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THE SHUFFLE ESTIMATOR FOR EXPLAINABLE
VARIANCE IN FMRI EXPERIMENTS

By Yuval Benjamini∗† and Bin Yu∗

Department of Statistics, UC Berkeley ‡

In computational neuroscience, it is important to estimate well
the proportion of signal variance in the total variance of neural ac-
tivity measurements. This explainable variance measure helps neu-
roscientists assess the adequacy of predictive models that describe
how images are encoded in the brain. Complicating the estimation
problem are strong noise correlations, which may confound the neu-
ral responses corresponding to the stimuli. If not properly accounted
for, the correlations could inflate the explainable variance estimates
and suggest false possible prediction accuracies.

We propose a novel method to estimate the explainable variance
in functional MRI (fMRI) brain activity measurements when there
are strong correlations in the noise. Our shuffle estimator is non-
parametric, unbiased, and built upon the random effect model reflect-
ing the randomization in the fMRI data collection process. Leveraging
symmetries in the measurements, our estimator is obtained by appro-
priately permuting the measurement vector in such a way that the
noise covariance structure is intact but the explainable variance is
changed after the permutation. This difference is then used to esti-
mate the explainable variance. We validate the properties of the pro-
posed method in simulation experiments. For the image-fMRI data,
we show that the shuffle estimates can explain the variation in predic-
tion accuracy for voxels within the primary visual cortex (V1) better
than alternative parametric methods.

1. Introduction. Neuroscientists study how humans perception of the
outside world is physically encoded in the brain. Although the brain’s pro-
cessing unit, the neuron, performs simple manipulations of its inputs, hierar-
chies of interconnected neuron groups achieve complex perception tasks. By
measuring neural activities at different locations in the hierarchy, scientists
effectively sample different stages in the cognitive process.

Functional MRI (fMRI) is an indirect imaging technique, which allows re-
searchers to sample a correlate of neural activities over a dense grid covering
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the brain. FMRI measures changes in the magnetic field caused by flow
of oxygenated blood; these blood oxygen-level dependent (BOLD) signals
are indicative of neuronal activities. Because it is non-invasive, fMRI can
record neural activity from a human subject’s brain while the subject per-
forms cognitive tasks that range from basic perception of images or sound
to higher-level cognitive and motor actions. The vast data collected by these
experiments allows neuroscientists to develop quantitative models, encoding
models(1), that relate the cognitive tasks with the activity patterns these
tasks evoke in the brain. Encoding models are usually fit separately to each
point of the spatial activity grid, a voxel, recorded by fMRI. Each fitted en-
coding model extracts features of the perceptual input and summarizes them
into a value reflecting the evoked activity at the voxel.

Encoding models are important because they can be quantitatively evalu-
ated based on how well they can predict on new data. Prediction accuracy of
different models is thus a yard-stick to contrast competing models regarding
the function of the neurons spanned by the voxel (2). Furthermore, the re-
lation between the spatial organization of neurons along the cortex and the
function of these neurons can be recovered by feeding the model with arti-
ficial stimuli. Finally, predictions for multiple voxels taken together create a
predicted fingerprint of the input; these fingerprints have been successfully
used for extracting information from the brain (so called “mind-reading”(3)),
and building brain machine interfaces(4). The search for simpler but more
predictive encoding models is ongoing, as researchers try to encode more
complex stimuli and predict higher levels of cognitive processing.

Because brain responses are not deterministic, encoding models cannot be
perfect. A substantial portion of the fMRI measurements is noise that does
not reflect the input. The noise may be caused by background brain activity,
by non-cognitive factors related to blood circulation, or by the measurement
apparatus. Regardless of the source, noise cannot be predicted by encoding
models that are deterministic functions of the inputs (5). To reduce the effect
of noise, the same input can be displayed multiple times within the input
sequence and all responses to the same input averaged, in an experimental
design called event-related fMRI (6). See (7; 8) for examples, and (9) for a
review. Typically, even after averaging, the noise level is high enough to be
a considerable source of prediction error. Hence it is standard practice to
measure and report an indicator of the signal strength together with predic-
tion success. We will focus on one such indicator, the proportion of signal
variance in the total variance of the measurements. We call this quantity the
explainable variance1, because it measures the proportion of variance that

1This proportion is known by other names depending on context, such as interclass
correlation, effect-size, and pseudo R2.
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can be explained by a deterministic model. The comparison of explainable
variance with prediction success (5; 10) informs how much room is left on this
data for improving prediction through better models. Explainable variance
is also an important quality control metric before fitting encoding models,
and can help choose regularization parameters for model training.

In this paper we develop a new method to estimate the explainable vari-
ance in fMRI responses, and use it to reanalyze data from an experiment
conducted by the Gallant lab at UC Berkeley (11; 12). Their work exam-
ines the representation of visual inputs in the human brain using fMRI by
ambitiously modeling a rich class of images from natural scenes rather than
artificial stimulus. An encoding model was fit to each of more than 10,000
voxels within the visual cortex. The prediction accuracy of their fitted mod-
els on a validation image set were surprisingly high given the richness of
the input class, inspiring many studies of rich stimuli class encoding(13; 14).
Still, accuracy for the voxels varied widely (see Figure 2), and more than a
third of the voxels had prediction accuracy not significantly better than ran-
dom guessing. Researchers would like to know whether accuracy rates reflect
(a) overlooked features which might have improved the modeling, or instead
reflect (b) the noise that cannot be predicted regardless of the model used.
As we show in this paper, reliable measures of explainable variance can shed
light on this question.

Measuring explainable variance on correlated noise. We face the statistical
problem of estimating the explainable variance, assuming the measurement
vector is composed of a random mean-effects signal evoked by the images
with additive auto-correlated noise (15). In fMRI data, many of the sources
of noise would likely affect more than one measurement. Furthermore, low
frequency correlation in the noise has been shown to be persistent in fMRI
data (16). Ignoring the correlation would greatly bias the signal variance
estimation (see Figure 7 below), and would cause us to over-estimate the
explainable variance. This over-estimation of signal variance may be a con-
tributing factor to replicability concerns raised in neuroscience (17).

Classical analysis-of-variance methods account for correlated noise by (a)
estimating the full noise covariance, and (b) deriving the variances of the
signal and the averaged noise based on that covariance. The two steps can be
performed separately by methods of moments (15), or simultaneously using
restricted maximum likelihood (18). In both cases, some parametric model
for the correlation is needed for the methods to be feasible, for example a
fast decay (19). The problem with this type of analysis is that it is sensitive
to misspecification of the correlation parameters. In fMRI, the correlation
of the noise might vary with the specifics of the preprocessing method in a
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way that is not easy to follow or parametrize. As we show in Section 6, if the
parameterization for the correlation is too simplistic it might not capture
the correlation well and over-estimate the signal, but if it is too flexible the
noise might be over-estimated, and the numeric optimizations involved in
estimating the correlation might fail to converge.

