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The EM algorithm is a widely used tool in maximum-likelihood
estimation in incomplete data problems. Existing theoretical work
has focused on conditions under which the iterates or likelihood values
converge, and the associated rates of convergence. Such guarantees
do not distinguish whether the ultimate fixed point is a near global
optimum or a bad local optimum of the sample likelihood, nor do they
relate the obtained fixed point to the global optima of the idealized
population likelihood (obtained in the limit of infinite data). This pa-
per develops a theoretical framework for quantifying when and how
quickly EM-type iterates converge to a small neighborhood of a given
global optimum of the population likelihood. For correctly specified
models, such a characterization yields rigorous guarantees on the per-
formance of certain two-stage estimators in which a suitable initial
pilot estimator is refined with iterations of the EM algorithm. Our
analysis is divided into two parts: a treatment of the EM and gradi-
ent EM algorithms at the population level, followed by results that
apply to these algorithms on a finite set of samples. Our conditions
allow for a characterization of the region of convergence of EM-type
iterates to a given population fixed point, i.e. the region of the param-
eter space over which convergence is guaranteed to a point within a
small neighborhood of the specified population fixed point. We verify
our conditions and give tight characterizations of the region of con-
vergence for three canonical problems of interest: symmetric mixture
of two Gaussians, symmetric mixture of two regressions, and linear
regression with covariates missing completely at random.

1. Introduction. Data problems with missing values, corruptions, and latent variables
are common in practice. From a computational standpoint, computing the maximum likelihood
estimate (MLE) in such incomplete data problems can be quite complex. To a certain extent,
these concerns have been assuaged by the development of the expectation-maximization (EM)
algorithm, along with growth in computational resources. The EM algorithm is widely applied
to incomplete data problems, and there is now a very rich literature on its behavior (e.g., [11,
12, 17, 25, 27, 30, 32, 34, 42, 46, 49]). However, a major issue is that in most models, although
the MLE is known to have good statistical properties, the EM algorithm is only guaranteed to
return a local optimum of the sample likelihood function. The goal of this paper is to address
this gap between statistical and computational guarantees, in particular by developing an
understanding of conditions under which the EM algorithm is guaranteed to converge to a
local optimum that matches the performance of maximum likelihood estimate up to constant
factors.

The EM algorithm has a lengthy and rich history. Various algorithms of the EM-type
were analyzed in early work (e.g.,[5, 6, 18, 19, 37, 40, 41]), before the EM algorithm in its
modern general form was introduced by Dempster, Laird and Rubin [17]. Among other results,
these authors established its well-known monotonicity properties. Wu [50] established some of
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the most general convergence results known for the EM algorithm; see also the more recent
papers [15, 43]. Among the results in the paper [50] is a guarantee for the EM algorithm to
converge to the unique global optimum when the likelihood is unimodal and certain regularity
conditions hold. However, in most interesting cases of the EM algorithm, the likelihood function
is multi-modal, in which case the best that can be guaranteed is convergence to some local
optimum of the likelihood at an asymptotically geometric rate (see, for instance [20, 29, 31, 33]).
A guarantee of this type does not preclude that the EM algorithm converges to a “poor” local
optimum—meaning one that is far away from any global optimum of the likelihood. For this
reason, despite its popularity and widespread practical effectiveness, the EM algorithm is in
need of further theoretical backing.

The goal of this paper is to take the next step in closing this gap between the practical
use of EM and its theoretical understanding. At a high level, our main contribution is to
provide a quantitative characterization of a basin of attraction around the population global
optimum with the following property: if the EM algorithm is initialized within this basin,
then it is guaranteed to converge to an EM fixed point that is within statistical precision of a
global optimum. The statistical precision is a measure of the error in the maximum likelihood
estimate, or any other minimax optimal method; we define it more precisely in the sequel.
Thus, in sharp contrast with the classical theory [20, 29, 31, 33]—which guarantees asymptotic
convergence for an arbitrary EM fixed point—our theory guarantees geometric convergence to
a “good” EM fixed point.

In more detail, we make advances over the classical results in the following specific direc-
tions:
• Existing results on the rate of convergence of the EM algorithm guarantee that there is some

neighborhood of a fixed point over which the algorithm converges to this fixed point, but
do not quantify its size. In contrast, we formulate conditions on the auxiliary Q-function
underlying the EM algorithm, which allow us to give a quantitative characterization of the
region of attraction around the population global optimum. As shown by our analysis for
specific statistical models, its size is determined by readily interpretable problem-dependent
quantities, such as the signal-to-noise ratio (SNR) in mixture models, or the probability
of missing-ness in models with missing data. As a consequence, we can provide concrete
guarantees on the initializations of EM that lead to good fixed points. For example, for
Gaussian mixture models with a suitably large mean separation, we show that a relatively
poor initialization suffices for the EM algorithm to converge to a near-globally optimal
solution.

• Classical results on the EM algorithm are all sample-based, in particular applying to any
fixed point of the sample likelihood. However, given the nonconvexity of the likelihood, there
is a priori no reason to believe that any fixed points of the sample likelihood are close to
the MLE (i.e. a maximizer of the sample likelihood), or equivalently (for a well-specified
model) close to the underlying true parameter. Indeed, it is easy to find cases in which the
likelihood function has spurious local maxima; see Figure 1 for one simple example. In our
approach, we first study the EM algorithm in the idealized limit of infinite samples, referred
to as the population level. For specific models, we provide conditions under which there
are in fact no spurious fixed points for two algorithms of interest (the EM and first-order
EM algorithms) at the population level. We then give a precise lower bound on the sample
size that suffices to ensure that, with high probability, the sample likelihood does not have
spurious fixed points far away from the MLE. These results show that the behavior shown
in Figure 1 is unlikely given a sufficiently large sample.

• In simulations, it is frequently observed that if the EM algorithm is given a “suitable” initial-
ization, then it converges to a statistically consistent estimate. For instance, in application

2



to a mixture of regression problem, Chaganty and Liang [13] empirically demonstrate good
performance for a two-stage estimator, in which the method of moments is used as an ini-
tialization, and then the EM algorithm is applied to refine this initial estimator. Our theory
allows us to give a precise characterization of what type of initialization is suitable for these
types of two-stage methods. When the pilot estimator is consistent but does not achieve
the minimax-optimal rate (as is often the case for various moment-based estimators in high
dimensions), then these two-stage approaches are often much better than the initial pilot
estimator alone. Our theoretical results help explain this behavior, and can further be used
to characterize the refinement stage in new examples.
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Fig 1. An illustration of the inadequacy of purely sample-based theory guaranteeing linear
convergence to any fixed point of the sample-based likelihood. The figure illustrates the pop-
ulation and sample-based likelihoods for samples y ∼ 1

2N (−θ∗, 1) + 1
2N (θ∗, 1) with θ∗ = 0.7.

There are two global optima for the population-likelihood corresponding to θ∗ and −θ∗, while
the sample-based likelihood, for a small sample size, can have a single spurious maximum near
0. Our theory guarantees that for a sufficiently large sample size this phenomenon is unlikely,
and that in a large region around θ∗ (of radius roughly ‖θ∗‖2), all maxima of the sample-based
likelihood are extremely close to θ∗, with an equivalent statement for a neighborhood of −θ∗.

In well-specified statistical models, our results provide sufficient conditions on initializations
that ensure that the EM algorithm converges geometrically to a fixed point that is within
statistical precision of the unknown true parameter. Such a characterization is useful for a
variety of reasons. First, there are many settings (including mixture modeling) in which the
statistician has the ability to collect a few labeled samples in addition to many unlabeled ones,
and understanding the size of the region of convergence of EM can be used to guide the efforts
of the statistician, by characterizing the number of labeled samples that suffice to (with high-
probability) provide an initialization from which she can leverage the unlabeled samples. In
this setting, the typically small set of labeled samples are used to construct an initial estimator
which is then refined by the EM algorithm applied on the larger pool of unlabeled samples.
Second, in practice, the EM algorithm is run with numerous random initializations. Although
we do not directly attempt to address this in this paper, we note that a tight characterization
of the region of attraction can be used in a straightforward way to answer the question: how
many random initializations (from a specified distribution) suffice (with high-probability) to
find a near-globally optimal solution?.

Roadmap. Our main results concern the population EM and first-order EM algorithms and
their finite-sample counterparts. We give conditions under which the population algorithms
are contractive to the MLE, when initialized in a ball around the MLE. These conditions allow
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us to establish the region of attraction of the MLE. A bulk of our technical effort is in the
treatment of three examples—namely, a symmetric mixture of two Gaussians, a symmetric
mixture of two regressions and regression with missing covariates—for which we show that our
conditions hold in a large region around the MLE, and that the size of this region is determined
by interpretable problem-dependent quantities.

The remainder of this paper is organized as follows. Section 2 provides an introduction
to the EM and first-order EM algorithms, and develops some intuition for the theoretical
treatment of the first-order EM algorithm. Section 3 is devoted to the analysis of the first-
order EM at the population level: in particular, Theorem 1 specifies concrete conditions that
ensure geometric convergence, and Corollaries 1, 2 and 3 show that these conditions hold
for three specific classes of statistical models: Gaussian mixtures, mixture of regressions, and
regression with missing covariates. We follow with analysis of the sample-based form of the
first-order EM updates in Section 4, again stating two general theorems (Theorem 2 and 3), and
developing their consequences for our three specific models in Corollaries 4, 5 and 6. We also
provide an analogous set of population and sample results for the standard EM updates. The
main results appear in Section 5. Due to space constraints we defer detailed proofs as well as
a treatment of concrete examples to the supplementary material [3]. In addition, Appendix C
contains additional analysis of stochastic online forms of the first-order EM updates. Section 6
is devoted to the proofs of our results on the first-order EM updates, with some more technical
aspects again deferred to appendices in the supplement.

2. Background and intuition. We begin with basic background on the standard EM
algorithm as well as the first-order EM algorithm as they are applied at the sample level.
We follow this background by introducing the population-level perspective that underlies the
analysis of this paper, including the notion of the oracle iterates at the population level and
the gradient smoothness condition, as well as discussing the techniques required to translate
from population based results to finite-sample based results.

2.1. EM algorithm and its relatives. Let Y and Z be random variables taking values in the
sample spaces Y and Z, respectively. Suppose that the pair (Y,Z) has a joint density function
fθ∗ that belongs to some parameterized family {fθ | θ ∈ Ω} where Ω is some non-empty
convex set of parameters. Suppose that rather than observing the complete data (Y,Z), we
observe only component Y . The component Z corresponds to the missing or latent structure
in the data. For each θ ∈ Ω, we let kθ(z | y) denote the conditional density of z given y.

Our goal is to obtain an estimate of the unknown parameter θ∗ via maximizing the log-
likelihood. Throughout this paper we assume that the generative model is correctly specified,
with an unknown true parameter θ∗. In the classical statistical setting, we observe n i.i.d.
samples {yi}ni=1 of the Y component. Formally, under the i.i.d. assumption, we are interested
in computing some θ̂ ∈ Ω maximizing the log-likelihood function θ 7→ `n(θ) where,

`n(θ) =
1

n

n∑

i=1

log

[∫

Z
fθ(yi, zi)dzi

]
.

Rather than attempting to maximize the likelihood directly, the EM framework is based on
using an auxiliary function to lower bound the log likelihood. More precisely, we define a
bivariate function Qn : Ω× Ω→ R as follows:

Definition 1 (Finite-sample Q-function).

Qn(θ|θ′) =
1

n

n∑

i=1

(∫

Z
kθ′(z | yi) log fθ(yi, z)dz

)
.(2.1)
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The quantity Qn(θ|θ′) provides a lower bound on the log-likelihood `n(θ) for any θ, with
equality holding when θ = θ′—that is, `n(θ′) = Qn(θ′|θ′).

