in which one of two events happen. Either the gradient corresponding to an
inactive term becomes as high as the ones in A in which case a new term is added to A; or one of the
parameter estimates in A hits zero in which case it is excluded from A.

In the case of linear models fitted using an L2-loss, an analysis in (51) gives the computational cost
of the k-th interaction of these algorithms in terms of the current size of the active set ak and the number
of observed samples n. At the k-th step, the costlier operation to perform is determining the direction
of the next step. To do so, it is necessary to invert the matrix X ′AXA. This can be done efficiently by
updating its Cholesky decomposition at each step of the algorithm at a cost in the order of O(a2

k + akn).
For Forward Stepwise, the entire regularization path has exactly r = rank(X) ≤ min{p, n} steps

resulting in a cost of the order of O(r3 + r2n) for the entire Forward Stepwise path. The complete
LASSO regularization path, on the other hand, allows variables to be dropped and re-added to the model
along the way and hence has a random number of steps. Well behaved data will cause the computational
cost of the LASSO and Forward Stepwise path to be roughly the same. In particular, if the positive cone
condition in (51) is satisfied, the two paths are known to agree, thus involving approximately the same
computational effort. On the other hand, the LASSO path is costlier when a lot of variable droppings
take place. In our experience, we have observed more correlated designs to be associated with longer
and consequently costlier paths for the LASSO.

3.2 Selection criteria for choosing an estimate from the regularization path

The Forward Stepwise and the LASSO algorithms above generate each a collection of models for us
to choose from, which we call their regularization paths. We will focus our attention on two different
criteria for picking models from the Forward Stepwise and LASSO regularization paths: the AICc (12)
(corrected AIC) and the gMDL (11) criteria. We decide for these two criteria based on the good results
reported in (11), (52; 44), and (53).

The AICc was proposed by Sugiura (12) as a finite sample correction for Akaike’s AIC (9). The
authors have previously used this criterion in the n < p setting with good predictive performance (54).
We use it here in place of cross-validation to reduce the computational cost of our experiments. For linear
models based on the L2-loss (Gaussian likelihood for residuals), the AICc estimate are defined as:

β̂AICc = arg min
β∈path

n2 log

(
n∑
i=1

‖Yi −Xiβ‖2
)

+
1
2
·
n
(

1 + K(β)
n

)
1−

(
K(β)+2

n

)
 .

where K(β) denotes an effective dimension of the model associated to β.
The second criterion we consider is the gMDL (11) criterion motivated as a data-driven bridging the

AIC and BIC. We refer the reader to (11) for more details on the gMDL criterion. For a Gaussian (L2-
1Boosting algorithms in their turn relate to the pure greedy algorithms in approximation theory.
2LARS standing for Least Angle Regression and Selection



loss) linear model and again letting K(β) again denote an effective dimension of the model associated
to β, the gMDL estimate is defined as:

β̂gMDL = arg min
β∈path

gMDL(Z, β)

with:

gMDL(Z, β) =


log
(
‖Y−Xβ‖2
n−K(β)

)
+ K(β)

2 log

(
‖Xβ‖2
K(β)

‖Y−Xβ‖2
n−K(β)

)
+ log(n), if R2 > K(β)

n ,

log
(
Y ′Y
n

)
+ 1

2 log(n), otherwise.

For both LASSO and the Forward Stepwise one effective dimensionality of the model K(β) is given
by the number of non-zero terms in β. For the LASSO, this is justified by the unbiased estimate for the
degrees of freedom for LASSO estimates introduced in (55).

4 Simulation results

After reviewing the algorithms we will be using and some of the theoretical properties of `0 and `1
penalized estimates, we now present the results of our simulations. As seen in Section 3 above, LASSO
and Forward Stepwise have some close connections and subtle differences. Natural questions regarding
how their differences and similarities translate into selection accuracy and predictive performance arise.
Our experiments below are geared to shed some lights on some of these questions.

Throughout this section, we work with the squared error loss (L2-loss) and use the lars package
implementation for both the LASSO and Forward Stepwise selection algorithms in R.