An alternative way (10; 20) to get around the noise correlation when esti-
mating variances is to restrict the analysis to measurements that, based on
the data collection, should be independent. Many neuroscience experiments
are divided into several sessions, or blocks, to better reflect the inherent vari-
ability and to allow the subject rest. Fewer have a block design, where the
same stimulus sequence is repeated for multiple blocks. Under block design
the signal level can be estimated by comparing repeated measures across
different blocks: regardless of the within-block-correlation, the noise should
decay as 1/b when averaged over b blocks with the same stimulus sequence.
Block designs, however, are quite limiting for fMRI experiments, because
the long reaction time of fMRI limits the number of stimuli can be displayed
within an experimental block(9). The methods above also do not use repeats
within a block to improve their estimates. These problems call for a method
that can make use of patterns in the data collection to estimate the signal
and noise variances under less restrictive designs.

We introduce novel variance estimators for the signal and noise levels, which
we call shuffle estimators. Shuffle estimators resemble bias correction meth-
ods: we think of the noise component as a "bias" and try to remove it by
resampling (21). The key idea is to artificially create a second data vector
that will have similar noise patterns as our original data. We do this by per-
muting, or shuffling, the original data with accordance to symmetries that
are based on the data collection, such as temporal stationarity or indepen-
dence across blocks. As we prove in Section 3, the variance due to signal will
be reduced in the shuffled data when some repeated measures for the same
image are shuffled into different categories. An unbiased estimator of the
signal level can be derived based on this reduction in variance. The method
does not require parametrization of the noise correlation, and is flexible to
incorporate different structures in the data collection.

We validate our method on both simulated and fMRI data. For the fMRI
experiment, we estimate upper bounds for prediction accuracy based on the
explainable variance of each voxel in the primary visual cortex (V1). The
upper bounds we estimate (in Section 6) are highly correlated (r > 0.9)
to the accuracy of the prediction models used by the neuroscientists. We
therefore postulate that explainable variance, as estimated by the shuffle
estimators, can "predict" optimal accuracy even for areas that do not have a
good encoding model. Alternative estimates for explainable variance showed
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substantially less agreement with the prediction results of the voxels.

This paper is organized as follows. In Section 2 we describe the fMRI exper-
iment in greater detail, and motivate the random effects model underlying
our analysis. In Section 3 we introduce the shuffle estimators method for
estimating the signal and noise levels and prove the estimators are unbiased.
In Section 4 we focus on the relation between explainable variance and pre-
diction for random effects model with correlated noise. The simulations in
Section 5 verify unbiasedness of the signal estimates for various noise regimes,
and show that the estimates are comparable to parametric methods with the
correct noise model. In Section 6 we estimate the explainable variance for
multiple voxels from the fMRI experiment, and show the shuffle estimates
outperform alternative estimates in explaining variation in prediction accu-
racies of the voxels. Section 7 concludes this paper with a discussion of our
method.

2. Preliminaries.

2.1. An FMRI Experiment. In this section we describe an experiment car-
ried out by the Gallant lab at UC Berkeley (11), in which a human subject
viewed natural images while scanned by fMRI 2. The two primary goals of
the experiment were (a) to find encoding models that have high predictive
accuracy across many voxels in the early visual areas; and (b) to use such
models to identify the input image, from a set of candidate images, based
on the evoked brain patterns. The experiment created the first non-invasive
machinery to successfully identify natural images based on brain patterns,
and its success spurred many more attempts to encode and decode neural
activities evoked by various cognitive tasks (13; 14). We focus only on the
prediction task, but note that gains in prediction would improve the accu-
racy of identification as well. A complete description of the experiment can
be found in the supplementary materials of the original paper (11). This is
background for our work, which begins in Section 2.2.

The data of this experiment is composed of the set of natural images, and
the fMRI scans recorded for each presentation of an image. The images were
sampled from a library of gray-scale photos depicting natural scenes, objects,
etc. Two non-overlapping random samples were taken: 1750 images, the train-
ing sample, were used for fitting the models; and 120 images, the validation
sample, were used for measuring prediction accuracy. Images were sequen-
tially displayed in a randomized order, each image appearing multiple times.
BOLD contrast, signaling neural activity, was continuously being recorded

2We use data from subject S1 in Kay et al.



6 BENJAMINI AND YU

by the fMRI machine across the full visual cortex as the subject watched the
images. For each voxel, the responses were temporally discretized so that a
single value (per voxel) was associated with a single image displayed.

Fig 1: Encoding models for natural images. A cartoon depicting the encoding
models used by the Gallant lab in the fMRI experiment. Each natural image (a) was
transformed into a vector of 10409 features, each feature representing the combined
energy from two Gabor filters with complementary phases. The 10409 features (b)
spanned different combinations of spatial frequency, location in the image, and
orientations. The features were shared across all voxels, but were linearly combined
according to weights fit for each voxel separately, to give a single response per image
and voxel (c). Images were adapted from Kay et al. (2007).

Data from the training sample was used to fit a quantitative receptive field
model for each voxel, describing the fMRI response as a function of the
input image. For more details on V1 encoding see (22). The model was
based on multiple Gabor filters capturing spatial location, orientation, and
spatial-frequency of edges in the images (see Figure 1). Because of the tuning
properties of the Gabor energy filters, this filter set is typically used for
representing receptive fields of mammalian V1 neurons. Gabor filters (d =
10409 filters) transformed each image into a feature vector in Rd. For each
of Q voxels of interest, a linear weight vector relating the features to the
measurements was estimated based on the 1750 training images. Together,
the transformation and linear weight vector result in a prediction rule, that
maps novel images to a real-valued response per voxel. Let {Ii}i≤M be the
library of M images from which data was sampled, then denote f (r) : {Ii} →
R, the prediction rule corresponding to voxel r for r = 1, ..., Q estimated
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based on the training data.

In their paper (11), Kay et al. measured prediction accuracy by compar-
ing observations from the validation sample with the predicted responses for
those images. The validation data consisted of a total of T = 1560 measure-
ments (per voxel): m = 120 different images, each repeated n = 13 times. We
can index each displayed image by t = 1, ..., T , and let the schedule function
h(t) : {1, ..., T} → {1, ...m} denote the index of the image shown at time
slot t. Though a distinct measurement Y (r)

t was extracted for each voxel
r = 1, ..., Q at time slot t = 1, ..., T , all measurements of the same image
were first averaged to reduce noise, obtaining

Ȳ (r)
j = avg

t:h(t)=j
Y (r)
t , j = 1, ...,m, r = 1, ..., Q.

Let s : {1, ...,m} → {1, ...,M} be the validation sampling function, indexing
the sampled images in the image library (the population), so that Is(j) is
the j’th image in the sample. Consider s is random due to the design of
the experiment, which will allow us to relate the observed accuracy of the
sample to the population. A single value per voxel summarizes prediction
accuracy

Corr2[f (r), r] := Corr2j (f
(r)(Is(j)), Ȳ

(r)
j ),

where f (r)(Is(j)) is the predicted value and Ȳ (r)
j the averaged observed value.

Note that because f (r) was fitted on an independent training data set, it can
be considered as fixed w.r.t. the validation sample. In Figure 2 we show
examples of voxels with low, intermediate, and high prediction accuracies,
and a histogram of accuracy for all 1250 voxels located within the V1 area.
Finally we can drop the superscript r from now because each voxel is analyzed
separately.