The standard EM algorithm operates by maximizing this auxiliary function, whereas the
first-order EM algorithm operates by taking a gradient step1. In more detail:
• Given some initialization θ0 ∈ Ω, the standard EM algorithm performs the updates

θt+1 = arg max
θ∈Ω

Qn(θ|θt) t = 0, 1, . . ..(2.2)

• Given some initialization θ0 ∈ Ω and an appropriately chosen step-size α ≥ 0, the first-order
EM algorithm performs the updates:

θt+1 = θt + α∇Qn(θ|θt)|θ=θt for t = 0, 1, . . .,(2.3)

where the gradient is taken with respect to the first argument of the Q-function.2 There is
also a natural extension of the first-order EM iterates that includes a constraint arising from
the parameter space Ω, in which the update is projected back using a Euclidean projection
onto the constraint set Ω.
It is important to note that in typical examples, several of which are considered in detail

in this paper, the likelihood function `n is not concave, which makes direct computation of
a maximizer challenging. On the other hand, there are many cases in which, for each fixed
θ′ ∈ Ω, the functions Qn(·|θ′) are concave, thereby rendering the EM updates tractable. In
this paper, as is often the case in examples, we focus on cases when the functions Qn(·|θ′) are
concave.

It is easy to verify that the gradient ∇Qn(θ|θt), when evaluated at the specific point θ = θt,
is actually equal to the gradient ∇`n(θt) of the log-likelihood at θt. Thus, the first-order
EM algorithm is actually gradient ascent on the marginal log-likelihood function. However,
the description given in equation (2.3) emphasizes the role of the Q-function, which plays a
key role in our theoretical development, and allows us to prove guarantees even when the log
likelihood is not concave.

2.2. Population-level perspective. The core of our analysis is based on analyzing the log
likelihood and the Q-functions at the population level, corresponding to the idealized limit
of an infinite sample size. The population counterpart of the log likelihood is the function
θ 7→ `(θ) given by

`(θ) =

∫

Y
log

[∫

Z
fθ(y, z)dz

]
gθ∗(y)dy,(2.4)

where θ∗ denotes the true, unknown parameter and gθ∗ is the marginal density of the observed
data. A closely related object is the population analog of the Q-function, defined as follows:

Definition 2 (Population Q-function).

Q(θ|θ′) =

∫

Y

(∫

Z
kθ′(z | y) log fθ(y, z)dz

)
gθ∗(y)dy.(2.5)

We can then consider the population analogs of the standard EM and first-order EM up-
dates, obtained by replacing∇Qn with∇Q in equations (2.2) and (2.3), respectively. Our main

1We assume throughout that Qn and Q are differentiable in their first argument.
2Throughout this paper, we always consider the derivative of the Q-function with respect to its first argu-

ment.
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goal is to understand the region of the parameter space over which these iterative schemes, are
convergent to θ∗. For the remainder of this section, let us focus exclusively on the population
first-order EM updates, given by

θt+1 = θt + α∇Q(θ|θt)|θ=θt , for t = 0, 1, 2, . . ..(2.6)

The concepts developed here are also useful in understanding the EM algorithm; we provide
a full treatment of it in Appendix 5 of the supplementary material.

2.3. Oracle auxiliary function and iterates. Our key insight is that in a local neighborhood
of θ∗, the first-order EM iterates (2.6) can be viewed as perturbations of an alternate oracle
iterative scheme, one that is guaranteed to converge to θ∗. This leads us to a natural condition,
relating the perturbed and oracle iterative schemes, which gives an explicit way to characterize
the region of convergence of the first-order EM algorithm.

Since the vector θ∗ is a maximizer of the population log-likelihood, a classical result [29]
guarantees that it must then satisfy the condition

θ∗ = arg max
θ∈Ω

Q(θ|θ∗),(2.7)

a property known as self-consistency. Whenever the function Q is concave in its first argument,
this property allows us to express the fixed-point of interest θ∗ as the solution of a concave
maximization problem—namely one involving the auxiliary function q : Ω→ R given by:

Definition 3 (Oracle auxiliary function).

q(θ) := Q(θ|θ∗) =

∫

Y

(∫

Z
kθ∗(z | y) log fθ(y, z)dz

)
gθ∗(y)dy.(2.8)

Why is this oracle function useful? Assuming that it satisfies some standard regularity
conditions—namely, strong concavity and smoothness—classical theory on gradient methods
yields that, with an appropriately chosen stepsize α, the iterates

θ̃t+1 = θ̃t + α∇q(θ̃t) for t = 0, 1, 2, . . .(2.9)

converge at a geometric rate to θ∗. Of course, even in the idealized population setting, the
statistician cannot compute the oracle function q, since it presumes knowledge of the unknown
parameter θ∗. However, with this perspective in mind, the first-order EM iterates (2.3) can be
viewed as a perturbation of the idealized oracle iterates (2.9).

By comparing these two iterative schemes, we see that the only difference is the replacement
of ∇q(θt) = ∇Q(θt|θ∗) with the quantity ∇Q(θt|θt). Thus, we are naturally led to consider
a gradient stability condition which ensures the closeness of these quantities. Particularly, we
consider a condition of the form

‖∇q(θ)−∇Q(θ|θ)‖2 ≤ γ‖θ − θ∗‖2 for all θ ∈ B2(r; θ∗),(2.10)

where B2(r; θ∗) denotes a Euclidean ball3 of radius r around the fixed point θ∗, and γ is
a smoothness parameter. Our first main result (Theorem 1) shows that when the gradient
smoothness condition (2.10) holds for appropriate values of γ, then for any initial point θ0 ∈
B2(r; θ∗), the first-order EM iterates converge at a geometric rate to θ∗. In this way, we have

3Our choice of a Euclidean ball is for concreteness; as the analysis in the sequel clarifies, other convex local
neighborhoods of θ∗ could also be used.
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a method for explicitly characterizing the region of the parameter space Ω over which the
first-order EM iterates converge to θ∗.

Of course, there is no a priori reason to suspect that that gradient stability condition (2.10)
holds for any non-trivial values of the radius r in concrete examples. Indeed, much of the
technical work in our paper is devoted to studying important and canonical examples of the
EM algorithm, and showing that the stability condition (2.10) does hold for reasonable choices
of the parameters r and γ, ones which yield accurate predictions of behavior of EM in practice.

2.4. From population to sample-based analysis. Recall that our ultimate interest is in the
behavior of the finite-sample first-order EM algorithm. Since the finite-sample updates (2.3)
are based on the sample gradient ∇Qn instead of the population gradient ∇Q, a central object
in our analysis is the empirical process given by

{
∇Q(θ|θ)−∇Qn(θ|θ), θ ∈ B2(r; θ∗)

}
(2.11)

Let εunif
Q be a high probability upper bound on the supremum of this empirical process. With

this notation, our second main result (Theorem 2) shows that under our previous conditions
at the population level, the sample first-order EM iterates converge geometrically to a near-
optimal solution—namely, a point whose distance from θ∗ is at most a constant multiple of
εunif
Q . Figure 2 provides an illustration of the convergence guarantee provided by Theorem 2.

✓⇤

�unif
Q (n, �)

✓0

✓1

✓T�1

✓T

Fig 2. An illustration of Theorem 2. The theorem describes the geometric convergence of
iterates of the first-order EM algorithm to the ball of radius O(εunifQ (n, δ)).

Of course, this type of approximate convergence to θ∗ is only useful if the bound εunif
Q is

small enough—ideally, of the same or lower order than the statistical precision, as measured
by the Euclidean distance from the MLE to θ∗. Consequently, a large part of our technical
effort is devoted to establishing such bounds on the empirical process (2.11), making use
of several techniques such as symmetrization, contraction and concentration inequalities. All
of our finite-sample results are non-asymptotic, and allow for the problem dimension d to
scale with the sample-size n. Our finite-sample bounds are minimax-optimal up to logarithmic
factors, and in typical cases are only sensible for scalings of d and n for which d� n. This is
the best one can hope for without additional structural assumptions. We also note that after
the initial posting of this work, the paper of Wang et al. [48] utilized our population-level
analysis in the analysis of a truncated EM algorithm which under the structural assumption
of sparsity of the unknown true parameter achieves near minimax-optimal rates in the regime
when d� n.
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The empirical process in equation (2.11) is tailored for analyzing the batch version of sample
EM, in which the entire data set is used in each update. In other settings, it can also be useful
to consider sample-splitting EM variants, in which each iteration uses a fresh batch of samples.
The key benefit from a theoretical standpoint of the sample-splitting variant is that at the
price of logarithmic overhead in sample size, analysis of the sample-splitting variant requires
much weaker control on the empirical process: instead of controlling the supremum of the
empirical process in equation (2.11), we only require a point-wise bound for a sequence of T
iterates. Our third main result (Theorem 3) provides analogous guarantees on such a sample-
splitting form of the EM updates. Finally, in Appendix C, we analyze the most extreme form
of sample-splitting, in which each iterate is based on a single fresh sample, corresponding to
a form of stochastic EM. This form of extreme sample-splitting leads to an estimator that
can be computed in an online/streaming fashion on an extremely large data-set which is an
important consideration in modern statistical practice.

3. Population-level analysis of the first-order EM algorithm. This section is de-
voted to a detailed analysis of the first-order EM algorithm at the population level. Letting θ∗

denote a given global maximum of the population likelihood, our first main result (Theorem 1),
as discussed in Section 3.1, characterizes a Euclidean ball around θ∗ over which the population
update is contractive. Thus, for any initial point falling in this ball, we are guaranteed that the
first-order EM updates converge to θ∗. In Section 3.2, we derive some corollaries of this general
theorem for three specific statistical models: mixtures of Gaussians, mixtures of regressions,
and regression with missing data.

3.1. A general population-level guarantee. Recall that the population-level first-order EM al-
gorithm is based on the recursion θt+1 = θt + α∇Q(θ|θt)|θ=θt , where α > 0 is a step size
parameter to be chosen. The main contribution of this section is to specify a set of conditions,
defined on a Euclidean ball B2(r; θ∗) of radius r around this point, that ensure that any such
sequence, when initialized in this ball, converges geometrically θ∗.

Our first requirement is the gradient smoothness condition previously discussed in Sec-
tion 2.3. Formally, we require:

Condition 1. Gradient smoothness: For an appropriately small parameter γ ≥ 0 we
have that

‖∇q(θ)−∇Q(θ|θ)‖2 ≤ γ‖θ − θ∗‖2 for all θ ∈ B2(r; θ∗),(3.1)

As specified more clearly in the sequel, a key requirement in the above condition is that
the parameter γ, be sufficiently small. Our remaining two requirements apply to the oracle
auxiliary function q(θ) := Q(θ|θ∗), as previously introduced in Definition 3. We require the
following:

Condition 2. λ-strong concavity: There is some λ > 0 such that

q(θ1)− q(θ2)− 〈∇q(θ2), θ1 − θ2〉 ≤ −
λ

2
‖θ1 − θ2‖22 for all pairs θ1, θ2 ∈ B2(r; θ∗).(3.2)

Condition 3. µ-smoothness: There is some µ > 0 such that

q(θ1)− q(θ2)− 〈∇q(θ2), θ1 − θ2〉 ≥ −
µ

2
‖θ1 − θ2‖22 for all θ1, θ2 ∈ B2(r; θ∗).(3.3)
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As we illustrate, these conditions hold in many concrete instantiations of EM, including the
three model classes we study in the next section.

Before stating our first main result, let us provide some intuition as to why these conditions
ensure good behavior of the first-order EM iterates. As noted in Section 2.3, the point θ∗ max-
imizes the function q, so that in the unconstrained case, we are guaranteed that ∇q(θ∗) = 0.
Now suppose that the λ-strong concavity and γ-stability conditions hold for some γ < λ.
Under these conditions, it is easy to show (see Appendix A.4) that

〈∇Q(θt|θt), ∇q(θt)〉 > 0 for any θt ∈ B2(r; θ∗)\{θ∗}.(3.4)

This condition guarantees that for any θt 6= θ∗, the direction ∇Q(θt|θt) taken by the first-order
EM algorithm at iteration t always makes a positive angle with ∇q(θt), which is an ascent
direction for the function q. Given our perspective of q as a concave surrogate function for the
non-concave log-likelihood, we see condition (3.4) ensures that the first-order EM algorithm
makes progress towards θ∗. Our first main theorem makes this intuition precise, and in fact
guarantees a geometric rate of convergence towards θ∗.