4.1 Simulation Set-up

The data in our simulations is generated according to:

Y = Xβ + ε,

where n observations are available and p predictors can be selected, that is, Y, ε ∈ Rn, X ∈ Rn×p.
Throughout, ε ∼ N(0, In). The predictors are also Gaussian with X ∼ N(0,Σ). To avoid system-
atic biases favoring one or another method, both the covariance matrix of the predictors Σ ∈ Rp×p and
the coefficients of the model β ∈ Rp are chosen randomly. Σ is given by Σ = 1

pW , where W has
a Wishart(Ip, ddpe) distribution. The higher the multiplier d in the degrees of freedom, the less cor-
relation among the predictors as Σ concentrates around the orthogonal design with increasing d. For
the coefficients, we fix the fraction of non-zero coefficients s ∈ (0, 1) and randomly choose q = bspc
coefficients to be non-zero. Conditional on the sparsity structure, the non-zero coefficients are sampled
independently from aN(0, 1) distribution and re-normalized to keep the signal to noise ratio fixed at 2.0.

Once the regularization paths are traced according to the Forward Stepwise and LASSO algorithms,
model estimates are picked using the AICc and gMDL criteria. We also compare the selected models to
models chosen from the path based on full information on the model. The prediction oracle is defined as
the estimate in the path that minimizes the model error (β̂ − β)′E(X ′X)(β̂ − β). The selection oracle
estimate is the one model in the path minimizing the number of selection errors (i.e., the size of the
symmetric difference between the selected set and the true set).
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Figure 1: ‘Mean ROC curves” for the LASSO (dashed) and Forward Stepwise (dotted): Within
each panel, the relative operating characteristic (ROC) curve shows the mean minimal number of false
positives (horizontal axis) needed to achieve a given number of true positives (vertical axis) for both the
LASSO (dashed lines) and Forward Stepwise (dotted lines). A selection procedure is better the more its
curve approaches the upper left corner of the plot. As we can see here, both the LASSO and Forward
Stepwise trade-off between false positives and true positives in a similar fashion for all sample sizes and
sparsity levels.

4.2 Model selection results

We first take on the model selection aspects of LASSO and Forward Selection. We start by analyzing
how the LASSO and Forward Stepwise trade-off between their ability of detecting true coefficients while
keeping irrelevant predictors out of the model.

4.2.1 “Mean” ROC curves for the Forward Stepwise and LASSO

In this first step of our analysis, we compare the relative operating characteristic (ROC) curves for For-
ward Stepwise and the LASSO. An ROC curve will show the trade-off between the gain of adding a
relevant variable and the loss of including an irrelevant variable as we move along the regularization
path. By comparing the ROC curves of the LASSO and Forward Stepwise, we have a view of the model
selection behavior of the two methods for all possible choices of the tuning parameter λn.

To estimate these curves, we fix a number of correctly selected variables and record the mean number
of irrelevant variables included in the earliest model in the path containing that many true variables. The
estimated curves are shown in Figure 1 for different sample sizes and sparsity levels.

Overall, we see a remarkable similarity in the ROC curves for the LASSO and Forward Stepwise. As
a result, the ROC curves suggest that the LASSO and Forward Stepwise have similar behavior in terms
of model selection accuracy over a wide range of settings.

4.2.2 The effect of the irrepresentability index and sample size

We now evaluate how much the irrepresentable index (7) affects the ability of the selection oracle to
correctly select a model from the LASSO and Forward Stepwise. According to recent theoretical results
(38; 1; 40), the presence of a model with all correct variables in the LASSO path is strongly related to



the irrepresentable index. Does the asymptotic results carry over to the small-n-large-p case? And how
does the irrepresentable index affect the Forward Stepwise estimates if at all? The results presented in
Figure 2 aim at answering these questions.

The two panels on Figure 2 show the minimum number of selection errors (ie, the number of er-
rors committed by the selection oracle) plotted against the irrepresentability index for different sample
sizes and sparsity levels as indicated. The results seem to imply that it takes large samples for the ir-
representability index to become a dominant effect on the model selection performance of the LASSO.
Another interesting conclusion from Figure 2 is the relative insensitivity of Forward Stepwise to the
irrepresentability index, especially in the sparser case. This was a somewhat surprising result given
the similarity between the two algorithms. It also suggests that the coherence requirements in (35) as
sufficient conditions for Forward Stepwise to recover the sparsest solution are overly restrictive.