2.2. Correlation in the data. The goal of our work is to separate two fac-
tors that determine the accuracy of prediction rules: the adequacy of the
chosen features and models to achieve the optimal prediction, and the mea-
surement noise level. Explainable variance represents the accuracy possible
with the optimal prediction function, unrestricted by the choice of features
and models.

In this paper, we restrict ourselves to Q = 1250 voxels within a functionally
homogeneous area, the primary visual cortex (V1). Although there is con-
siderable variation in prediction success between voxels, the voxels should
be functionally similar implying that our models should work similarly for
these voxels. Thus we postulate that most of the variation in prediction
success would come from varied levels of (measurement) noise at different
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Fig 2: Prediction accuracy for V1 voxels. Predicted vs. observed average
responses for three voxels in the V1 area, reflecting poor (a), medium (b), and high
(c) prediction accuracy. Each point depicts the predicted response (x-axis) and the
observed average response (across all repeats) for an image of the validation sample
(m=120 images). (d) Histogram of prediction accuracy for 1250 V1 voxels.

voxels; in that case good explainable variance estimates should explain most
of the voxel-to-voxel variability in prediction accuracy. Once the approach
is validated on this setting, explainble variance can be used more broadly,
for example to compare the predictability levels of different functional ar-
eas.

Since we intend to use the validation sample with replicates to estimate the
explainable variances, we now give a few more details on how it was collected.
Recall that the validation data consisted of m = 120 images each repeated n
= 13 times (see Figure 3a). This data was recorded in 10 separate sessions,
so that the subject could rest between sessions; the fMRI was re-calibrated
at the beginning of each session. Each session contained all presentations of
12 different images. A pseudo-random integer sequence ordered the repeats
within a session3.

3The pseudo-random sequence allocated spots for 13 different images; no image was
shown in the last category and the responses were discarded.
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When we measure correlation across many voxels, we believe that the de-
sign of the experiment induces strong correlation in the data. To see this,
in Figure 3 (b-c) we plot the correlation between measurements at different
time slots (each time slot is represented by the vector of Q=1250 measure-
ments). This gives us a gross representation of the correlation for individual
voxels, including both noise driven and possibly stimuli-driven correlations.
Clearly there are strong correlations between time-slots within a block, but
no observable correlations between blocks. As these within-block correlation
patterns do not correspond to the stimuli schedule that is randomized within
a block, we conclude the correlations are largely due to noise. These noise
correlations need to be taken into account to correctly estimate the explain-
able variance.

Fig 3: Data acquisition for the validation data set. (a) The design matrix X
recording which image (x-axis) was displayed at each time slot t. Data was recorded
in blocks of 12 unique images repeated n = 13 times. (b) The matrix of temporal
correlation across all voxels, Corrr(Y

(r)
t , Y (r)

u ), for first two blocks (t, u = 1, ..., 312).
A cross section (u = 40) of this matrix marked by a dashed line is in (c). Strong
but non-smooth correlation are found within the blocks, but separate blocks seem
uncorrelated. Note that we depict the aggregate correlation of all voxels, but cannot
from this infer the noise correlation of any specific voxel.

2.3. A probability model for the measurements. We introduce a probabilis-
tic model for the discrete measurements Y = (Yt)Tt=1 at a single voxel. Y is
modeled as a random effects model with additive, correlated noise (23). Ad-
ditivity of noise is considered a good approximation for fMRI event related
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designs and is commonly used (24). The random effects model accounts for
the generalization of prediction accuracy from the validation sample to the
larger population of natural images. In this section the model is carefully
developed based on the fMRI experiment, and the quantities of interest for
this model are defined in Section 2.4. Section 2.5 introduces algebraic tools
that will be used for developing the shuffle estimator.

Let {Ii}Mi=1 be the set of possible images from which we can sample. We
assume each possible Ii image has a fixed mean effect µi ∈ R relative to a
grand mean on the fMRI response, with population quantities

1

M

M∑

i=1

µi = 0,
1

M

M∑

i=1

µ2
i = σ2

µ,

and we refer to σ2
µ as the signal variance.

2.3.1. Random effects based on sampling. As discussed above, m inputs are
sampled randomly from {Ii}Mi=1 (without replacement), denoted by the ran-
dom function s : {1, ...,m} → {1, ...,M}. It will be useful to discuss the
sampled mean effects directly. We denote Aj = µs(j) for j = 1, ...,m, or
marginally P(Aj = µi) = 1/M foreach i = 1, ...,M, j = 1, ...,m. We use
A = (Aj)mj=1 for the random-effect column vector, and

Ā :=
1

m

m∑

j=1

Aj s2A :=
1

(m− 1)

m∑

j=1

(Aj − Ā)2

for the sample mean and sample variance of random effects. We assume
M is large, which is the case for our fMRI data; so Aj ’s are effectively
independent4. Then

EA[s
2
A] = σ2

µ

where EA is the expectation with respect to the sampling.

Images are shown in a long sequence (which may be composed of blocks) so
that each image is repeated multiple times. Our analysis will be conditioned
on the schedule h(t) : {1, ..., T} → {1, ...m} defined earlier, so h(t) is regarded
as fixed. h(t) can also be represented by fixed design matrix X ∈ RT×m, with
Xt,j = 1 if h(t) = j and 0 otherwise. To illustrate this, consider the following
toy example (T = 5,m = 4):

h(1) = 1
h(2) = 2
h(3) = 3
h(4) = 2
h(5) = 3

⇐⇒ X ∈ RT×m =





1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 0
0 0 1 0
· · · ·



 .

4Both the model and the shuffle estimator can be easily adapted for sampling from a
small library of images as well.



SHUFFLE ESTIMATOR IN FMRI 11

In this example, the second sampled image, or Is(2) is shown at time slots
2 and 4. The (random) mean effect is represented by A2 = µs(2) in both
cases. (These are the first 5 rows in the design matrix used for the example
in Figure 4).

We denote D = XX ′ ∈ RT×T the matrix marking repeats of the same
stimulus so for t, u = 1, ..., T ,

(2.1) Dt,u =

{
1 if h(t) = h(u),
0 otherwise.

2.3.2. Noise. We assume the components of the measurement noise vector
ε = (εt)Tt=1 are independent of the random treatment effects {Aj}mj=1, have
0 mean, but may be correlated to capture the slow-changing dynamics of
hemodynamics and effects of preprocessing on fMRI signals. Hence,

(2.2) Eε[εt] = 0; cov(εt, εu) = σ2
εCt,u Ct,t = 1,

or in matrix notation cov[ε] = σ2
εC for C ∈ RT×T .

2.3.3. Model for observed responses. We are now ready to introduce the
observed data (column) vector Y ∈ RT as follows:

(2.3) Y = XA+ ε

and for single time slot t
Yt = Ah(t) + εt,

where {A1, ..., Am} are iid samples from {µ1, ..., µM}.

2.3.4. Response covariance. There are two independent sources of random-
ness in the model:5 the image sampling modeled by random effects, and the
measurement errors, which are of unknown form.