Theorem 1. For some radius r > 0, and a triplet (γ, λ, µ) such that 0 ≤ γ < λ ≤ µ,
suppose that Conditions 1, 2 and 3 hold, and suppose that the stepsize is chosen as α = 2

µ+λ .
Then given any initialization θ0 ∈ B2(r; θ∗), the population first-order EM iterates satisfy the
bound

‖θt − θ∗‖2 ≤
(

1− 2λ− γ
µ+ λ

)t
‖θ0 − θ∗‖2 for all t = 1, 2, . . ..(3.5)

Since
(
1 − 2λ−γ

µ+λ

)
< 1, the bound (3.5) ensures that at the population level, the first-order

EM iterates converge geometrically to θ∗.
Although its proof (see Section 6.1) is relatively straightforward, applying Theorem 1 to

concrete examples requires some technical work in order to certify that Conditions 1 through
3 hold over the ball B2(r; θ∗) for a reasonably large choice of the radius r. In the examples
considered in this paper, the strong concavity and smoothness conditions are usually relatively
straightforward, whereas establishing gradient stability (Condition 1) is more challenging.
Intuitively, the gradient stability condition is a smoothness condition on the Q-function with
respect to its second argument. Establishing that the gradient condition holds over (nearly)
optimally-sized regions involves carefully leveraging properties of the generative model as well
as smoothness properties of the log-likelihood function.

3.2. Population-level consequences for specific models. In this section, we derive some con-
crete consequences of Theorem 1 in application to three classes of statistical models for which
the EM algorithm is frequently applied: Gaussian mixture models in Section 3.2.1, mixtures
of regressions in Section 3.2.2, and regression with missing covariates in Section 3.2.3. We
refer the reader to Appendix A for derivations of the exact form of the EM and first-order
EM updates for these three models, thereby leaving this section to focus on the consequences
on the theory.

3.2.1. Gaussian mixture models. Consider the two-component Gaussian mixture model
with balanced weights and isotropic covariances. It can be specified by a density of the form

fθ(y) =
1

2
φ(y; θ∗, σ2Id) +

1

2
φ(y;−θ∗, σ2Id),(3.6)
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where φ(· ;µ,Σ) denotes the density of a N (µ,Σ) random vector in Rd, and we have assumed
that the two components are equally weighted. Suppose that the variance σ2 is known, so
that our goal is to estimate the unknown mean vector θ∗. In this example, the hidden variable
Z ∈ {0, 1} is an indicator variable for the underlying mixture component—that is

(Y | Z = 0) ∼ N (−θ∗, σ2Id), and (Y | Z = 1) ∼ N (θ∗, σ2Id).

The difficulty of estimating such a mixture model can be characterized by the signal-to-noise
ratio ‖θ

∗‖2
σ , and our analysis requires the SNR to be lower bounded as

‖θ∗‖2
σ

> η,(3.7)

for a sufficiently large constant η > 0. Past work by Redner and Walker [39] provides em-
pirical evidence for the necessity of this assumption: for Gaussian mixtures with low SNR,
they show that the ML solution has large variance and furthermore verify empirically that the
convergence of the EM algorithm can be quite slow. Other researchers [28, 51] also provide
theoretical justification for the slow convergence of EM on poorly separated Gaussian mixtures.

With the signal-to-noise ratio lower bound η defined above, we have the following guarantee:

Corollary 1 (Population result for the first-order EM algorithm for Gaussian mixtures).
Consider a Gaussian mixture model for which the SNR condition (3.7) holds for a sufficiently
large η, and define the radius r = ‖θ∗‖2

4 . Then there is a contraction coefficient κ(η) ≤ e−cη2

where c is a universal constant such that for any initialization θ0 ∈ B2(r; θ∗), the population
first-order EM iterates with stepsize 1, satisfy the bound

‖θt − θ∗‖2 ≤ κt‖θ0 − θ∗‖2 for all t = 1, 2, . . ..(3.8)

Remarks. • The above corollary guarantees that when the SNR is sufficiently large, the
population-level first-order EM algorithm converges to θ∗ when initialized at any point
in a ball of radius ‖θ∗‖2/4 around θ∗. Of course, an identical statement is true for the
other global maximum at −θ∗. At the population-level the log-likelihood function is not
concave: it has two global maxima at θ∗ and −θ∗, along with a hyperplane of bad local
fixed-points, i.e. any point that is equi-distant from θ∗ and −θ∗ is a (bad) fixed-point of the
population EM algorithm. Observing that, for instance, the all-zeroes vectors is also a fixed
point of the (population) first-order EM algorithm—albeit a bad one— our corollary gives
a characterization of the basin of attraction that is optimal up to the factor of 1/4.

• In addition, the result shows that the first-order EM algorithm has two appealing properties:
(a) as the mean separation grows, the initialization can be further away θ∗ while retaining
the global convergence guarantee; and (b) as the SNR grows, the first-order EM algorithm
converges more rapidly. In particular, in a high SNR problem a few iterations of first-order
EM suffice to obtain a solution that is very close to θ∗. Both of these effects have been
observed empirically in the work of Redner and Walker [39], and we give further evidence
in our later simulations in Section 4. To the best of our knowledge, Corollary 1 provides the
first rigorous theoretical characterization of this behavior.

• The proof of Corollary 1 involves establishing that for a sufficiently large SNR, the Gaus-
sian mixture model satisfies the gradient stability, λ-strong concavity, and µ-smoothness
(Conditions 1 through 3). We provide the body of the proof in Section 6.3.1, with the more
technical details deferred to the supplementary material ([3], Appendix D).
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3.2.2. Mixtures of regressions. We now consider the mixture of regressions model, which
is a latent variable extension of the usual regression model. In the standard linear regression
model, we observe i.i.d. samples of the pair (Y,X) ∈ R× Rd linked via the equation

yi = 〈xi, θ∗〉+ vi,(3.9)

where vi ∼ N (0, σ2) is the observation noise assumed to be independent of xi, xi ∼ N (0, I)
are the design vectors and θ∗ ∈ Rd is the unknown regression vector to be estimated. In the
mixture of regressions problem, there are two underlying choices of regression vector—say
θ∗ and −θ∗—and we observe a pair (yi, xi) drawn from the model (3.9) with probability 1

2 ,
and otherwise generated according to the alternative regression model yi = 〈xi, −θ∗〉 + vi.
Here the hidden variables {zi}ni=1 correspond to labels of the underlying regression model: say
zi = 1 when the data is generated according to the model (3.9), and zi = 0 otherwise. Some
recent work [13, 14, 53] has analyzed different methods for estimating mixture of regressions.
The work [14] analyzes a convex relaxation approach while the work [13] analyzes an estimator
based on the method-of-moments. The work [53] focuses on the noiseless mixture of regressions
problem (where vi = 0), and provides analysis for an iterative algorithm in this context. In
the symmetric form we consider, the mixture of regressions problem is also closely related
to models for phase retrieval, albeit over Rd, as considered in another line of recent work
(e.g., [4, 10, 36]).

As in our analysis of the Gaussian mixture model, our theory applies when the signal-to-
noise ratio is sufficiently large, as enforced by a condition of the form

‖θ∗‖2
σ

> η,(3.10)

for a sufficiently large constant η > 0. Under a suitable lower bound on this quantity, our
first result guarantees that the first-order EM algorithm is locally convergent to the global
optimum θ∗ and provides a quantification of the local region of convergence:

Corollary 2 (Population result for the first-order EM algorithm for MOR). Consider
any mixture of regressions model satisfying the SNR condition (3.10) for a sufficiently large
constant η, and define the radius r := ‖θ∗‖2

32 . Then for any θ0 ∈ B2(r; θ∗), the population
first-order EM iterates with stepsize 1, satisfy the bound

‖θt − θ∗‖2 ≤
(

1

2

)t
‖θ0 − θ∗‖2 for t = 1, 2, . . ..(3.11)

Remarks. • As with the Gaussian mixture model, the population likelihood has global
maxima at θ∗ and −θ∗, and a local minimum at 0. Consequently, the largest Euclidean ball
over which the iterates could converge to θ∗ would have radius ‖θ∗‖2. Thus, we see that our
framework gives an order-optimal characterization of the region of convergence.4

• Our analysis shows that the rate of convergence is again a decreasing function of the SNR
parameter η. However, its functional form is not as explicit as in the Gaussian mixture
case, so to simplify the statement, we used the fact that it is upper bounded by 1/2. The
proof of Corollary 2 involves verifying that the function q for the MOR model satisfies the
required gradient stability, concavity, and smoothness properties (Conditions 1 through 3).
We provide the body of the argument in Section 6.3.2, with more technical aspects deferred
to the supplementary material ([3], Appendix E).

4Possibly the factor 1/32 could be sharpened with a more detailed analysis.
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3.2.3. Linear regression with missing covariates. Our first two examples involved mixture
models in which the class membership variable was hidden. Another canonical use of the EM
algorithm is in cases with corrupted or missing data. In this section, we consider a particular
instantiation of such a problem, namely that of linear regression with the covariates missing
completely at random.

In standard linear regression, we observe response-covariate pairs (yi, xi) ∈ R× Rd gener-
ated according to the linear model (3.9). In the missing data extension of this problem, instead
of observing the covariate vector xi ∈ Rd directly, we observe the corrupted version x̃i ∈ Rd
with components

x̃ij =

{
xij with probability 1− ρ
∗ with probability ρ,

(3.12)

where ρ ∈ [0, 1) is the probability of missingness.
For this model, the key parameter is the probability ρ ∈ [0, 1) that any given coordinate

of the covariate vector is missing, and our analysis links this quantity to the signal-to-noise
ratio and the radius of contractivity r, i.e. the radius of the region around θ∗ within which the
population EM algorithm is globally convergent. Define

ξ1 :=
‖θ∗‖2
σ

and ξ2 :=
r

σ
.(3.13a)

With this notation, our theory applies whenever the missing probability satisfies the bound

ρ <
1

1 + 2ξ(1 + ξ)
where ξ := (ξ1 + ξ2)2.(3.13b)

Corollary 3 (Population contractivity for missing covariates). Given any missing co-
variate regression model with missing probability ρ satisfying the bound (3.13b), the first-order
EM iterates with stepsize 1, satisfy the bound

‖θt − θ∗‖2 ≤ κt‖θ0 − θ∗‖2 for t = 1, 2 . . .,(3.14)

where κ ≡ κ(ξ, ρ) :=
(
ξ+ρ(1+2ξ(1+ξ))

1+ξ

)
.

Remarks. • When the inequality (3.13b) holds, it can be verified that κ(ξ, ρ) is strictly
less than 1, which guarantees that the iterates converge at a geometric rate.

• Relative to our previous results, this corollary is somewhat unusual, in that we require
an upper bound on the signal-to-noise ratio ‖θ

∗‖2
σ . Although this requirement might seem

counter-intuitive at first sight, known minimax lower bounds on regression with missing
covariates [26] show that it is unavoidable—that is, it is neither an artifact of our analysis nor
a deficiency of the first-order EM algorithm. Intuitively, such a bound is required because as
the norm ‖θ∗‖2 increases, unlike in the mixture models considered previously, the amount of
missing information increases in proportion to the amount of observed information. Figure 7
provides the results of simulations that confirm this behavior, in particular showing that for
regression with missing data, the radius of convergence eventually decreases as ‖θ∗‖2 grows.