4.2.3 Selection Oracle vs. AICc and gMDL

We now assess the model selection performance of the AICc and gMDL criteria for picking estimates
from the LASSO and Forward Stepwise regularization paths. Figures 3 and 4 show the number of
selection errors for gMDL and AICc and how they compare to the selection oracle for the LASSO and
Forward Stepwise at different sparsity levels.

Throughout, gMDL outperforms AICc in keeping track of the minimal number of selection errors.
Given the model selection consistency (alt. inconsistency) of BIC (alt. AIC) in the parametric case (21),
that is not a surprising result: while gMDL strives to combine the virtues of BIC and AIC, the AICc
simply adjusts the behavior of AIC for finite samples.

Also interesting is the fact that gMDL seems to approach the selection performance of the selection
oracle as n increases for Forward Stepwise but not for the LASSO. That suggests that a selection criterion
specifically designed for use with the LASSO regularization path can improve upon LASSO estimates
picked by gMDL.

4.2.4 Specificity of Forward Stepwise and LASSO estimates

As an important application of variable selection consists of identifying potential relevant factors for
further analysis, we now investigate how the Forward Stepwise and LASSO estimates fare in this respect.
The important quantity in this case is the proportion of true positive effects among the selected effects.
Given the imbalance between the proportion of true positives and true negatives in sparse models, a good
performance in terms of number of selection errors does not necessarily translate into performance in
terms of correct positive rate. Table 1 reports these results for Forward Stepwise and LASSO estimates
picked by gMDL. The results for AICc were considerably worse and are not reported.

A high correct positive rate can be achieved by simply over-restricting the estimates. As a control for
this, we also report the number of false positives among the selected predictors. A very low number of
false positives serves as a warning of over-restriction. Overall, the number of false positives was about
the same for Forward Stepwise and LASSO.

When an oracle is available, the correct positive rate for Forward Stepwise is significantly larger for
all cases considered. However, when models are picked according to the feasible gMDL, an interesting
effect occurs. For smaller samples (n = 50, p = 100), the LASSO estimates reach substantially higher
correct positive rates than Forward Stepwise. As the sample sizes increase, Forward Stepwise gradually
becomes better in the comparison to the LASSO and is preferable for large samples.
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Figure 2: Number of selection errors for LASSO and Forward Stepwise vs the irrepresentabil-
ity index: Each panel shows a plot of the (jittered) selection oracle number of selection errors vs. the
irrepresentability index for the approximation and sample size indicated. In small samples, the irrep-
resentability index does not affect the model selection performance of neither the LASSO nor Forward
Stepwise. Asymptotically, the irrepresentability index affects the LASSO more markedly than Forward
Stepwise, particularly in the sparsest case.
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Figure 3: Number of selection errors under 5% non-zero coefficients: Each panel shows the (jittered)
number of selection errors vs. the irrepresentability index for the indicated criterion and sample size.
The gMDL criterion had a better performance than AICc in terms of number of selection errors for both
LASSO and Forward Stepwise and all sample sizes considered. Using gMDL results in a slightly better
selection performance for Forward Stepwise in comparison to LASSO.
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Figure 4: Number of selection errors under 25% non-zero coefficients: As in Figure 3, each panel
shows the (jittered) number of selection errors vs. the irrepresentability index for the indicated criterion
and sample size. The gMDL criterion still performs on par or slightly better than AICc in terms of
number of selection errors for both LASSO and Forward Stepwise and all sample sizes considered.
Again, using gMDL results in a slightly better selection performance for Forward Stepwise in comparison
to LASSO.
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Figure 5: Oracle model errors for Forward Stepwise and LASSO: Each panel shows boxplots of the
prediction oracle model errors for the Forward Stepwise and LASSO. The dotted lines in the upper panels
indicate the model error of the null model (excluding the intercept error). In terms of the oracle model
error, LASSO and Forward Stepwise perform similarly. LASSO has a slight advantage in small sample
and less sparse settings, while Forward Stagewise seems better for sparser models and large sample sizes.
The relative virtues of LASSO and Forward Stepwise for prediction change considerably when an oracle
is no longer available (see Figure 6 below).