It’s easy to see that under our independence assumption of A and ε, the
covariance of Yt and Yu is composed of the covariance from the sampling
and the covariance of the noise,
(2.4)
covA,ε(Yt, Yu) = covA(Ah(t), Ah(u)) + covε(εt, εu) = σ2

µ1(h(t)=h(u)) + σ2
εCt,u,

where the first term on the RHS reflects that treatment (random) effects
have the same variance σ2

µ if they are based on the same input, but are un-
correlated if they are based on different inputs. In matrix form, we get:

(2.5) EA,ε[Y] = 0; covA,ε(Y ) = σ2
µD + σ2

εC.

5Throughout this paper, it is in fact enough to assume the responses are generated
according to E[Yt|A] = Ah(t) = µs(t) and cov(Yt, Yu|A) = σ2

εCt,u without explicit addi-
tivity.
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2.4. Explainable variance and variance components. Explainable variance is
a measure of signal-to-noise which generalizes intraclass correlation. When
noise is correlated, the ratio of signal variance and total variance no longer
equals the correlation between two measurements of the same treatment.
Nevertheless, explainable variance is very informative for estimating effect
sizes in cases where there are no prediction models, optimizing preprocessing
methods, and choosing regularization parameters. This paper was motivated
by importance of explainable variance to predictive models, which we will
discuss in Section 4.

Recall that Ȳj are the averaged responses per image (j = 1, ...,m for the
images in our sample), and let Ȳ = 1

T

∑T
t=1 Yt be the global average response.

Then the sample variance of averages is

(2.6) MSbet =
1

m− 1

m∑

j=1

(
Ȳj − Ȳ

)2
.

The notation MSbet refers to mean-square between treatments. Let us define
the total variance σ̄2

Y as the population mean of MSbet,

(2.7) σ̄2
Y = EA,ε[MSbet].

Note that σ̄2
Y is not strictly the variance of any particular Ȳj ; indeed, the

variance of Ȳj is not necessarily equal for different j’s6. Nevertheless, we will
loosely use the term variance here and later, owing to the parallels between
these quantities and the variances in the iid noise case, which are further
discussed in Section 4.

Ȳj is composed of a treatment part (Aj) and average noise part (ε̄j); similarly
Ȳ is composed of Ā and ε̄. By partitioning the MSbet and taking expectations
over the sampling and the noise we get

(2.8) EA,ε[MSbet] = EA[
1

m− 1

m∑

j=1

(
Aj − Ā

)2
] + Eε[

1

m− 1

m∑

j=1

(ε̄j − ε̄)2],

where the cross-terms cancel because of the independence of the noise from
the sampling. We can call the expectation of the second term the noise level,
or σ̄2

ε , and get the following decomposition

(2.9) σ̄2
Y = σ2

µ + σ̄2
ε

In other words, the signal variance σ2
µ and the noise level σ̄2

ε are the signal
and noise components of the total variance.

6In practice, this is true for the individual measurements Yt as well. We chose Ct,t = 1
for illustration reasons.
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Finally, we define the proportion of explainable variance to be the ratio

ω2 = σ2
µ/σ̄

2
Y .

Explainable variance measures the proportion of variance due to treatment
in the averaged responses, hence is an alternative to signal-to-noise mea-
sures.

Note that of the two expressions in ω2, σ̄2
Y can be naturally estimated from

the sample, while σ2
µ requires more work. To estimate σ2

µ the signal and noise
need to be separated. As we see in the next section, one way to separate them
is based on their different covariance structure.

2.5. Quadratic contrasts. In this subsection we derive MSbet as a quadratic
contrast of the full data vector Y. This would highlight the relation between
σ̄2
Y or σ̄2

ε with both the design D = XX ′ and the measurement correlations
C, and would produce algebraic descriptions used in Section 3. These are
simple extensions of classical treatment of variance components (25).

Denote B := XX ′/n, an RT×T scaled version of D, with

(2.10) Bt,u =

{
1
n if h(t) = h(u),
0 otherwise.

B is an averaging matrix, because when it multiplies Y, each element in the
vector is replaced with the treatment average, that is

(2.11) (BY)t = Ȳh(t).

It is easy to check that B = B′ and B = B2. Also let G ∈ RT×T Gt,u = 1/T
for t, u = 1, ..., T be the global average matrix, so that (GY)t = Ȳ , t =
1, ..., T . We can now express MSbet as a quadratic expression of Y

(2.12) MSbet =
1

(m− 1)n
‖(B −G)Y‖2.

or more generally as a function of any input vector
MSbet(·) := 1

(m−1)n‖(B −G)(·)‖2.

The following proposition outlines the relation between total variance, the
design and the correlation of the noise.

Proposition 1. Under the model described in Section 2.3,

(2.13) σ̄2
Y = σ2

µ +
1

(m− 1)n
σ2
ε tr ((B −G)C)
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Proof.

σ̄2
Y = EA,ε[MSbet(Y)] = 1

(m−1)nEA,ε[tr
(
(B −G)(Y′Y)(B −G)

)
]

= 1
(m−1)n tr ((B −G)covA,ε(Y)(B −G))

= 1
(m−1)n tr ((B −G)covA(Y)) + 1

(m−1)n tr ((B −G)covε(Y))

= 1
(m−1)n tr

(
(B −G)(nσ2

µB)
)
+ 1

(m−1)n tr
(
(B −G)σ2

εC
)

= 1
(m−1)σ

2
µtr(B −G) + 1

(m−1)nσ
2
ε tr((B −G)C)

= σ2
µ + 1

(m−1)nσ
2
ε tr ((B −G)C) .

From (2.9,2.13) we get an exact expression for the noise level

(2.14) σ̄2
ε = 1

(m−1)nσ
2
ε tr ((B −G)C) .

Obviously, σ̄2
ε scales with the noise variance of the individual measurements

σ2
ε . Moreover, σ̄2

ε depends on the relation between the design and the mea-
surement correlation C. Note that if there are no correlation within repeats,
then tr ((B −G)C) = (m−1)σ2

ε and σ̄2
ε = σ2

ε /n. In that case σ̄2
Y = σ2

µ+σ2
ε /n,

and by plugging in an estimator of σ2
ε , we can directly estimate σ̄2

ε and σ2
µ.

This gives us an estimator for ω2 if noise is uncorrelated

ω̂2 = 1− 1

F

for F the standard F statistic. This is method-of-moments estimator de-
scribed fully in Section 6.1.

On the other hand, when some correlations within repeats are greater than
0, σ2

ε /n underestimates the level of the noise and inflates the explainable
variance. In the next section we introduce the shuffle estimators which can
deal with non-0 correlations in the noise.

3. Shuffle estimators for signal and noise variances. In this section
we propose new estimators called the shuffle estimators for the signal and
noise level, and for the explainable variance. As in (2.9), σ̄2

Y = σ2
µ + σ̄2

ε , but
the noise variance σ̄2

ε is a function of the (unknown) measurement correla-
tion matrix C. Using shuffle estimators we can estimate σ2

µ and σ̄2
ε without

having to estimate the full C or imposing unrealistically strong conditions
on it.