• We provide the proof of this corollary in Section 6.3.3. Understanding the tightness of the
above result remains an open problem. In particular, unlike in the mixture model examples,
we do not know of a natural way to upper bound the radius of the region of convergence.
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In conclusion, we have derived consequences of our main population-level result (Theo-
rem 1) for three specific concrete models. In each of these examples, the auxiliary function
q is quadratic, so that verifying the strong concavity and smoothness examples is relatively
straightforward. In contrast, verifying the gradient stability (GS) bound in Condition 1 re-
quires substantially more effort. We believe that the GS condition is a canonical concept in
the understanding of EM-type iterations, as evidenced by its role in highlighting critical prob-
lem dependent quantities—such as signal-to-noise ratio and probability of missing-ness—that
determine the region of attraction for global maxima of the population likelihood.

4. Analysis of sample-based first-order EM updates. Up to this point, we have
analyzed the first-order EM updates at the population level (2.6), whereas in practice, the
algorithm is applied with a finite set of samples. Accordingly we now turn to theoretical
guarantees for the sample-based first-order EM updates (2.3). As discussed in Section 2.4, the
main challenge here is in controlling the empirical process defined by the difference between
the sample-based and population-level updates.

4.1. Standard form of sample-based first-order EM. Recalling the definition (2.1) of the
sample based Q-function, we are interested in the behavior of the recursion

θt+1 = θt + α∇Qn(θ|θt)|θ=θt ,(4.1)

where α > 0 is an appropriately chosen stepsize. As mentioned previously, we need to control
the deviations of the sample gradient ∇Qn from the population version ∇Q. Accordingly, for
a given sample size n and tolerance parameter δ ∈ (0, 1), we let εunif

Q (n, δ) be the smallest
scalar such that

sup
θ∈B2(r;θ∗)

‖∇Qn(θ|θ)−∇Q(θ|θ)‖2 ≤ εunif
Q (n, δ)(4.2)

with probability at least 1− δ.
Our first main result on the performance of the sample-based first-order EM algorithm

depends on the same assumptions as Theorem 1: namely, that there exists a radius r > 0 and
a triplet (γ, λ, µ) with 0 ≤ γ < λ ≤ µ such that the gradient stability, strong-concavity and
smoothness conditions hold (Conditions 1 through 3), and that we implement the algorithm
with stepsize α = 2

µ+λ .

Theorem 2. Suppose that, in addition to the conditions of Theorem 1, the sample size n
is large enough to ensure that

εunif
Q (n, δ) ≤ (λ− γ) r,(4.3)

Then with probability at least 1 − δ, given any initial vector θ0 ∈ B2(r; θ∗), the finite-sample
first-order EM iterates {θt}∞t=0 satisfy the bound

‖θt − θ∗‖2 ≤
(

1− 2λ− 2γ

µ+ λ

)t
‖θ0 − θ∗‖2 +

εunif
Q (n, δ)

λ− γ
for all t = 1, 2, . . ..(4.4)

Remarks. • This result leverages the population-level result in Theorem 1. It is particu-
larly crucial that we have linear convergence at the population level, since this ensures that
errors made at each iteration, which are bounded by εunif

Q (n, δ) with probability at least
1− δ, do not accumulate too fast. The bound in equation (4.3) ensures that the iterates of
the finite-sample first-order EM algorithm remain in B2(r; θ∗) with the same probability.
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• Note that the bound (4.4) involves two terms, the first of which decreases geometrically in
the iteration number t, whereas the second is independent of t. Thus, we are guaranteed
that the iterates converge geometrically to a ball of radius O(εunif

Q (n, δ). See Figure 3 for an
illustration of this guarantee. In typical examples, we show that εunif

Q (n, δ) is on the order of
the minimax rate for estimating θ∗. For the d-dimensional parametric problems considered
in this paper, the minimax rate typically scales as O(

√
d/n). In these cases, Theorem 2

guarantees that the first-order EM algorithm, when initialized in B2(r; θ∗), converges rapidly
to a point that is within the minimax distance of the unknown true parameter.

• For a fixed sample size n, the bound (4.4) suggests a reasonable choice of the number of
iterations. In particular, letting κ = 1− 2λ−2γ

µ+λ , consider any positive integer T such that

T ≥ log1/κ

(1− κ)(µ+ λ) ‖θ0 − θ∗‖2
2εunif
Q (n, δ)

.(4.5)

As will be clarified in the sequel, such a choice of T exists in various concrete models
considered here. This choice ensures that the first term in the bound (4.4) is dominated by
the second term, and hence that

‖θT − θ∗‖2 ≤
(
µ+ λ

λ− γ

)
εunif
Q (n, δ) with probability at least 1− δ.(4.6)
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Fig 3. An illustration of Theorems 2 and 3. The first part of the theorem describes the geometric
convergence of iterates of the EM algorithm to the ball of radius O(εunifQ (n, δ)) (in black). The
second part describes the geometric convergence of the sample-splitting EM algorithm to the
ball of radius O(εQ(n/T, δ/T )) (in red). In typical examples the ball to which sample-splitting
EM converges is only a logarithmic factor larger than the ball O(εQ(n, δ)) (in blue).

4.2. Sample-splitting in first-order EM . In this section, we consider the finite-sample per-
formance of a variant of the first-order EM algorithm that uses a fresh batch of samples for
each iteration. Although we introduce the sample-splitting variant primarily for theoretical
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convenience, there are also some potential practical advantages, such as computational sav-
ings from having a smaller data set per update. A disadvantage is that it can be difficult
to correctly specify the number of iterations in advance, and the first-order EM algorithm
that uses sample-splitting is likely to be less efficient from a statistical standpoint. Indeed, in
our theory, the statistical guarantees are typically weaker by a logarithmic factor in the total
sample size n.

Formally, given a total of n samples and T iterations, suppose that we divide the full data
set into T subsets of size bn/T c, and then perform the updates

θt+1 = θt + α∇Qbn/T c(θ|θt)|θ=θt ,(4.7)

where ∇Qbn/T c denotes the Q-function computed using a fresh subset of bn/T c samples at
each iteration. For a given sample size n and tolerance parameter δ ∈ (0, 1), we let εQ(n, δ)
be the smallest scalar such that, for any fixed θ ∈ B2(r; θ∗),

P
[
‖∇Qn(θ|θt)|θ=θt −∇Q(θ|θt)|θ=θt‖2 > εQ(n, δ)

]
≤ 1− δ.(4.8)

The quantity εQ provides a bound that needs only to hold pointwise for each θ ∈ B2(r; θ∗), as
opposed to the quantity εunif

Q for which the bound (4.2) must hold uniformly over all θ. Due
to this difference, establishing bounds on εQ(n, δ) can be significantly easier than bounding
εunif
Q (n, δ).
Our theory for the iterations (4.7) applies under the same conditions as Theorem 1: namely,

for some radius r > 0, and a triplet (γ, λ, µ) such that 0 ≤ γ < λ ≤ µ, the gradient stability,
concavity and smoothness properties (Conditions 1 through 3) hold, and the stepsize is chosen
as α = 2

µ+λ .

Theorem 3. Suppose that, in addition to the conditions of Theorem 1, the sample size n
is large enough to ensure that

εQ

(
n

T
,
δ

T

)
≤ (λ− γ) r,(4.9a)

Then with probability at least 1− δ, given any initial vector θ0 ∈ B2(r; θ∗), the sample-splitting
first-order EM iterates satisfy the bound

‖θt − θ∗‖2 ≤
(

1− 2λ− 2γ

µ+ λ

)t
‖θ0 − θ∗‖2 +

εQ
(
n/T, δ/T

)

λ− γ
.(4.9b)

See Appendix B.2 for the proof of this result. It has similar flavor to the guarantee of
Theorem 2, but requires a number of iterations T to be specified beforehand. The optimal
choice of T balances the two terms in the bound. As will be clearer in the sequel, in typical
cases the optimal choice of T will depend logarithmically in εQ. Each iteration uses roughly
n/ log n samples, and the iterates converge to a ball of correspondingly larger radius.

4.3. Finite-sample consequences for specific models. We now state some consequences of
Theorems 2 and 3 for the three models previously considered at the population-level in Sec-
tion 3.2.

15



4.3.1. Mixture of Gaussians. We begin by analyzing the sample-based first-order EM up-
dates (4.1) for the Gaussian mixture model, as previously introduced in Section 3.2.1, where
we showed in Corollary 1 that the population iterates converge geometrically given a lower
bound on the signal-to-noise ratio ‖θ

∗‖2
σ . In this section, we provide an analogous guarantee

for the sample-based updates, again with a stepsize α = 1. See Appendix A for derivation of
the specific form of the first-order EM updates for this model.

Our guarantee involves the function ϕ(σ; ‖θ∗‖2) := ‖θ∗‖2
(
1 +

‖θ∗‖22
σ2

)
, as well as positive

universal constants (c, c1, c2).

Corollary 4 (Sample-based first-order EM guarantees for Gaussian mixture). In ad-
dition to the conditions of Corollary 1, suppose that the sample size is lower bounded as
n ≥ c1d log(1/δ). Then given any initialization θ0 ∈ B2(‖θ

∗‖2
4 ; θ∗), there is a contraction

coefficient κ(η) ≤ e−cη2 such that the first-order EM iterates {θt}∞t=0 satisfy the bound

‖θt − θ∗‖2 ≤ κt‖θ0 − θ∗‖2 +
c2

1− κ
ϕ(σ; ‖θ∗‖2)

√
d

n
log(1/δ)(4.10)

with probability at least 1− δ.

Remarks. • We provide the proof of this result in Section 6.4.1, with some of the more
technical aspects deferred to the supplement ([3], Appendix D). In the supplement [3],
Corollary 8, we also give guarantees for the EM updates with sample-splitting, as described
in equation (4.7) for the first-order EM algorithm. These results have better dependence on
‖θ∗‖2 and σ, but the sample size requirement is greater by a logarithmic factor.

• It is worth comparing with a related result of Dasgupta and Schulman [16] on estimat-
ing Gaussian mixture models. They show that when the SNR is sufficiently high—scaling
roughly as d1/4—then a modified EM algorithm, with an intermediate pruning step, reaches
a near-optimal solution in two iterations. On one hand, the SNR condition in our corollary
is significantly weaker, requiring only that it is larger than a fixed constant independent of
dimension (as opposed to scaling with d), but their theory is developed for more general
k-mixtures.

• The bound (4.10) provides a rough guide of how many iterations are required in order to
achieve an estimation error of order

√
d/n, corresponding to the minimax rate. In particular,

consider the smallest positive integer such that

T ≥ log1/κ

(‖θ0 − θ∗‖2(1− κ)

ϕ(σ; ‖θ∗‖2)

√
n

d

1

log(1/δ)

)
.(4.11a)

With this choice, we are guaranteed that the iterate θT satisfies the bound

‖θT − θ∗‖2 ≤
(1 + c2)ϕ(σ; ‖θ∗‖2)

1− κ

√
d

n
log(1/δ)(4.11b)

with probability at least 1 − δ. To be fair, the iteration choice (4.11a) is not computable
based only on data, since it depends on unknown quantities such as θ∗ and the contraction
coefficient κ. However, as a rough guideline, it shows that the number of iterations to be
performed should grow logarithmically in the ratio n/d.

• Corollary 4 makes a number of qualitative predictions that can be tested. To begin, it
predicts that the statistical error ‖θt − θ∗‖2 should decrease geometrically, and then level
off at a plateau. Figure 5 shows the results of simulations designed to test this prediction:
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Fig 4. Plots of the iteration number versus log optimization error log(‖θt − θ̂‖2) and log
statistical error log(‖θt−θ∗‖2). (a) Results for the EM algorithm6. (b) Results for the first-order
EM algorithm. Each plot shows 10 different problem instances with dimension d = 10, sample
size n = 1000 and signal-to-noise ratio ‖θ

∗‖2
σ = 2. The optimization error decays geometrically

up to numerical precision, whereas the statistical error decays geometrically before leveling off.

for dimension d = 10 and sample size n = 1000, we performed 10 trials with the standard
EM updates applied to Gaussian mixture models with SNR ‖θ∗‖2

σ = 2. In panel (a), the red
curves plot the log statistical error versus the iteration number, whereas the blue curves
show the log optimization error versus iteration. As can be seen by the red curves, the
statistical error decreases geometrically before leveling off at a plateau. On the other hand,
the optimization error decreases geometrically to numerical tolerance. Panel (b) shows that
the first-order EM updates have a qualitatively similar behavior for this model, although
the overall convergence rate appears to be slower.

