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Abstract

Clouds play a major role in Earth’s climate and cloud detection is a crucial step in the
processing of satellite observations in support of radiation budget, numerical weather prediction
and global climate model studies. To advance the observational capabilities of detecting clouds
and retrieving their cloud-top altitudes, NASA launched the Multi-angle Imaging SpectroRa-
diometer (MISR) in 1999, which provides data in nine different views of the same scene using
four spectral channels. Cloud detection is particularly difficult in the snow- and ice-covered po-
lar regions and availability of the novel MISR angle-dependent radiances motivates the current
study on cloud detection using statistical methods.

Three schemes using MISR data for polar cloud detection are investigated in this study.
Using domain knowledge, three physical features are developed for detecting clouds in daylight
polar regions. The features measure the correlations between MISR angle-dependent radiances,
the smoothness of the reflecting surfaces, and the amount of forward scattering of radiances. The
three features are the basis of the the first scheme, called Enhanced Linear Correlation Matching
Classification (ELCMC). The ELCMC algorithm thresholds on three features and the thresholds
are either fixed or found through the EM algorithm based on a mixture of two 1-dim Gaussians.
The ELCMC algorithm results are subsequently used as training data in the development of
two additional schemes, one Fisher’s Quadratic Discriminate Analysis (ELCMC-QDA) and the
other a Gaussian kernel Support Vector Machine (ELCMC-SVM). For both QDA- and SVM-
based experiments two types of inputs are tested, the set of three physical features and the red
radiances of the nine MISR cameras. All three schemes are applied to two polar regions where
expert labels show that the MISR operational cloud detection algorithm does not work well,
with a 53% misclassification rate in one region and a 92% nonretrieval rate in the other region.

The ELCMC algorithm produces misclassification rates of 6.05% and 6.28% relative to ex-
pert labelled regions across the two polar scenes. The misclassification rates are reduced to
approximately 4% by ELMCM-QDA and ELCMC-SVM in one region and approximately 2%
in the other. Overall, all three schemes provided significantly more accurate results and greater
spatial coverage than the MISR operational stereo-based cloud detection algorithm. Compared
with ELCMC-QDA, ELCMC-SVM is more robust against mislabels in the ELCMC results and
provide slightly better results, but it is computationally slower.
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1 Introduction

Clouds play a major role in the Earth’s climate because of their ubiquitous presence and their
ability to interact with Sun- (i.e., solar) and Earth- (i.e., terrestrial) generated radiation. They
may warm the Earth surface by absorbing radiation emitted by the surface and then, in turn,
emitting some of the energy associated with this radiation back to the surface. They may also cool
the Earth by reflecting incoming solar radiation back to space. Uncertainties about these cloud and
radiation interactions and their feedback on the global climate are among the greatest obstacles in
understanding and predicting the Earth’s future climate.

In polar regions, where surfaces are usually covered by snow and ice, detecting clouds and
assessing their impact on the radiation budget of Earth is particularly difficult (Diner et al., 1999a).
Some studies indicate that clouds tend to warm the surface-atmosphere system over highly reflective
surfaces, but others suggest that clouds have a net cooling effect. Moreover, the situation is
complicated by the presence of aerosols: small radiation absorbing and/or scattering particles
in the atmosphere that tend to cool the surface below them by reducing the amount of solar
radiation absorbed at the surface. If clouds are present, they obscure the surface and hinder,
or prevent, the detection of aerosols from satellite sensors. We can only begin to untangle these
complex atmospheric particle detection problems by having reliable cloud detection methods for
polar scenes.

Cloud detection is particularly challenging in polar regions because snow- and ice-covered sur-
faces can be both brighter and colder than the clouds above them. Under these conditions, the
traditional assumptions about the properties of clouds and their underlying surfaces are violated
and detection of cloud contributions to satellite radiances becomes problematic. Satellite data sets
obtained from the NASA Earth Observing System (EOS) may provide significant new information,
but new cloud detection algorithms are also required to obtain proportional scientific return.