4.3 Prediction results

We end the exposition of our simulation results by evaluating how the LASSO and Forward Stepwise
approximations compare in terms of predictive performance. Figure 5 shows boxplots comparing the
model error associated to the LASSO and Forward Stepwise predictive oracles, that is, the models in the
regularization path with the minimum model error. The best possible performance depends on the spar-
sity of the underlying model and the available sample size. In the sparsest case considered, the Forward
Stepwise oracle had a better performance than its LASSO counterpart for all sample sizes considered.
At less sparse regimes, the LASSO has an advantage for smaller samples, but Forward Stepwise catches
up as the sample size increases.

When an oracle is not available and the sample size is small, the AICc estimate picked from the
LASSO (LASSO+AICc estimate) is able to track the model error of the LASSO prediction oracle. The
LASSO+AICc estimate had a competitive predictive performance across all simulated set-ups. This
can be regarded as the LASSO version of earlier experimental and theoretical results (15; 29) for the
non-negative garrote estimates. For large sample sizes and very sparse models, however, the Forward
Stepwise+gMDL estimate can outperform the LASSO+AICc.

5 Discussion/Concluding Remarks

The MDL framework introduced by Jorma Rissanen is an instrumental tool in extracting knowledge from
data. However, the high dimensional nature of many modern data sets poses computational challenges
due to the combinatorial nature of the optimization problem defining many MDL estimates. A common
approach to circumvent this problem consists in applying model selection criteria to a reduced list of
candidates generated by algorithms that heuristically identify potentially good models.

In this paper, we present a series of experiments comparing models selected from the regularization



Correct positive rate # False positives
Sel. Oracle gMDL Sel. Oracle gMDL

n p q FS LASSO FS LASSO FS LASSO FS LASSO
50 100 5 98.7 97.4 66.3 75.6 2.49 2.74 2.34 2.73

0.2 0.2 0.6 0.6 0.027 0.026 0.024 0.026
50 100 25 89.5 83.8 57.3 71.1 21.58 19.97 21.54 22.91

0.4 0.4 0.6 0.8 0.064 0.088 0.040 0.039
100 100 5 99.1 98.0 80.3 75.2 1.67 2.01 1.63 1.82

0.1 0.2 0.5 0.6 0.026 0.026 0.025 0.027
100 100 25 87.5 83.0 70.7 74.0 17.94 16.97 18.58 19.18

0.3 0.3 0.5 0.5 0.092 0.099 0.060 0.082
1000 100 5 99.9 99.2 97.9 81.5 0.50 0.70 0.60 0.58

0.0 0.1 0.2 0.5 0.017 0.019 0.018 0.018
1000 100 25 92.2 87.1 88.1 69.8 8.023 8.87 8.83 6.23

0.3 0.3 0.4 0.4 0.109 0.118 0.085 0.072

Table 1: Proportion of correct positives according to regression type and selection criterion: If an
oracle is available, Forward Stepwise can reach higher proportions of correctly selected variables than
LASSO. Between gMDL and AICc, gMDL proved better for screening (hence, AICc is not shown).
LASSO+gMDL is a better screener in small samples and Forward Stepwise+gMDL is a better screener
for larger samples. Notice that the number of false positives is roughly the same for LASSO+gMDL and
Forward Stepwise+gMDL within each experimental settings (n,p,q).

Comparison of the model error for Forward Stepwise and LASSO for different selection criteria
5% non-zero 25% non-zero 75% non-zero
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Figure 6: Model errors for Forward Stepwise and LASSO for gMDL and AICc: Each panel shows
a boxplot of the model errors for Forward Stepwise and the LASSO and different selection criteria
as indicated (Ora is the predictive oracle). The dotted line shows the model error of the null model.
Throughout, the LASSO+AICc estimate managed to track the LASSO prediction oracle model error. The
gMDL criterion can keep a good track of the oracle model error for Forward Stepwise in the sparsest case.
Overall, LASSO+AICc have steadier predictive performance: it far exceeds Forward Stepwise+gMDL
in the less sparse cases and it performs on par with Forward Stepwise+gMDL in the sparsest case.



path of either greedy (Forward Stepwise) or convex relaxation (LASSO) algorithms and selected by
either AICc or the gMDL. We compare the selected models according to their prediction and variable
selection performances.