• In conjunction with Corollary 1, Corollary 4 also predicts that the convergence rate should
increase as the signal-to-noise ratio ‖θ

∗‖2
σ is increased. Figure 5 shows the results of simula-

tions designed to test this prediction: again, for mixture models with dimension d = 10 and
sample size n = 1000, we applied the standard EM updates to Gaussian mixture models
with varying SNR ‖θ∗‖2

σ . For each choice of SNR, we performed 10 trials, and plotted the log
optimization error log ‖θt − θ̂‖2 versus the iteration number. As expected, the convergence
rate is geometric (linear on this logarithmic scale), and the rate of convergence increases as
the SNR grows7.

4.3.2. Mixture of regressions. Recall the mixture of regressions (MOR) model previously
introduced in Section 3.2.2. In this section, we analyze the sample-splitting first-order EM up-
dates (4.7) for the MOR model. See Appendix A for a derivation of the specific form of the
updates for this model. Our result involves the quantity ϕ(σ; ‖θ∗‖2) =

√
σ2 + ‖θ∗‖22, along

with positive universal constants (c1,c2).
6In this and subsequent figures we show simulations for the standard (i.e. not sample-splitting) versions of

the EM and first-order EM algorithms.
7To be clear, Corollary 4 predicts geometric convergence of the statistical error ‖θt − θ∗‖2, whereas these

plots show the optimization error ‖θt − θ̂‖2. However, the analysis underlying Corollary 4 can also be used to
show geometric convergence of the optimization error.

9The fixed point θ̂ is determined by running the algorithm to convergence up to machine precision.
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Fig 5. Plot of the iteration number versus the (log) optimization error log(‖θt − θ̂‖2)9 for
different values of the SNR ‖θ∗‖2

σ . For each SNR, we performed 10 independent trials of a
Gaussian mixture model with dimension d = 10 and sample size n = 1000. Larger values of
SNR lead to faster convergence rates, consistent with Corollaries 4 and 7.

Corollary 5 (Sample-splitting first-order EM guarantees for MOR). In addition to the
conditions of Corollary 2, suppose that the sample size is lower bounded as n ≥ c1d log(T/δ).
Then there is a contraction coefficient κ ≤ 1/2 such that, for any initial vector θ0 ∈ B2(‖θ

∗‖2
32 ; θ∗),

the sample-splitting first-order EM iterates (4.7) with stepsize 1, based on n/T samples per step
satisfy the bound

‖θt − θ∗‖2 ≤ κt‖θ0 − θ∗‖2 + c2ϕ(σ; ‖θ∗‖2)

√
d

n
T log(T/δ)(4.12)

with probability at least 1− δ.

Remarks. • See Section 6.4.3 for the proof of this claim. As with Corollary 4, the
bound (4.12) again provides guidance on the number of iterations to perform: in partic-
ular, for a given sample size n, suppose we perform T = dlog(n/dϕ2(σ; ‖θ∗‖2))e iterations.
The bound (4.12) then implies that

‖θT − θ∗‖2 ≤ c3ϕ(σ; ‖θ∗‖2)

√
d

n
log2

( n

dϕ2(σ; ‖θ∗‖2)

)
log(1/δ)(4.13)

with probability at least 1 − δ. Apart from the logarithmic penalty log2
(

n
dϕ2(σ;‖θ∗‖2)

)
, this

guarantee matches the minimax rate for estimation of a d-dimensional regression vector. We
note that the logarithmic penalty can be removed by instead analyzing the standard form
of the first-order EM updates, as we did for the Gaussian mixture model.

• As with Corollary 4, this corollary predicts that the statistical error ‖θt−θ∗‖2 should decrease
geometrically, and then level off at a plateau. Figure 6 shows the results of simulations
designed to test this prediction: see the caption for the details.

18



5 10 15

−10

−8

−6

−4

−2

0

Iteration #

L
o
g
e
rr
o
r

EM, Mixture of Regressions

 

 

Opt. error
Stat. error

5 10 15

−8

−6

−4

−2

0

Iteration #

L
o
g
e
rr
o
r

Gradient EM, Mixture of Regressions

 

 

Opt. error
Stat. error

Fig 6. Plots of the iteration number versus log optimization error log(‖θt − θ̂‖2) and log
statistical error log(‖θt − θ∗‖2) for mixture of regressions. (a) Results for the EM algorithm.
(b) Results for the first-order EM algorithm. Each plot shows 10 independent trials with d = 10,
sample size n = 1000, and signal-to-noise ratio ‖θ

∗‖2
σ = 2. In both plots, the optimization error

decays geometrically while the statistical error decays geometrically before leveling off.

4.3.3. Linear regression with missing covariates. Recall the problem of linear regression
with missing covariates, as previously described in Section 3.2.3. In this section, we analyze
the sample-splitting version (4.7) version of the first-order EM updates. See Appendix A for
the derivation of the concrete form of these updates for this specific model.

Corollary 6 (Sample-splitting first-order EM guarantees for missing covariates). In
addition to the conditions of Corollary 3, suppose that the sample size is lower bounded as
n ≥ c1d log(1/δ). Then there is a contraction coefficient κ < 1 such that, for any initial vector
θ0 ∈ B2(ξ2σ; θ∗), the sample-splitting first-order EM iterates (4.7) with stepsize 1, based on
n/T samples per iteration satisfy the bound

‖θt − θ∗‖2 ≤ κt‖θ0 − θ∗‖2 +
c2

√
1 + σ2

1− κ

√
d

n
T log(T/δ)(4.14)

with probability at least 1− δ.

We prove this corollary in the supplementary material ([3], Appendix 6.4.3). We note that the
constant c2 is a monotonic function of the parameters (ξ1, ξ2), but does not otherwise depend
on n, d, σ2 or other problem-dependent parameters.

Remark. As with Corollary 9, this result provides guidance on the appropriate number
of iterations to perform: in particular, if we set T = c log n for a sufficiently large constant c,
then the bound (4.14) implies that

‖θT − θ∗‖2 ≤ c′
√

1 + σ2

√
d

n
log2(n/δ)

with probability at least 1 − δ. Modulo the logarithmic penalty in n, incurred due to the
sample-splitting, this estimate achieves the optimal

√
d
n scaling of the `2-error.
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Fig 7. Simulations of the radius of convergence for problems of dimension d = 10, sample
size n = 1000, and variance σ2 = 1. Radius of convergence is defined as the maximum value of
‖θ0−θ∗‖2 for which initialization at θ0 leads to convergence to an optimum near θ∗. Consistent
with the theory, for both the Gaussian mixture and mixture of regression models, the radius
of convergence grows with ‖θ∗‖2. In contrast, in the missing data case (here with ρ = 0.2), in-
creasing ‖θ∗‖2 can cause the EM algorithm to converge to bad local optima, which is consistent
with the prediction of Corollary 3.

5. Extension of results to the EM algorithm. In this section, we develop unified
population and finite-sample results for the EM algorithm. Particularly, at the population-
level we show in Theorem 4 that a closely related condition to the GS condition can be used
to give a bound on the region and rate of convergence of the EM algorithm. Our next main
result shows how to leverage this population-level result along with control on an appropriate
empirical process in order to provide non-asymptotic finite-sample guarantees.

5.1. Analysis of the EM algorithm at the population level. We assume throughout this
section that the function q is λ-strongly concave (but not necessarily smooth). For any fixed
θ, in order to relate the population EM updates to the fixed point θ∗, we require control on
the two gradient mappings ∇q(·) = ∇Q(·|θ∗) and ∇Q(·|θ). These mappings are central in
characterizing the fixed point θ∗ and the EM update. In order to compactly represent the EM
update, we define the operator M : Ω→ Ω,

M(θ) = arg max
θ′∈Ω

Q(θ′|θ).(5.1)

Using this notation, the EM algorithm given some initialization θ0, produces a sequence of
iterates {θt}∞t=0, where θt+1 = M(θt).

By virtue of the self-consistency property (2.7) and the convexity of Ω, the fixed point
satisfies the first-order optimality condition

〈∇Q(θ∗|θ∗), θ′ − θ∗〉 ≤ 0 for all θ′ ∈ Ω.(5.2)

Similarly, for any θ ∈ Ω, since M(θ) maximizes the function θ′ 7→ Q(θ′|θ) over Ω, we have

〈∇Q(M(θ)|θ), θ′ − θ〉 ≤ 0 for all θ′ ∈ Ω.(5.3)

We note that for unconstrained problems, the terms ∇Q(θ∗|θ∗) and ∇Q(M(θ)|θ) will be equal
to zero, but we retain the forms of equations 5.2 and 5.3 to make the analogy with the GS
condition clearer.

Equations (5.2) and (5.3) are sets of inequalities that characterize the points M(θ) and θ∗.
Thus, at an intuitive level, in order to establish that θt+1 and θ∗ are close, it suffices to verify
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Fig 8. Plots of the iteration number versus log optimization error log(‖θt − θ̂‖2) and log
statistical error log(‖θt − θ∗‖2) for regression with missing covariates. (a) Results for the EM
algorithm. (b) Results for the first-order EM algorithm. Each plot shows 10 different problem
instances of dimension d = 10, sample size n = 1000, signal-to-noise ratio ‖θ

∗‖2
σ = 2, and

missing probability ρ = 0.2. In both plots, the optimization error decays geometrically while
the statistical error decays geometrically before leveling off.

that these two characterizations are close in a suitable sense. We also note that inequalities
similar to the condition (5.3) are often used as a starting point in the classical analysis of
M-estimators (e.g., see van de Geer [44]). In the analysis of EM, we obtain additional leverage
from the self-consistency condition (2.7) that characterizes θ∗.

With this intuition in mind, we introduce the following regularity condition in order to
relate conditions (5.3) and (2.7): The condition involves a Euclidean ball of radius r around
the fixed point θ∗, given by

B2(r; θ∗) :=
{
θ ∈ Ω | ‖θ − θ∗‖2 ≤ r

}
.(5.4)

Definition 4 (First-order Stability (FOS)). The functions {Q(·|θ), θ ∈ Ω} satisfy condi-
tion FOS (γ) over B2(r; θ∗) if

‖∇Q(M(θ)|θ∗)−∇Q(M(θ)|θ)‖2 ≤ γ‖θ − θ∗‖2 for all θ ∈ B2(r; θ∗).(5.5)

To provide some high-level intuition, observe the condition (5.5) is always satisfied at the
fixed point θ∗, in particular with parameter γ = 0. Intuitively then, by allowing for a strictly
positive parameter γ, one might expect that this condition would hold in a local neighborhood
B2(r; θ∗) of the fixed point θ∗, as long as the functions Q(·|θ) and the map M are sufficiently
regular. As before with the GS condition, we show in the sequel that every point around θ∗

for which the FOS condition holds (with an appropriate γ) is in the region of attraction of
θ∗—i.e. the population EM update produces an iterate closer to θ∗ that the original point.
Formally, under the conditions we have introduced, the following result guarantees that the
population EM operator is locally contractive:

Theorem 4. For some radius r > 0 and pair (γ, λ) such that 0 ≤ γ < λ, suppose that the
function Q(·|θ∗) is λ-strongly concave (3.2), and that the FOS(γ) condition (5.5) holds on the
ball B2(r; θ∗). Then the population EM operator M is contractive over B2(r; θ∗), in particular
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with

‖M(θ)− θ∗‖2 ≤
γ

λ
‖θ − θ∗‖2 for all θ ∈ B2(r; θ∗).

The proof is a consequence of the KKT conditions from equations (5.2) and (5.3), along with
consequences of the strong convexity of Q(·|θ∗). We defer a detailed proof to Appendix B.1.