As a sensor on the NASA EOS Terra satellite, the Multi-angle Imaging SpectroRadiometer
(MISR) provides a new source of information for identifying clouds over ice and snow (Diner et al.,
1999a). The MISR sensor has a set of nine cameras that view scenes of Earth and its atmosphere
from nine different directions and in four spectral bands in the visible and near-infrared portion
of the electromagnetic spectrum. Viewing the atmosphere from multiple angles endows MISR
with the capability of measuring elevations and angular radiance signatures of objects. The MISR
operational stereo-based algorithm retrieves the heights of reflecting surfaces and compares them
with the altitudes of the underlying surfaces. Reflecting surfaces with retrieved heights significantly
above the terrain height are labelled as clouds. However, this algorithm does not perform efficiently
in polar regions because it is incapable of detecting clouds close to surface and such clouds are often
present in polar regions.

In this study we begin by exploring a MISR data set that was collected over the Arctic Ocean,
Greenland and Baffin Bay on June 20, 2001. This data set is a good one to investigate because it
contains typical polar surface scenes, such sea ice, snow-covered mountains and plateaus, as well
as a variety of cloud types at several different altitudes. Moreover, the MISR operational stereo-
based algorithm has a poor performance for this scene. Relative to expert labels, which we discuss
next, the MISR stereo-based operational algorithm has a misclassification rate of 53.25% and leaves
29.92% of the data unclassified.

Using the MISRLEARN software tool developed at the Jet Propulsion Laboratory (Dominic
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Mazzoni, personal communication), we hand labelled 60,111 radiance values as “clear” or “cloud”
contaminated by jointly investigating data from MISR and the Moderate Resolution Imaging Spec-
troradiometer (MODIS), which has 36 spectral bands across the visible, near-infrared and thermal
infrared regions of the electromagnetic spectrum and is also onboard the NASA EOS Terra satel-
lite. Hand labelling of satellite imagery is the best way to generate a large database for validation
of polar cloud detection algorithms because only a limited number of ground-based measurements
have been obtained in polar regions to date. We subsequently use the expert labels to develop and
test three cloud-detection schemes. We also labelled another data set collected over Greenland on
July 17, 2002, and these labels are reserved as an independent validation set for the three methods
that we developed.

Improving upon Linear Correlation Matching Classification (LCMC; Shi et al., 2002) algorithm,
we first developed three physical features for cloud detection that are measures of the correlations
between radiances from the nine MISR camera view directions, the smoothness of reflecting surfaces
and the amount of forward scattering of radiation by clouds. The features contain information to
separate snow- and ice-covered surfaces from both high- and low-altitude clouds. The first feature,
a measure of the linear correlation between radiances from different MISR cameras, separates high
clouds from low clouds and the surface. The second feature, a measure of the smoothness of a
reflecting surface, is introduced to identify the homogenous ground surfaces, such as smooth ice
flows, where linear correlations in the radiances from different angles are not informative because
they are dominated by instrument noise. The last feature, a measure of forward scattering of
radiation by clouds, separates low-altitude clouds from the Earth surface.

Using these three features, three cloud-detection methods are proposed. The first method is
a simple threshold algorithm on the three features with automatically chosen thresholds; we call
this method the Enhanced Linear Correlation Matching (ELCMC) algorithm. The ELCMC al-
gorithm uses fixed thresholds for two of the features, while for the measure of forward scattering
the threshold is obtained automatically by modelling distribution of the feature as a mixture of
two one-dimensional Gaussian models. Since the classification boundaries between “cloudy” and
“clear” pixels in the three-dimensional feature space are not rectangles, as implicity assumed in
the ELCMC algorithm, we develop nonlinear and smoother classifiers to improve upon the EL-
CMC algorithm classification results. To this end we test Quadratic Discriminate Analysis (QDA)
and Gaussian kernel Support Vector Machine (SVM) classifiers are tested as post-processors for
improving ELCMC algorithm results. Since both QDA and SVM classifiers require training data,
which are usually unavailable when new observations become available, we use the ELCMC algo-
rithm classification results as training data for the QDA and SVM classifiers. We call these coupled
approaches the ELCMC-QDA and ELCMC-SVM methods. In addition to testing QDA and SVM
methods on our set of three features, we also applied them directly to the red radiances from the
nine MISR cameras.