The key idea is to artificially create a second data vector that will have
similar noise patterns as our original data (see Figure 4). We do this by
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permuting, or shuffling, the original data with accordance to symmetries that
are based on the data collection. In Section 3.1 we formalize the definition
of such permutations that conserve the noise correlation and give plausible
examples for neuroscience measurements. In Section 3.2 we compare the
variance of averages (MSbet) of the original data (Figure 4 b), with the same
contrast computed on the shuffled data (c). Because repeated measures for
the same image are shuffled into different categories, the variance due to
signal will be reduced in the shuffled data. We derive an unbiased estimator
for signal variance σ2

µ based on this reduction in variance, and use the plug-in
estimators for σ̄2

ε and ω2.

Fig 4: Cartoon of the shuffle estimator. (a) Data is generated according to
schedule h(t), with each color representing repeats of a different image. (b) Re-
peats of each image are averaged together and the sample variance is computed
on these averages. (c) Data is shuffled by P , in this example reversing the order.
Now measurements which do not originate from the same repeat are averaged to-
gether (Ȳ ∗

j ’s), and the sample variance of the new averages is computed. These
averages should have a lower variance in expectation, and we can calculate the
reduction amount α(h, P ) = 1

m−1 tr ((B −G)PBP ′). (d) The shuffle estimator for
signal variance is the difference between the two sample variances, after correction
of 1− α(h, P ).
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3.1. Noise conserving permutation for Y. A prerequisite for the shuffle es-
timator is to find a permutation that will conserve the noise contribution to
σ̄2
Y . We will call such permutations noise-conserving w.r.t to h.

Recall (2.14),

σ̄2
ε =

1

(m− 1)n
tr((B −G) (σ2

εC)),

where σ2
εC = covε[Y] as before. Let P ∈ RT×T be a permutation matrix.

Then

Definition 2. P is noise conserving w.r.t h, if

(3.1) tr
(
(B −G)Pσ2

εCP ′) = tr
(
(B −G)σ2

εC
)
.

Equivalently,

tr ((B −G) covε[P ·Y]) = tr
(
(B −G)σ2

εC
)
.

Although we define the noise conserving property based on the covariance,
replacing the covariance with the correlation matrix C would not change the
permutation class.

Noise conservation is a property that depends on the interplay between
the design B and the noise covariance C. Let us take a look at important
cases.

3.1.1. Trivial noise-conserving permutations. A permutation P that simply
relabels the treatments is not a desirable permutation, even though it is
noise-conserving. We call such permutations trivial:

Definition 3. A permutation P , associated with permutation function
gP : {1...T} → {1...T}, is trivial if

(3.2) h(t) = h(u) ⇒ h(gP (t)) = h(gP (u)), ∀t, u.

It is easy to show that for trivial P , MSbet(PY) = MSbet(Y).

3.1.2. Noise conserving permutations based on symmetries of C. A useful
class of non-trivial noise conserving permutations is the class of symmetries
in the correlation matrix C: a symmetry of C is a permutation P such that
PC = C. If P is a symmetry of C, then P is noise-conserving regardless of
the design. Here are three important general classes of symmetries which are
commonly applicable in neuroscience.
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1. Uncorrelated noise. The obvious example is the uncorrelated noise
case C = I where all responses are exchangeable. Hence any permuta-
tion is noise-conserving.

2. Stationary time series Neuroscience data is typically recorded in a
long sequence containing a large number of serial recordings at constant
rates. It is natural to assume that correlations between measurements
will depend on the time passed between the two measures, rather than
on the location of the pair within the sequence. We call this the station-
ary time series. Under this model C is a Toeplitz matrix parameterized
by {ρd}T−1

d=0 , the set of correlation values Ct,u = ρd, where d = |t−u|.
Though the correlation values ρd’s are related, this parameterization
does not enforce any structure on them. This robustness is important in
the fMRI data we analyze. For this model, a permutation that reverses
the measurement vector is noise conserving

(PY)t = YT+1−t.

This is the permutation we use on our data in Section 6.
Another family of noise conserving permutations are the shift operator
(PY)t = (Y)t+k (up to edge effects).

3. Independent blocks Another important case is when measurements
are collected in distinct sessions, or blocks. Measurements from dif-
ferent blocks are assumed independent, but measurements within the
same block may be correlated, perhaps because of calibration of the
measurement equipment. We index the block assignment of time t
with β(t). A simple parameterization for noise correlation would to let
Ct,u = ζ(β(t),β(u)) depend only on the block identity of measurements
t and u. We call this the block structure. Under the block structure,
any permutation P (associated with function gP ) that maintains the
session structure, meaning

(3.3) β(t) = β(u) ⇒ β(gP (t)) = β(gP (u))

would be noise-conserving w.r.t. any h.

The scientist is given much freedom in choosing the permutation P , and
should consider both the variance of the estimator and the estimator’s ro-
bustness against plausible noise-correlation structures. Establishing criteria
for choosing the permutation P is the topic of current research.

3.2. Shuffle estimators. We can now state the main results. From the follow-
ing lemma we observe that every noise-conserving permutation establishes
a mean-equation with two parameters: σ2

µ and σ̄2
ε . The coefficient for σ2

µ



18 BENJAMINI AND YU

is α(h, P ) := 1
m−1 tr ((B −G)(PBP ′)), which only depends on parameters

known to the scientist.

Lemma 4. If P is a noise-conserving permutation for Y, then

1. EA,ε[MSbet(PY)] = α(h, P )σ2
µ + σ̄2

ε .

2. α(h, P ) ≤ 1, and the inequality is strict iff P is non-trivial.

Proof. 1. Using similar algebra as in Proposition 1, the expectation
EA,ε[MSbet(PY)] can be partitioned into a term depending on the
sampling covariance covA(PY) and a term depending on the noise
covariance covε(PY). Since P is noise-conserving, for the noise term:

covε(PY) = σ̄2
ε .

As for the sampling:

covA(PY) = PcovA(Y)P ′ = σ2
µP (nB)P ′.

Hence,
1

(m−1)nσ
2
µtr

(
(B −G)(P (nB)P ′)

)
= α(h, P )σ2

µ.

2. In Proposition 1 we saw that the sampling component for the unper-
muted vector covA(Y) is σ2

µ. Hence for P the identity matrix I ∈ RT×T

we have α(I, h) = 1. For all other P ’s, note that the global mean
term (G) is unaffected by the permutation (PG = G) or the averaging
(BG = G), so it remains unchanged.

From the Cauchy-Schwartz inequality,

tr
(
B(PBP ′)

)
≤ tr (BB) = tr(B)

as P is unitary and B a projection Recall that P is trivial if P reorders
measurements within categories and renames categories. It is easy to
check that PBP ′ = B iff P is trivial. For trivial P ’s, we again get
equations similar to Proposition 1, so α(P, h) = 1.
For any non-trivial permutation B )= PBP ′, in which case the CS-
inequality is strict resulting in α(h, P ) < 1.

As can be seen in the proof, α depends only on B and P which are both
known:

(3.4) α(h, P ) = 1
m−1 tr

(
(B −G)(PBP ′)

)
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It reflects how well P "mixes" the treatments; the greater the mix, the smaller
α.