Remarks. As an immediate consequence, under the conditions of the theorem, for any
initial point θ0 ∈ B2(r; θ∗), the population EM sequence {θt}∞t=0 exhibits linear convergence—
viz.

‖θt − θ∗‖2 ≤
(γ
λ

)t
‖θ0 − θ∗‖2 for all t = 1, 2, . . ..(5.6)

5.2. Finite-sample analysis for the EM algorithm. We now turn to theoretical results on
the sample-based version of the EM algorithm. More specifically, we define the sample-based
operator Mn : Ω→ Ω,

Mn(θ) = arg max
θ′∈Ω

Qn(θ′|θ),(5.7)

where the sample-based Q-function was defined previously in equation (2.1). Analogous to the
situation with the first-order EM algorithm we also consider a sample-splitting version of the
EM algorithm, in which given a total of n samples and T iterations, we divide the full data
set into T subsets of size bn/T c, and then perform the updates θt+1 = Mn/T (θt), using a fresh
subset of samples at each iteration.

For a given sample size n and tolerance parameter δ ∈ (0, 1), we let εM (n, δ) be the smallest
scalar such that, for any fixed θ ∈ B2(r; θ∗), we have

‖Mn(θ)−M(θ)‖2 ≤ εM (n, δ)(5.8)

with probability at least 1−δ. This tolerance parameter (5.8) enters our analysis of the sample-
splitting form of EM. On the other hand, in order to analyze the standard sample-based form
of EM, we require a stronger condition, namely one in which the bound (5.8) holds uniformly
over the ball B2(r; θ∗). Accordingly, we let εunif

M (n, δ) be the smallest scalar for which

sup
θ∈B2(r;θ∗)

‖Mn(θ)−M(θ)‖2 ≤ εunif
M (n, δ)(5.9)

with probability at least 1− δ. With these definitions, we have the following guarantees:

Theorem 5. Suppose that the population EM operator M : Ω → Ω is contractive with
parameter κ ∈ (0, 1) on the ball B2(r; θ∗), and the initial vector θ0 belongs to B2(r; θ∗).

(a) If the sample size n is large enough to ensure that

εunif
M (n, δ) ≤ (1− κ)r,(5.10a)

then the EM iterates {θt}∞t=0 satisfy the bound

‖θt − θ∗‖2 ≤ κt‖θ0 − θ∗‖2 +
1

1− κ
εunif
M (n, δ)(5.10b)

with probability at least 1− δ.
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(b) For a given iteration number T , suppose the sample size n is large enough to ensure that

εM

(n
T
,
δ

T

)
≤ (1− κ)r.(5.11a)

Then the sample-splitting EM iterates {θt}Tt=0 based on n
T samples per round satisfy the

bound

‖θt − θ∗‖2 ≤ κt‖θ0 − θ∗‖2 +
1

1− κ
εM

(n
T
,
δ

T

)
.(5.11b)

Remarks. In order to obtain readily interpretable bounds for specific models, it only
remains to establish the κ-contractivity of the population operator, and to compute either the
function εM or the function εunif

M . In the supplementary material, we revisit each of the three
examples considered in this paper, and provide population and finite-sample guarantees for
the EM algorithm.

6. Proofs. In this section, we provide proofs of our previously stated results, beginning
with Theorems 1 and 2, followed by the proofs of Corollaries 1 through 3.

6.1. Proof of Theorem 1. This proof relies on a classical result that ensures linear con-
vergence of gradient ascent when applied to a smooth and strongly concave function (see
e.g., [7, 8, 35]).

Lemma 1. For a function q with the λ-concavity and µ-smoothness properties (Condi-
tions 2 and 3), the oracle iterates (2.9) with stepsize α = 2

µ+λ are linearly convergent:

‖θt + α∇q(θ)|θ=θt − θ∗‖2 ≤
(
µ− λ
µ+ λ

)
‖θt − θ∗‖2.(6.1)

Taking this result as given, we can now prove the theorem. By definition of the first-order
EM update (2.6), we have

‖θt + α∇Q(θ|θt)|θ=θt − θ∗‖2 = ‖θ + α∇q(θ)|θ=θt − α∇q(θ)|θ=θt + α∇Q(θ|θt)|θ=θt − θ∗‖2
(i)

≤ ‖θ + α∇q(θ)|θ=θt − θ∗‖2 + α‖∇q(θ)|θ=θt + α∇Q(θ|θt)|θ=θt‖2
(ii)

≤
(µ− λ
µ+ λ

)
‖θ − θ∗‖2 + αγ‖θ − θ∗‖2.

where step (i) follows from the triangle inequality, and step (ii) uses Lemma 1 and condition GS.
Substituting α = 2

µ+λ and performing some algebra yields the claim.

6.2. Proof of Theorem 2. For any θs ∈ B2(r; θ∗), we have that

‖∇Qn(θ|θs)|θ=θs −∇Q(θ|θs)|θ=θs‖2 ≤ εQ(n, δ),(6.2)

with probability at least 1− δ. We perform the remainder of our analysis under this event.
Defining κ =

(
1− 2λ−2γ

λ+µ

)
, it suffices to show that

‖θs+1 − θ∗‖2 ≤ κ‖θs − θ∗‖2 + αεQ(n, δ), for each iteration s ∈ {0, 1, 2, . . .}.(6.3)
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Indeed, when this bound holds, we may iterate it to show that

‖θt − θ∗‖2 ≤ κ‖θt−1 − θ∗‖2 + αεQ(n, δ)

≤ κ
{
κ‖θt−2 − θ∗‖2 + αεQ(n, δ)

}
+ αεQ(n, δ)

≤ κt‖θ0 − θ∗‖2 +
{ t−1∑

s=0

κs
}
αεQ(n, δ)

≤ κt‖θ0 − θ∗‖2 +
α

1− κ
εQ(n, δ),

where the final step follows by summing the geometric series.
It remains to prove the claim (6.3), and we do so via induction on the iteration number.

Beginning with s = 0, we have

‖θ1 − θ∗‖2 = ‖θ0 + α∇Qn(θ|θ0)|θ=θ0 − θ∗‖2
(i)

≤ ‖θ0 + α∇Q(θ|θ0)|θ=θ0 − θ∗‖2+

α‖∇Q(θ|θ0)|θ=θ0 −∇Qn(θ|θ0)|θ=θ0‖
(ii)

≤ κ‖θ0 − θ∗‖2 + αεQ(n, δ),

where step (i) follows by triangle inequality, whereas step (ii) follows from the bound (6.2),
and the contractivity of the population operator applied to θ0 ∈ B2(r; θ∗), i.e. Theorem 1. By
our initialization condition and the assumed bound (4.3), note that we are guaranteed that
‖θ1 − θ∗‖2 ≤ r.

In the induction from s 7→ s + 1, suppose that ‖θs − θ∗‖2 ≤ r, and the bound (6.3) holds
at iteration s. The same argument then implies that the bound (6.3) also holds for iteration
s+ 1, and that ‖θs+1 − θ∗‖2 ≤ r, thus completing the proof.

6.3. Proofs of population-based corollaries for first-order EM . In this section, we prove
Corollaries 1 through 3 on the behavior of first-order EM at the population level for concrete
models.

6.3.1. Proof of Corollary 1. In order to apply Theorem 1, we need to verify the λ-concavity (3.2)
and µ-smoothness (3.3) conditions, and the GS(γ) condition (3.1) over the ball B2(r; θ∗). The
first-order EM update is given in Appendix A. In this example, the q-function takes the form

q(θ) = Q(θ|θ∗) = −1

2
E
[
wθ∗(Y )‖Y − θ‖22 + (1− wθ∗(Y ))‖Y + θ‖22

]
,

where the weighting function is given by

wθ(y) :=
exp

(
− ‖θ−y‖

2
2

2σ2

)

exp
(
− ‖θ−y‖

2
2

2σ2

)
+ exp

(
− ‖θ+y‖

2
2

2σ2

) .

The q-function is smooth and strongly-concave with parameters 1.
It remains to verify the GS(γ) condition (3.1). The main technical effort, deferred to the

appendices, is in showing the following central lemma:

Lemma 2. Under the conditions of Corollary 1, there is a constant γ ∈ (0, 1) with γ ≤ exp(−c2η
2)

such that

‖E
[
2∆w(Y )Y

]
‖2 ≤ γ ‖θ − θ∗‖2,(6.4)

where ∆w(y) := wθ(y)− wθ∗(y).
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The proof of this result crucially exploits the generative model, as well as the smoothness of
the weighting function, in order to establish that the GS condition holds over a relatively large
region around the population global optima (θ∗ and −θ∗). Intuitively, the generative model
allows us to argue that with large probability the weighting function wθ(y) and the weighting
function wθ∗(y) are quite close, even when θ and θ∗ are relatively far, so that in expectation
the GS condition is satisfied.

Taking this result as given for the moment, let us now verify the GS condition (3.1). An
inspection of the updates in equation (A.3), along with the claimed smoothness and strong-
concavity parameters lead to the conclusion that it suffices to show that

‖E
[
2∆w(Y )Y

]
‖2 < ‖θ − θ∗‖2.

This follows immediately from Lemma 2. Thus, the GS condition holds when γ < 1. The
bound on the contraction parameter follows from the fact that γ ≤ exp(−c2η

2) and applying
Theorem 1 yields Corollary 1.

6.3.2. Proof of Corollary 2. Once again we need to verify the λ-concavity (3.2) and µ-
smoothness (3.3) conditions, and the GS(γ) condition (3.1) over the ball B2(r; θ∗). In this
example, the q-function takes the form:

q(θ) = Q(θ|θ∗) := −1

2
E
[
wθ∗(X,Y )(Y − 〈X, θ〉)2 + (1− wθ∗(X,Y ))(Y + 〈X, θ〉)2

]
,

where wθ(x, y) :=
exp
(
−(y−〈x, θ〉)2

2σ2

)

exp
(
−(y−〈x, θ〉)2

2σ2

)
+exp

(
−(y+〈x, θ〉)2

2σ2

) . Observe that function Q(·|θ∗) is λ-strongly

concave and µ-smooth with λ and µ equal to the smallest and largest (respectively) eigenvalue
of the matrix E[XXT ]. Since E[XXT ] = I by assumption, we see that strong concavity and
smoothness hold with λ = µ = 1.

It remains to verify condition GS. Define the difference function ∆w(X,Y ) := wθ(X,Y ) −
wθ∗(X,Y ), and the difference vector ∆ = θ − θ∗. Using the updates given in Appendix A in
equation (A.6a), we need to show that

‖2E
[
∆w(X,Y )Y X

]
‖2 < ‖∆‖2.

Fix any ∆̃ ∈ Rd. It suffices for us to show that,

〈2E
[
∆w(X,Y )Y X

]
, ∆̃〉 < ‖∆‖2‖∆̃‖2.

Note that we can write Y d
= (2Z − 1)〈X, θ∗〉+ v, where Z ∼ Ber(1/2) is a Bernoulli variable,

and v ∼ N (0, 1). Using this notation, it is equivalent to show

E
[
∆w(X,Y )(2Z − 1)〈X, θ∗〉〈X, ∆̃〉

]
+ E

[
∆w(X,Y )v〈X, ∆̃〉

]
≤ γ‖∆‖2 ‖∆̃‖2(6.5)

for γ ∈ [0, 1/2) in order to establish contractivity. In order to prove the theorem with the
desired upper bound on the coefficient of contraction we need to show (6.5) with γ ∈ [0, 1/4).
Once again, the main technical effort is in establishing the following lemma which provides
control on the two terms:

Lemma 3. Under the conditions of Corollary 2, there is a constant γ < 1/4 such that for
any fixed vector ∆̃ we have

∣∣E
[
∆w(X,Y )(2Z − 1)〈X, θ∗〉〈X, ∆̃〉

]∣∣ ≤ γ

2
‖∆‖2‖∆̃‖2, and(6.6a)

∣∣E
[
∆w(X,Y )v〈X, ∆̃〉

]∣∣ ≤ γ

2
‖∆‖2 ‖∆̃‖2.(6.6b)
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In conjunction, these bounds imply that 〈E
[
∆w(X,Y )Y X

]
, ∆̃〉 ≤ γ‖∆‖2 ‖∆̃‖2 with γ ∈

[0, 1/4), as claimed.