In what concerns variable selection accuracy, the list of models generated by Forward Stepwise
and the LASSO trade-off very similarly between false negatives and false positives, as evidenced by
the experimental mean ROC curves (see Figure 1 for a definition). In terms of the number of variable
selection errors, the Forward Stepwise+gMDL estimates seemed to have the best performance over the
cases considered. For maximizing the correct positive rate among the selected variables, gMDL had the
best results. For sample sizes smaller than the number of predictors being selected, the combination
LASSO+gMDL had a better performance. As the sample sizes increased, the combination Forward
Stepwise+gMDL achieved the best results.

Still regarding the selection performance of the two methods, our simulations suggest that, in small
samples, the irrepresentability index (7) does not have a great influence on the oracle number of selec-
tion errors for neither the LASSO nor Forward Stepwise. Asymptotically, however, not even the selection
oracle model picked from the LASSO path is model selection consistent for negative values of the ir-
representability index as postulated by theoretical results (38; 1; 40). The models picked from Forward
Stepwise by the selection oracle for large samples were less affected by the irrepresentable index es-
pecially in the sparser cases. The incoherence conditions used in (35) provide sufficient conditions for
the candidates recovered by Forward Stepwise to recover the best subsets, but our results suggest such
conditions are overly restrictive.

In terms of prediction, the model error of models picked from the Forward Stepwise and LASSO
paths by the prediction oracle performed very similarly. However, when an oracle was not available, the
LASSO+AICc estimate had a good predictive performance across all settings tested. Such results repro-
duce for the LASSO, earlier simulation (15) and theoretical (29) findings for the non-negative garrote.
They do provide compelling evidence to prefer the LASSO over Forward Stepwise in a reduced sample
size situation. In that respect, we identify a minor theoretical gap: do Breiman’s theoretical results (29)
concerning the stability of the non-negative garrote carry over to the LASSO? Our simulation results
seem to suggest so.

Finally, we observe an interesting parallel between the theoretical results for AIC and BIC for the all
subsets case and our results. Regardless of the approximation used to obtain a list of candidate models,
the AICc criterion was the best choice for prediction, whereas gMDL was the best performer for variable
selection. Given that AICc and gMDL are “closer” to AIC and BIC respectively, it seems plausible that
AIC-like (alt. BIC-like) criteria are more suitable for prediction (alt. variable selection) purposes when
all subsets are substituted by a list of “approximately” best subsets.

References

[1] P. Zhao and B. Yu, “On model selection consistency of LASSO,” Journal of Machine Learning
Research, vol. 7, pp. 2541–2563, 2006. [Online]. Available: http://jmlr.csail.mit.edu/papers/
volume7/zhao06a/zhao06a.pdf

[2] J. A. Nelder and R. W. M. Wedderburn, “Generalized linear models,” Journal of the Royal Statistical
Society, Series A, vol. 135, no. 3, pp. 370–384, 1972.

[3] P. McCullagh and J. A. Nelder, Generalized Linear Models. London ; New York: Chapman &
Hall, 1989.

[4] J. Rissanen, “Modeling by shortest data description,” Automatica, vol. 14, pp. 465–471, 1978.

http://jmlr.csail.mit.edu/papers/volume7/zhao06a/zhao06a.pdf
http://jmlr.csail.mit.edu/papers/volume7/zhao06a/zhao06a.pdf


[5] ——, Stochastic Complexity in Statistical Inquiry, ser. World Scientific Series in Computer Sci-
ence. Singapore: World Scientific, 1989, vol. 15.

[6] ——, Information and Complexity in Statistical Modeling, ser. Series: Information Science and
Statistics. 233 Spring Street, New York, NY 10013, USA: Springer, 2007.

[7] C. S. Wallace and D. M. Boulton, “An information measure for classification,” Computer Journal,
vol. 11, no. 2, pp. 185–195, 1968. [Online]. Available: http://www.csse.monash.edu.au/∼lloyd/
tildeMML/Structured/1968-WB-CJ/

[8] C. L. Mallows, “Some comments on Cp,” Technometrics, vol. 15, no. 4, pp. 661–675, 1973.

[9] H. Akaike, “Information theory and an extension of the maximum likelihood principle,” in 2nd
International Symposium on Information Theory, B. N. Petrov and F. Csáki, Eds. Budapest:
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