The consequence of the second part of the lemma is that for any non-trivial
P , we get a mean-equation which is linearly independent from the equa-
tion based on the original data (because α(h, P ) < 1). In other words, the
equation set

(3.5)
{

EA,ε[MSbet(Y)] = σ2
µ + σ̄2

ε

EA,ε[MSbet(PY)] = α(h, P )σ2
µ + σ̄2

ε

can be solved.

This leads to our main point, defining the shuffle estimator for σ2
µ based on

(3.5), and the estimator for σ̄2
ε based on its complement to MSbet:

Definition 5. Let P be a non-trivial noise conserving permutation for Y.
Then the shuffle estimators for the signal variance (σ̂2

µ) and noise level (ˆ̄σ2
ε )

are

σ̂2
µ :=

MSbet(Y)−MSbet(PY)

1− α(h, P )
,(3.6)

ˆ̄σ2
ε := MSbet(Y)− σ̂2

µ.(3.7)

Lemma 6. If P is a non-trivial noise-conserving permutation for Y, then

1. E[σ̂2
µ] = σ2

µ

2. E[ˆ̄σ2
ε ] = σ̄2

ε

In practice, we prefer the restricted shuffle estimators

(3.8) (σ̂2
µ)+ = max{σ̂2

µ, 0} (ˆ̄σ2
ε )+ = min{MSbet(Y), ˆ̄σ2

ε }

which have lower MSEs but are no longer unbiased.

Finally, we would like to estimate the explainable variance ω2 = σ2
µ/σ̄

2
Y . We

use the plug in estimator,

ω̂2 =
(σ̂2

µ)+
MSbet(Y)

.

Note that ω̂2 is restricted between 0 and 1.
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4. Evaluating prediction for correlated responses. Although there
are many uses for estimating the explainable variance, we focus on its role in
assessing prediction models. Roddey et al. (2000) (5) show that explainable
variance upper bounds the accuracy of prediction on the sample when noise is
iid. We generalize their results for arbitrary noise correlation and account for
generalization from sample to population7. As shown in Lemma 7, the noise
level σ̄2

ε is the optimal expected loss under mean square prediction error
(MSPE) loss, and the explainable variance ω2 approximates the accuracy
under squared-correlation Corr2 utility.

First let us recall the setup. Let f be a prediction function that predicts a
real-valued response to any possible image (out of a population of M):

(4.1) f : {Ii}Mi=1 → R.

We will assume f does not depend on the sample we are evaluating, meaning
that it was fit on separate data. We usually think of f as using some aspects
of the image to predict the response, although we do not restrict it in any
parametric way to the image.

Prediction accuracy is measured only on the m images sampled for the val-
idation set. Recall s : {1, ...,m} → {1, ...,M} is the random sampling func-
tion. For the j’th sampled image, the predicted response f(Is(j)) is compared
with the average observed response for that image Ȳj . We consider two com-
mon accuracy measures: mean squared prediction error (MSPE[f ]) and the
squared correlation (Corr2[f ]), defined

MSPE[f ] :=
1

m− 1

m∑

j=1

(
f(Is(j))− Ȳj

)2
,

(4.2)

Corr2[f ] :=Corr2j (f(Is(j)), Ȳj) =

(
1

m−1

∑m
j=1(f(Is(j))− f̄s)(Ȳj − Ȳ )

)2

1
m−1

∑m
j=1(f(Is(j))− f̄s)2

∑m
j=1(Ȳj − Ȳ )2

,

(4.3)

where f̄s denotes the average of the predictions for the sample.

We will state and discuss the results relating the explainable variance to
optimal prediction; details can be found in the appendix.

Lemma 7. Let f∗ : {Ii}Mi=1 → R be the prediction function that assigns for
each stimulus Ii its mean effect µi, or f∗(Ii) = µi. Under the model described
in Section 2.3,

7While these results may have been proved before, we have not found them discussed
in similar context.
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(a) f∗ = argminf EA,ε[MSPE[f ]];

(b) σ̄2
ε = EA,ε[MSPE[f∗]] = minf EA,ε[MSPE[f ]];

(c) ω2 ≈ EA,ε[Corr2[f∗]] with a bias term smaller than 1
m−1 .

Under our random effects model, the best prediction (in MSPE) is obtained
by the mean effects, or f∗. More important to us, the accuracy measures
associated with the optimal prediction f∗ can be approximated by signal
and noise levels: σ̄2

ε for MSPE[f∗] and ω2 for Corr2[f∗].

The main consequence of this lemma is that the researcher does not need a
"good" prediction function to estimate the "predictability" of the response.
Prediction is upper-bounded by ω2, a quantity which can be estimated with-
out setting a specific function in mind. Moreover, when a researcher does
want to evaluate a particular prediction function f , ω̂2 can serve as a yard
stick with which f can be compared. If Corr2[f ] ≈ ω̂2, the prediction error
is mostly because of variability in the measurement. Then the best way to
improve prediction is to reduce the noise by preprocessing or by increasing
the number of repeats. On the other hand, if Corr2[f ] + ω̂2, there is still
room for improvement of the prediction function f .

5. Simulation. We simulate data with a noise component generated from
either a block structure or a times-series structure, and compute shuffle es-
timates for signal variance and for explainable variance. For a wide range
of signal-to-noise regimes, our method produces unbiased estimators of σ2

µ.
These estimators are fairly accurate for sample sizes resembling our image-
fMRI data, and the bias in the explainable variance ω2 is small compared to
the inherent variability. These results are shown in Figure 5. In Figure 6 we
show that under non-zero σ2

µ, the shuffle estimates have less bias and lower
spread compared to the parametric model using the correctly specified noise
correlation.

5.1. Block structure. For the block structure we assumed the noise is com-
posed of an additive random block effect constant within blocks (bk, k =
1, ..., B blocks), and an iid Gaussian term (et, t = 1, ..., T )

Yt = A(t) + bβ(t) + et

Aj , bk and et are sampled from centered normal distributions with variances
(σ2

µ,σ
2
b ,σ

2
e). We used σ2

b = 0.5,σ2
e = 0.7, and varied the signal level σ2

µ =
0, 0.1, ..., 0.9. We used m = 120, n = 15, with all presentations of every 5
stimuli composing a blocks (B = 20 blocks). For each of these scenarios we
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ran 1000 simulations, sampling the signal, block, and error effects. MSbet

was estimated the usual way, and P was chosen to be a random permutation
within each block (α(h, P ) = 0.115). The results are shown in Figure 5 (a).

Fig 5: Simulations for the block and time-series (a) Simulation results com-
paring shuffle estimates for signal variance σ2

µ (black) and explainable variance ω2

(blue) to the true population values (dashed line). Noise correlation followed an in-
dependent block structure: noise within blocks was correlated, and between blocks
was independent. The x-axis represents the true signal variance σ2

µ of the data, and
the y-axis marks the average of the estimates and [0.25,0.75] quantile range. (b)
Similar plot for data generated under a stationary time-series model.

5.2. Time-series Model. For the time-series model we assumed the noise
vector e ∈ RT is distributed as a multivariate Gaussian with mean 0 and a
covariance matrix C, where C is an exponentially decaying covariance with
a nugget,

Ct,u = ρ|t−u| = λ1 · exp{−|t− u|/λ2}+ (1− λ1)1(t=u).