6.3.3. Proof of Corollary 3. We need to verify the conditions of Theorem 1, namely that
the function q is µ-smooth, λ-strongly concave, and that the GS condition is satisfied. In this
case, q is a quadratic of the form

q(θ) =
1

2
〈θ, E

[
Σθ∗(Xobs, Y )

]
θ〉 − 〈E

[
Y µθ∗(Xobs, Y )

]
, θ〉,

where the vector µθ∗ ∈ Rd and matrix Σθ∗ are defined formally in the Appendix (see equa-
tions (A.7a) and (A.7c) respectively). Here the expectation is over both the patterns of miss-
ingness and the random (Xobs, Y ).

Smoothness and strong concavity:. Note that q is a quadratic function with Hessian ∇2q(θ) =
E
[
Σθ∗(Xobs, Y )

]
. Let us fix a pattern of missingness, and then average over (Xobs, Y ). Recalling

the matrix Uθ∗ from equation (A.7b), we find that yields

E
[
Σθ∗(Xobs, Y )

]
=


 I Uθ∗

[
I
θ∗Tobs

]

[
I θ∗obs

]
UTθ∗ I


 =

[
I 0
0 I

]
,

showing that the expectation does not depend on the pattern of missingness. Consequently, the
quadratic function q has an identity Hessian, showing that smoothness and strong concavity
hold with µ = λ = 1.

Condition GS :. We need to prove the existence of a scalar γ ∈ [0, 1) such that ‖E[V ]‖2 ≤ γ‖θ − θ∗‖2,
where the vector V = V (θ, θ∗) is given by

V := Σθ∗(Xobs, Y )θ − Y µθ∗(Xobs, Y )− Σθ(Xobs, Y )θ + Y µθ(Xobs, Y ).(6.7)

For a fixed pattern of missingness, we can compute the expectation over (Xobs, Y ) in closed
form. Supposing that the first block is missing, we have

EXobs,Y [V ] =

[
(θmis − θ∗mis) + π1θmis

π2(θobs − θ∗obs)

]
.(6.8)

where π1 :=
‖θ∗mis‖

2
2−‖θmis‖22+‖θobs−θ∗obs‖

2
2

‖θmis‖22+σ2 and π2 :=
‖θmis‖22
‖θmis‖22+σ2 . We claim that these scalars can

be bounded, independently of the missingness pattern, as

π1 ≤ 2(ξ1 + ξ2)
‖θ − θ∗‖2

σ
, and π2 ≤ δ :=

1

1 +
(

1
ξ1+ξ2

)2 < 1.(6.9)

Taking these bounds (6.9) as given for the moment, we can then average over the missing
pattern. Since each coordinate is missing independently with probability ρ, the expectation of
the ith coordinate is at most

∣∣E[V ]|i ≤
∣∣ρ|θi− θ∗i |+ ρπ1|θi|+ (1− ρ)π2|θi− θ∗i |

∣∣. Thus, defining
η := (1− ρ)δ + ρ < 1, we have

‖E[V ]‖22 ≤ η2‖θ − θ∗‖22 + ρ2π2
1‖θ‖22 + 2π1ηρ|〈θ, θ − θ∗〉|

≤
{
η2 + ρ2‖θ‖22

4 (ξ1 + ξ2)2

σ2
+

4ηρ‖θ‖2(ξ1 + ξ2)

σ

}

︸ ︷︷ ︸
γ2

‖θ − θ∗‖22,
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where we have used our upper bound (6.9) on π1. We need to ensure that γ < 1. By assumption,
we have ‖θ∗‖2 ≤ ξ1σ and ‖θ − θ∗‖2 ≤ ξ2σ, and hence ‖θ‖2 ≤ (ξ1 + ξ2)σ. Thus, the coefficient
γ2 is upper bounded as

γ2 ≤ η2 + 4ρ2 (ξ1 + ξ2)4 + 4ηρ(ξ1 + ξ2)2.

Under the stated conditions of the corollary, we have γ < 1, thereby completing the proof.

It remains to prove the bounds (6.9). By our assumptions, we have ‖θmis‖2 − ‖θ∗mis‖2 ≤
‖θmis − θ∗mis‖2, and moreover

‖θmis‖2 ≤ ‖θ∗mis‖2 + ξ2σ ≤ (ξ1 + ξ2)σ.(6.10)

As consequence, we have

‖θ∗mis‖22 − ‖θmis‖22 = (‖θmis‖2 − ‖θ∗mis‖2)(‖θmis‖2 + ‖θ∗mis‖2) ≤ (2ξ1 + ξ2)σ‖θmis − θ∗mis‖2

Since ‖θobs − θ∗obs‖22 ≤ ξ2σ‖θobs − θ∗obs‖2, the stated bound on π1 follows.
On the other hand, we have

π2 =
‖θmis‖22

‖θmis‖22 + σ2
=

1

1 + σ2

‖θmis‖22

(i)

≤ 1

1 +
(

1
ξ1+ξ2

)2
︸ ︷︷ ︸

δ

< 1,

where step (i) follows from (6.10).

6.4. Proofs of sample-based corollaries for first-order EM . This section is devoted to proofs
of Corollaries 4 through 6 on the behavior of the first-order EM algorithm in the finite sample
setting.

6.4.1. Proof of Corollary 4. In order to prove this result, it suffices to bound the quan-
tity εunif

Q (n, δ) defined in equation (4.2). Utilizing the updates defined in equation (A.3), and
defining the set A :=

{
θ ∈ Rd | ‖θ− θ∗‖2 ≤ ‖θ∗‖2/4

}
, we need to control the random variable

variable

Z := sup
θ∈A
‖α
{ 1

n

n∑

i=1

(2wθ(yi)− 1)yi − θ
}
− α

[
2E
[
wθ(Y )Y

]
− θ
]
‖2.

In order to establish the Corollary it suffices to show that for sufficiently large universal
constants c1, c2 we have that, for n ≥ c1d log(1/δ)

Z ≤ c2‖θ∗‖2(‖θ∗‖22 + σ2)

σ2

√
d log(1/δ)

n

with probability at least 1− δ.
For each unit-norm vector u ∈ Rd, define the random variable

Zu := sup
θ∈A

{ 1

n

n∑

i=1

(2wθ(yi)− 1)〈yi, u〉 − E(2wθ(Y )− 1)〈Y, u〉
}
.

Recalling that we choose α = 1, we note that Z = supu∈Sd Zu. We begin by reducing our
problem to a finite maximum over the sphere Sd. Let {u1, . . . , uM} denote a 1/2-covering of
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the sphere Sd = {v ∈ Rd | ‖v‖2 = 1}. For any v ∈ Sd, there is some index j ∈ [M ] such that
‖v − uj‖2 ≤ 1/2, and hence we can write

Zv ≤ Zuj + |Zv − Zuj | ≤ max
j∈[M ]

Zuj + Z ‖v − uj‖2,

where the final step uses the fact that |Zu − Zv| ≤ Z ‖u − v‖2 for any pair (u, v). Putting
together the pieces, we conclude that

Z = sup
v∈Sd

Zv ≤ 2 max
j∈[M ]

Zuj .(6.11)

Consequently, it suffices to bound the random variable Zu for a fixed u ∈ Sd. Letting {εi}ni=1

denote an i.i.d. sequence of Rademacher variables, for any λ > 0, we have

E
[
eλZu

]
≤ E

[
exp

( 2

n
sup
θ∈A

n∑

i=1

εi(2wθ(yi)− 1)〈yi, u〉
)]
,

using a standard symmetrization result for empirical processes (e.g., [23, 24]). Now observe
that for any triplet of d-vectors y, θ and θ′, we have the Lipschitz property

∣∣2wθ(y)− 2wθ′(y)
∣∣ ≤ 1

σ2

∣∣〈θ, y〉 − 〈θ′, y〉
∣∣.

Consequently, by the Ledoux-Talagrand contraction for Rademacher processes [23, 24], we
have

E
[

exp
( 2

n
sup
θ∈A

n∑

i=1

εi(2wθ(yi)− 1)〈yi, u〉
)]
≤ E

[
exp

( 4

nσ2
sup
θ∈A

n∑

i=1

εi〈θ, yi〉〈yi, u〉
)]

Since any θ ∈ A satisfies ‖θ‖2 ≤ 5
4‖θ
∗‖2, we have

sup
θ∈A

1

n

n∑

i=1

εi〈θ, yi〉〈yi, u〉 ≤
5

4
‖θ∗‖2|||

1

n

n∑

i=1

εiyiy
T
i |||op,

where ||| · |||op denotes the `2-operator norm of a matrix (maximum singular value). Repeating
the same discretization argument over {u1, . . . , uM}, we find that

||| 1
n

n∑

i=1

εiyiy
T
i |||op ≤ 2 max

j∈[M ]

1

n

n∑

i=1

εi〈yi, uj〉2.

Putting together the pieces, we conclude that

E
[
eλZu

]
≤ E

[
exp

(10λ‖θ∗‖2
σ2

max
j∈[M ]

1

n

n∑

i=1

εi〈yi, uj〉2
)]
≤

M∑

j=1

E
[

exp
(10λ‖θ∗‖2

σ2

1

n

n∑

i=1

εi〈yi, uj〉2
)]
.

(6.12)

Now by assumption, the random vectors {yi}ni=1 are generated i.i.d. according to the model
y = ηθ∗ + w, where η is a Rademacher sign variable, and w ∼ N (0, σ2I). Consequently, for
any u ∈ Rd, we have

E[e〈u, y〉] = E[eη〈u, θ
∗〉] E[e〈u,w〉] ≤ e

‖θ∗‖22+σ
2

2 ,
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showing that the vectors 〈yi, u〉 are sub-Gaussian with parameter at most γ =
√
‖θ∗‖22 + σ2.

Therefore, the vectors εi〈yi, u〉2 are zero mean sub-exponential, and have moment generating

function bounded as E[et(〈yi, u〉)
2
] ≤ e

γ4t2

2 for all t > 0 sufficiently small. Combined with our
earlier inequality (6.12), we conclude that

E
[
eλZu

]
≤M ec

λ2‖θ∗‖22γ
4

nσ4 ≤ ec
λ2‖θ∗‖22γ

4

nσ4
+2d

for all λ sufficiently small. Combined with our first discretization (6.11), we have thus shown
that

E[e
λ
2
Z ] ≤Mec

λ2‖θ∗‖22γ
4

nσ4
+2d ≤ ec

λ2‖θ∗‖22γ
4

nσ4
+4d.

Combined with the Chernoff approach, this bound on the MGF implies that, as long as n ≥
c1d log(1/δ) for a sufficiently large constant c1, we have

Z ≤ c2‖θ∗‖2γ2

σ2

√
d log(1/δ)

n

with probability at least 1− δ as desired.

6.4.2. Proof of Corollary 5. As before, it suffices to find a suitable upper bound on the
εQ(n, δ) from equation (4.8). Based on the specific form of the first-order EM updates for this
model (see equation (A.6a) in Appendix A), we need to control the random variable

Z := ‖α
{ 1

n

n∑

i=1

(2wθ(yi)− 1)yi − θ
}
− α

[
2E
[
wθ(Y )Y

]
− θ
]
‖2.

We claim that there are universal constants (c1, c2) such that given a sample size n ≥ c1d log(1/δ),
we have

P
[
Z >

c2‖θ∗‖2(‖θ∗‖22 + σ2)

σ2

√
d log(1/δ)

n

]
≤ δ.

Given our choice of stepsize α = 1, we have

Z ≤ ‖ 1

n

n∑

i=1

(2wθ(xi, yi)− 1)yixi − E(2wθ(X,Y )− 1)Y X‖2 + |||I − 1

n

n∑

i=1

xix
T
i |||op‖θ‖2.

Now define the matrices Σ̂ := 1
n

∑n
i=1 xix

T
i and Σ = E[XXT ] = I, as well as the vector

v̂ :=
1

n

n∑

i=1

[
µθ(xi, yi)yixi

]
, and v := E

[
µθ(X,Y )Y X

]
,

where µθ(x, y) := 2wθ(x, y)− 1. Noting that E[Y X] = 0, we have the bound

Z ≤ ‖v̂ − v‖2︸ ︷︷ ︸
T1

+ |||Σ̂− Σ|||op‖θ‖2︸ ︷︷ ︸
T2

.(6.13)

We bound each of the terms T1 and T2 in turn.
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Bounding T1:. Let us write ‖v̂ − v‖2 = supu∈Sd Z(u), where

Z(u) :=
1

n

n∑

i=1

µθ(xi, yi)yi〈x, u〉 − E[µθ(X,Y )Y 〈X, u〉].

By a discretization argument over a 1/2-cover of the sphere Sd—say {u1, . . . , uM}—we have
the upper bound ‖v̂−v‖2 ≤ 2 maxj∈[M ] Z(uj). Thus, it suffices to control the random variable
Z(u) for a fixed u ∈ Sd. By a standard symmetrization argument [45], we have

P
[
Z(u) ≥ t

]
≤ 2P

[ 1

n

n∑

i=1

εiµθ(xi, yi)yi〈xi, u〉 ≥ t/2
]
,

where {εi}ni=1 are an i.i.d. sequence of Rademacher variables. Let us now define the event
E
{

1
n

∑n
i=1〈xi, u〉2 ≤ 2}. Since each variable 〈xi, u〉 is sub-Gaussian with parameter one, stan-

dard tail bounds imply that P[Ec] ≤ e−n/32. Therefore, we can write

P
[
Z(u) ≥ t

]
≤ 2P

[ 1

n

n∑

i=1

εiµθ(xi, yi)yi〈xi, u〉 ≥ t/2 | E
]

+ 2e−n/32.

As for the remaining term, we have

E
[

exp
(λ
n

n∑

i=1

εiµθ(xi, yi)yi〈xi, u〉
)
| E
]
≤ E

[
exp

(2λ

n

n∑

i=1

εiyi〈xi, u〉
)
| E
]
,

where we have applied the Ledoux-Talagrand contraction for Rademacher processes [23, 24],
using the fact that |µθ(x, y)| ≤ 1 for all pairs (x, y). Now conditioned on xi, the random variable
yi is zero-mean and sub-Gaussian with parameter at most

√
‖θ∗‖22 + σ2. Consequently, taking

expectations over the distribution (yi | xi) for each index i, we find that

E
[

exp
(2λ

n

n∑

i=1

εiyi〈xi, u〉
)
| E
]
≤
[

exp
(4λ2

n2

(
‖θ∗‖22 + σ2

) n∑

i=1

〈xi, u〉2
)
| E
]

≤ exp
(8λ2

n

(
‖θ∗‖22 + σ2

))
,

where the final inequality uses the definition of E . Using this bound on the moment-generating
function, we find that

P
[ 1

n

n∑

i=1

εiµθ(xi, yi)yi〈xi, u〉 ≥ t/2 | E
]
≤ exp

(
− nt2

256(‖θ∗‖22 + σ2)

)
.

Since the 1/2-cover of the unit sphere Sd has at most 2d elements, we conclude that there is a

universal constant c such that T1 ≤ c
√
‖θ∗‖22 + σ2

√
d
n log(1/δ) with probability at least 1−δ.

Bounding T2:. Since n > d by assumption, standard results in random matrix theory [47]

imply that |||Σ̂ − Σ|||op ≤ c
√

d
n log(1/δ) with probability at least 1 − δ. On the other hand,

observe that ‖θ‖2 ≤ 2‖θ∗‖2, since with the chosen stepsize, each iteration decreases the dis-
tance to θ∗ and our initial iterate satisfies ‖θ‖2 ≤ 2‖θ∗‖2. Combining the pieces, we see that

T2 ≤ c‖θ∗‖2
√

d
n log(1/δ) with probability at least 1− δ.

Finally, substituting our bounds on T1 and T2 into the decomposition (6.13) yields the claim.
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6.4.3. Proof of Corollary 6. We need to upper bound the deviation function εQ(n, δ) pre-
viously defined (4.8). For any fixed θ ∈ B2(r; θ∗) = {θ ∈ Rd | ‖θ − θ∗‖2 ≤ ξ2σ}, we need to
upper bound the random variable,

Z = ‖ 1

n

n∑

i=1

[
yiµθ(xobs,i, yi)− Σθ(xobs,i, yi)θ

]
− E

[
Y µθ(Xobs, Y )− Σθ(Xobs, Y )θ

]
‖2,

with high probability. We define: T1 := ‖
[
EΣθ(xobs, y)θ − 1

n

∑n
i=1 Σθ(xobs,i, yi)θ

]
‖2, and

T2 := ‖
[
E(yµθ(xobs, y))− 1

n

n∑

i=1

yiµθ(xobs,i, yi)
]
‖2.

For convenience, we let zi ∈ Rd be a {0, 1}-valued indicator vector, with ones in the positions of
observed covariates. For ease of notation, we frequently use the abbreviations Σθ and µθ when
the arguments are understood. We use the notation � to denote the element-wise product.

Controlling T1:. Define the matrices Σ̄ = E[Σθ(xobs, y)] and Σ̂ = 1
n

∑n
i=1 Σθ(xobs,i, yi). With

this notation, we have T1 ≤ |||Σ̄ − Σ̂|||op ‖θ‖2 ≤ |||Σ̄ − Σ̂|||op (ξ1 + ξ2)σ, where the second
step follows since any vector θ ∈ B2(r; θ∗) has `2-norm bounded as ‖θ‖2 ≤ (ξ1 + ξ2)σ. We
claim that for any fixed vector u ∈ Sd, the random variable 〈u, (Σ̄ − Σ̂)u〉 is zero-mean and
sub-exponential. When this tail condition holds and n > d, standard arguments in random
matrix theory [47] ensure that |||Σ̄− Σ̂|||op ≤ c

√
d
n log(1/δ) with probability at least 1− δ.

It is clear that 〈u, (Σ̄ − Σ̂)u〉 has zero mean. It remains to prove that 〈u, (Σ̄ − Σ̂)u〉 is
sub-exponential. Note that Σ̂ is a rescaled sum of rank one matrices, each of the form

Σθ(xobs, y) = Imis + µθµ
T
θ − ((1− z)� µθ)((1− z)� µθ)T ,

where Imis denotes the identity matrix on the diagonal sub-block corresponding to the missing
entries. The square of any sub-Gaussian random variable has sub-exponential tails. Thus, it
suffices to show that each of the random variables 〈µθ, u〉, and 〈(1 − z) � µθ, u〉 are sub-
Gaussian. The random vector z � x has i.i.d. sub-Gaussian components with parameter at
most 1 and ‖u‖2 = 1, so that 〈z� x, u〉 is sub-Gaussian with parameter at most 1. It remains
to verify that µθ is sub-Gaussian, a fact that we state for future reference as a lemma:

Lemma 4. Under the conditions of Corollary 3, the random vector µθ(xobs, y) is sub-
Gaussian with a constant parameter.

Proof. Introducing the shorthand ω = (1− z)� θ, we have

µθ(xobs, y) = z � x+
1

σ2 + ‖ω‖22

[
y − 〈z � θ, z � x〉

]
ω.

Moreover, since y = 〈x, θ∗〉+ v, we have

〈µθ(xobs, y), u〉 = 〈z � x, u〉︸ ︷︷ ︸
B1

+
〈x, ω〉〈ω, u〉
σ2 + ‖ω‖22︸ ︷︷ ︸

B2

+
〈x, θ∗ − θ〉〈ω, u〉

σ2 + ‖ω‖22︸ ︷︷ ︸
B3

+
v〈ω, u〉
σ2 + ‖ω‖22︸ ︷︷ ︸

B4

.

It suffices to show that each of the variables {Bj}4j=1 is sub-Gaussian with a constant param-
eter. As discussed previously, the variable B1 is sub-Gaussian with parameter at most one.
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On the other hand, note that x and ω are independent. Moreover, with ω fixed, the variable
〈x, ω〉 is sub-Gaussian with parameter ‖ω‖22, whence

E[eλB2 ] ≤ exp
(
λ2 ‖ω‖22〈ω, u〉2

2(σ2 + ‖ω‖22)2

)
≤ e

λ2

2 ,

where the final inequality uses the fact that 〈ω, u〉2 ≤ ‖ω‖22. We have thus shown that B2 is
sub-Gaussian with parameter one. Since ‖θ − θ∗‖2 ≤ ξ2σ, the same argument shows that B3

is sub-Gaussian with parameter at most ξ2. Since v is sub-Gaussian with parameter σ and
independent of ω, the same argument shows that B4 is sub-Gaussian with parameter at most
one, thereby completing the proof of the lemma.

Controlling T2:. We now turn to the second term. Note the variational representation

T2 = sup
‖u‖2=1

∣∣∣E
[
y〈µθ(xobs, y), u〉

]
− 1

n

n∑

i=1

yi〈µθ(xobs,i, yi), u〉
∣∣∣.

By a discretization argument–say with a 1/2 cover {u1, . . . , uM} of the sphere with M ≤ 2d

elements—we obtain

T2 ≤ 2 max
j∈[M ]

∣∣∣E
[
y〈µθ(xobs, y), uj〉

]
− 1

n

n∑

i=1

yi〈µθ(xobs,i, yi), u
j〉
∣∣∣.

Each term in this maximum is the product of two zero-mean variables, namely y and 〈µθ, u〉.
On one hand, the variable y is sub-Gaussian with parameter at most

√
‖θ∗‖22 + σ2 ≤ cσ; on

the other hand, Lemma 4 guarantees that 〈µθ, u〉 is sub-Gaussian with constant parameter.
The product of any two sub-Gaussian variables is sub-exponential, and thus, by standard sub-

exponential tail bounds [9], we have P[T2 ≥ t] ≤ 2M exp

(
− c min

{
nt√

1+σ2
, nt2

1+σ2

})
. Since

M ≤ 2d and n > c1d, we conclude that T2 ≤ c
√

1 + σ2
√

d
n log(1/δ) with probability at least

1− δ.

Combining our bounds on T1 and T2, we conclude that εQ(n, δ) ≤ c
√

1 + σ2
√

d
n log(1/δ)

with probability at least 1− δ. Thus, we see that Corollary 6 follows from Theorem 2.

7. Discussion. In this paper, we have provided some general techniques for studying the
EM and first-order EM algorithms, at both the population and finite-sample levels. Although
this paper focuses on these specific algorithms, we expect that the techniques could be useful
in understanding the convergence behavior of other algorithms for potentially non-convex
problems.

The analysis of this paper can be extended in various directions. For instance, in the three
concrete models that we treated, we assumed that the model was correctly specified, and that
the samples were drawn in an i.i.d. manner, both conditions that may be violated in statistical
practice. Maximum likelihood estimation is known to have various robustness properties under
model mis-specification. Developing an understanding of the EM algorithm in this setting is
an important open problem.

Finally, we note that in concrete examples our analysis guarantees good behavior of the EM
and first-order EM algorithms when they are given suitable initialization. For the three model
classes treated in this paper, simple pilot estimators can be used to obtain such initializations—
in particular using PCA for Gaussian mixtures and mixtures of regressions (e.g., [53]), and
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the plug-in principle for regression with missing data (e.g., [22, 52]). These estimators can be
seen as particular instantiations of the method of moments [38]. Although still an active area
of research, a line of recent work (e.g., [1, 2, 13, 21]) has demonstrated the utility of moment-
based estimators or initializations for other types of latent variable models, and it would be
interesting to analyze the behavior of EM for such models.
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