Then Y = A(t) + et with the random effects A(t) sampled from N (0,σ2
µ) for

σ2
µ = 0, 0.1, ...0.9. We used m = 120, n = 15, and the parameters for the

noise were λ1 = 0.7 and λ2 = 30, meaning ρ125 ≈ 0.01. The schedule of
treatments was generated randomly. For each of these scenarios we ran 1000
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Fig 6: Comparison of methods on simulation. Each pair of box-plots repre-
sents the estimated signal variance σ̂2

µ using the shuffle estimator (dark gray) and
REML (light gray) for 1000 simulations. The blue horizontal line represents the
true value of σ2

µ. The REML estimator assumes the correct model for the noise,
while the shuffle estimator only assumes a stationary time series. When there is no
signal, REML outperforms the shuffle estimators, but in all other cases it is both
biased and has greater spread.

simulations, sampling the signal and the noise. In Figure 5 (b) we estimated
the shuffle estimator with P the reverse permutation (gP (t) = T + 1 − t),
resulting in α(h, P ) = 0.064.

5.3. Comparison to REML. In Figure 6 we used time-series data to compare
σ2
µ estimates based on the shuffle estimators to those obtained by an REML

estimator with the correct parametrization for the noise correlation matrix.
We used nlme package in R to fit a repeated measure analysis of variance
for the exponentially decaying correlation of noise with a nugget effect. The
comparison included 1000 simulations for σ2

µ = 0, 0.2, 0.4, 0.6, 0.8, and a noise
model identical to Section 5.2.

5.4. Results. Figure 5 describes the performance of shuffle estimates on two
different scenarios: block correlated noise (a), and stationary time-series noise
(b). For signal variance (black) the shuffle estimator gives unbiased estimates.
The shuffle estimator for explainable variance is not unbiased, but the bias
is negligible compared to the variability in the estimates. In Figure 6, we
compare the signal variance estimates based on the shuffle estimator (dark
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gray) with estimates based on REML (light gray). The estimates based on
the shuffle have no bias, while those based on REML underestimate the
signal. The variance of the REML estimates is slightly larger, due in part
are slightly better in both bias and in variance.

6. Data. We are now ready to evaluate prediction models using the shuf-
fle estimates for explainable variance. Prediction accuracy was measured for
encoding models of 1250 voxels within the primary visual cortex (V1). Be-
cause V 1 is functionally homogenous, encoding models for voxels within this
cortical area should work similarly. As observed in Figure 2, there is large
variation between prediction accuracies for the different voxels. We postulate
that most of the variation in prediction accuracy would come from varied
levels of noise at different voxels; in that case good explainable variance es-
timates should explain most of the voxel-to-voxel variability in prediction
accuracy.

Prediction accuracy values for these 1250 voxels are compared to explainable
variance estimates for each voxel, as generated by the shuffle estimator. We
also compare the accuracy values to alternative estimates for explainable
variance, using the method of moments for uncorrelated noise, and REML
under several parameterizations for the noise:

6.1. Methods. Several methods are compared for estimating the explainable
variance (ω2 = σ2

µ/σ̄
2
Y ). The methods differ in how σ2

µ is estimated; all
methods use the sample averages variance MSbet(Y) for σ̄2

Y , and plug in
the two estimates into ω2. We estimate ω2 separately for each voxel (r =
1, ..., 1250). The methods we compare are

1. The shuffle estimators estimator. We assume time-series stationarity
within each block, and independence between the blocks, so choose a
P that reverses the order of the measurements, (PY)t = YT+1−t).
Because the size of the blocks is identical, reversing the order of the
data vector is equivalent to reversing the order within each block.
α(h, P ) = 0.17. We use the restricted estimator

(σ̂2
µ)+ = max

{
MSbet(Y)−MSbet(PY)

1− α(h, P )
, 0

}

for signal variance, and the explainable variance is obtained by plugging
the estimate of σ2

µ into ω̂2 = σ̂2
µ/MSbet.

2. An estimator (ω̃2) unadjusted for correlation. We use the mean-square
within (MSwit =

1
(m−1)n

∑m
j=1

∑
t:h(t)=j(Yt−Ȳj)2) contrast to estimate

the noise variance σ2
ε , scale by 1/n to estimate the noise level σ̄2

ε ,
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and remove the scaled estimate from MSbet, σ̃2
µ = MSbet −MSwit/n.

Explainable variance is obtained by plug in estimator ω̃2 = σ̃2
µ/MSbet.

3. Estimators based on a parametric noise model.

• We assume the noise is generated from an exponentially decaying
correlation matrix, with a nugget effect. This means Ct,t+d =
λ2exp(−d/λ1) + 1(d=0)(1 − λ2) where the rate of decay λ1 and
nugget effect λ2 where additional parameters. If λ2 = 0, this is
equivalent to the AR(1) model.

• Alternatively, we assume the noise is generated from an AR(3)
process, or εt = ηt +

∑3
k=1 akεt−k. This models allows for non-

monotone correlations.

We use the nlme package in R to estimate the signal variance of this
model using restricted maximum likelihood (18) (REML), and use the
plug-in estimator for the explainable variance.

6.2. Results. In Figure 7 we compare the prediction accuracy of the vox-
els to estimates of the explainable variance. Each panel has 1250 points
representing the 1250 voxels: the x coordinate is the estimate of explain-
able variance for the voxel, and the y coordinate is Corr2[f ] for the Ga-
bor based prediction-rule. The large panel shows the shuffle estimators for
explainable variance. The relation between Corr2[f ] and ω̂2 is very linear
(r = 0.9). Almost all voxels for which accuracy is close to random guess-
ing (Corr2[f ] < 0.05) could be identified based on low explainable variance
without knowledge of the specific feature set. Although there is still room
for improving prediction for some voxels, the Gabor models are not far from
performing optimally on these recordings.

When we try to repeat this analysis with other ω2 estimators, explainable
variance estimates are no longer strongly related with the prediction accu-
racy. When correlation in the noise is ignored (b), signal strength is greatly
overestimated. In particular, some of the voxels for which prediction accu-
racy is almost 0 have very high estimates of explainable variance (as high
as ω̃2 = 0.8). In contrast to the shuffle estimates, it is hard to learn from
these explainable variance estimates about the prediction accuracy for a
voxel.

This incompatibility of prediction accuracy and explainable variance esti-
mates is also observed when the estimates are based on maximum likelihood
methods that parameterize the noise matrix. For the AR(3) model in (d), we
see variability between explainable variance estimates for voxels with given
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prediction accuracy level. The smaller model (c) seems to suffer from both
overestimation of signal and high variance.

Fig 7: Optimal vs. observed prediction accuracy. The estimated optimal
prediction is compared with observed prediction (Corr2), each point representing
a V1 response. The optimal prediction estimated by (a) shuffle estimators account-
ing for stationary noise distributions; (b) Method of moments estimator assuming
independent noise; (c) REML estimator assuming exponential decay of noise with
nugget within blocks; and (d) REML estimator assuming an AR(3) model for the
noise correlation within blocks. The x=y is plotted in blue.

7. Discussion. We have presented the shuffle estimator, a resampling-
based estimator for the explainable variance in a random-effects additive
model with auto-correlated noise. Rather than parameterize and estimate
the correlation matrix of the noise, the shuffle estimator treats the contribu-
tion of the noise to the total variance as a single parameter. Symmetries in
the data-collection process indicate those permutations which, when applied
to the original data, would not change the contribution of the noise. An un-
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biased estimator of the signal variance is derived from differences between
the total variance of the original data vector and the shuffled vector. The
resulting estimate of signal variance is plugged in as the enumerator for the
explainable variance ratio estimate.

For a brain-encoding experiment, we have shown that the strong correlation
present in the fMRI measurements greatly compromises classical methods
for estimating explainable variance. We used prediction accuracy measures
of a well-established parametric model for voxels in the primary visual cor-
tex as indicators of the explainable signal variance at each of the voxels.
Shuffle estimates of the explainable variance explained most of the variation
between voxels, even though they were blind to features of the image. Other
methods did not do well: methods that ignored noise correlation seem to
greatly overestimate the explainable variance, while methods that estimated
the full correlation matrix were considerably less informative with regards
to prediction accuracy. We consider this convincing evidence that the shuf-
fle estimators for explainable variance can be used reliably even when no
gold-standard prediction model is present.

Explainable variance is an assumption-less measure of signal, in that it makes
no assumptions about the structure of the mean function that relates the in-
put image to response. We find it attractive that the shuffle estimator for
explainable variance similarly requires only weak assumptions for the cor-
relation of the noise. This makes the shuffle estimator a robust tool, which
can used at different stages of the processing of an experiment: from opti-
mizing of the experimental protocol, through choosing the feature space for
the prediction models, to fitting the prediction models.

The shuffle estimators may be useful for applications outside of neuroscience.
These estimators can be used to estimate the variance associated with the
treatments of an experiment, conditioned on the design, whenever measure-
ment noise is correlated. Spatial correlation in measurements arise in many
different domains, from agricultural experiments to DNA microarray chips.
Shuffle estimators could provide an alternative to parametric fitting of the
noise contributions for these applications.

Future research should be directed at expressing the variance of the shuffle
estimator for a candidate permutation, as well as at developing optimal ways
to combine information from multiple noise conserving permutations. More
generally, shuffle estimators are a single example of adapting relatively new
non-parametric approaches from hypothesis testing into estimation; we see
much room for expanding the use of permutation methods for creating robust
estimators for experimental settings.
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9. Appendix.

9.1. Lemma (7). Let f∗ : {Ii}Mi=1 → R be the prediction function that
assigns for each stimulus Ii its mean effect µi, or f∗(Ii) = µi. Under the
experimental conditions and model described above,

(a) f∗ = argminf EA,ε[MSPE[f ]];

(b) σ̄2
ε = EA,ε[MSPE[f∗]] = minf EA,ε[MSPE[f ]];

(c) ω2 ≈ EA,ε[Corr2[f∗]] with a bias term smaller than 1
m−1 .

Proof. (a) + (b)
First, for any image in the sample, we compare the prediction with the
expected average given the sampling,

(9.1) MSPE[f ] =
1

m− 1

m∑

j

(
(f(Is(j))− Eε[Ȳj ]) + (Eε[Ȳj ]− Ȳj)

)2
.

From our model, Eε[Ȳj ] = Aj . Substituting this into 9.1 and taking expecta-
tion over the noise, we get

Eε[MSPE[f ]] =
1

m− 1
[Eε

m∑

j

(
f(Is(j))−Aj

)2
+ Eε

m∑

j

(
Aj − Ȳj

)2

+ Eε

m∑

j

(f(Is(j))−Aj)
(
Aj − Ȳj

)
].

Recall that Ȳj − Aj is ε̄j for each j, with Eε[ε̄j ] = 0 and a sample variance
σ̄2
ε . Therefore

(9.2) Eε[MSPE[f ]] =
1

m− 1
[
m∑

j

(
f(Is(j) −Aj

)2
] + σ̄2

ε .

By also taking an expectation over the sampling

(9.3) E[MSPE[f ]] = EAEε[MSPE[f ]] =
m

m− 1

1

M

M∑

i

[(f(Ii)− µi)
2]+ σ̄2

ε .

Proof. (c)
Since the optimal f∗ maps each image Ii to its mean-effect µi, for the sampled
image it maps the random effect:

f∗(Is(j)) = µs(j) = Aj .
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Hence Corr2[f∗] = Corr2j (Aj , Ȳj), or in extended form

(9.4) Corr2j (Aj , Ȳj) =

(
1

m−1

∑m
j=1(Aj − Ā)(Ȳj − Ȳ )

)2

(
1

m−1

∑m
j=1(Aj − Ā)2

)(
1

m−1

∑m
j=1(Ȳj − Ȳ )2

) .

Recall that Ȳj = Aj + ε̄j . Equation (9.4) becomes

(9.5)

(
1

m−1

∑m
j=1

[
(Aj − Ā)(Āj − Ā) + (Aj − Ā)(ε̄j − ε̄)

])2

(
1

m−1

∑m
j=1(Aj − Ā)2

)(
1

m−1

∑m
j=1(Ȳj − Ȳ )2

) .

Let

s2A = 1
m−1

m∑

j=1

(Aj − Ā)2; s̄2ε =
1

m−1

m∑

j=1

(Aj − Ā)2; MSbet =
1

m−1

m∑

j=1

(Ȳj − Ȳ )2;

represent the sample variance of the treatment effects, averaged noise, and
average measurements respectively. Moreover, let

r =

∑m
j=1(Aj − Ā)(ε̄j − ε̄)

(m− 1) sA · s̄ε

be the empirical correlation of the treatment effects and the averaged noise.

Substituting into Equation 9.5 results in:
(
s2A + sA s̄ε r

)2

s2AMSbet
=

s2A + 2sA s̄ε r + s̄2ε r2

MSbet
.

By taking expectations over A and ε and approximating the expectations of
the ratio with the ratio of the expectations, we get:

EA,ε[Corr2[f∗]] =EA,ε

[
s2A + 2sA s̄ε r + s̄2ε r2

MSbet

]

=EA,ε

[
s2A

MSbet

]
+ EA,ε

[
2sA s̄ε r + s̄2ε r2

MSbet

]

≈
EA,ε

[
s2A

]

EA,ε [MSbet]
+

EA,ε
[
2sA s̄ε r + s̄2ε r2

]

EA,ε [MSbet]

= ω2 +
EA,ε

[
2sA s̄ε r] + s̄2ε r2

]

σ̄2
Y
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Since the mean effects Aj ’s and averaged noise ε̄j ’s are independent, E[r] = 0.
Hence

EA,ε[Corr2[f∗]] ≈ ω2 + σ̄2
ε

E
[
r2
]

σ̄2
Y

.

Under mild conditions and m large enough
√
m− 1 rA,ε̄ ≈ N (0, 1). We get

a bias on the order of σ̄2
ε

σ̄2
Y

1
m−1 < 1

m−1 . Note that unless σ2
µ/σ̄

2
Y ≈ 0, the bias

is negligible compared to the deviation of 2sA s̄ε r
MSbet

which is of order 1√
m−1

.
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