The rest of this paper is organized as follows. In section 2 we briefly review the MISR instrument
and its operational stereo-based algorithm for cloud detection, explaining why the operational
algorithm does not perform well in polar regions. We then describe the data that we used in this
study (section 3). Three physical features for cloud detection using MISR observations are presented
in section 4. And in section 5 we discuss the three cloud-detection methods, their application to
the set of three features and the red radiances of the nine MISR cameras, and the misclassification
rates that we obtained from them. We conclude (section 6) with a summary of our results and our
plans for extending this work into an operational setting.
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Figure 1: Cartoon illustration of both the NASA EOS Terra satellite and the view directions of the nine
MISR cameras.

2 MISR and its Operational Algorithms for Cloud Detection

The MISR sensor (Diner et al, 1999a) is one of five instruments onboard the NASA EOS Terra
satellite, which was launched into polar orbit on December 18, 1999. We briefly describe the
MISR instrument and its operational cloud detection algorithms, highlighting the difficulties the
operational algorithms have encountered in the polar regions.

2.1 Instrument Design

The MISR sensor consists of nine cameras, with each camera viewing Earth scenes at a different
angle using four spectral bands (Figure 1). The view zenith angles of the nine cameras are 70.5o

(Df), 60o (Cf), 45.6o (Bf), and 26.1o (Af) in the forward direction, 0.0o (An) in the nadir direction
and 26.1o (Aa), 45.6o (Ba), 60o (Ca) and 70.5o (Da) in the aft direction. The “f” in the letter
designation of the cameras represents the “forward” direction, that is, in the direction of satellite
flight, and the “a” represents the “aft” direction, that is, in the direction from which the satellite
just came. The four spectral bands are at red, green, blue, and near-infrared (NIR) wavelengths.
The nominal resolution of the MISR radiances is 275 m by 275 m at the surface of the Earth
surface. To reduce MISR data rates the blue, green and NIR spectral radiances in the eight non-
nadir cameras are averaged over 4× 4 spatial arrays of pixels, for an effective spatial resolution of
1.1 km, before being transmitted to Earth.

The MISR cameras cover a swath at the Earth surface that is approximately 360 km wide and
extends across the daylight side of the Earth from Arctic regions down to Antarctica. There are
233 geographically distinct, but overlapping, MISR swaths, which are also called paths, and MISR
collects data from all of them on a repeat cycle of 16 days. For the MISR data products each path is
subdivided into 180 blocks, with the block numbers increasing from the north to south pole. Each
complete trip of the EOS Terra satellite around the Earth is given its own orbit number. The first
orbit of the Terra satellite was labelled 1 and all orbits are numbered sequentially after this first
orbit. Therefore, to identify the geographic location of MISR data products, we need to know the
path number of the data products. To compute the date and time of a particular MISR radiance
image along a certain path, we must know the EOS Terra orbit number.
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2.2 MISR L2TC Cloud Height Retrieval Algorithm

Viewing the atmosphere from multiple angles, MISR has stereo capabilities that can be used to
retrieve the elevation of objects on and above the surface of the Earth. The MISR Level 2 Top-of-
Atmosphere Cloud (L2TC) algorithm uses this capability to detect clouds by comparing retrieved
object elevations to the underlying terrain height, which is known from ancillary data. The rational
of the L2TC algorithm is based on the registration of MISR measurements to a known reference
ellipsoid. In the MISR registration process a MISR radiance can be registered to a surface ellipsoid,
the terrain, or some other feature such as a cloud, as shown on the left side of Figure 2. The L2TC
algorithm initially uses the ellipsoid projected data, as shown in the right side of Figure 2, in which
clouds are registered at different locations in radiance maps from the different cameras. The L2TC
algorithm matches the same object in the different angle-dependent images, allowing object heights
and horizontal velocities to be retrieved through simple trigonometric relationships. Retrieved
object heights are compared with the known terrain height and objects more than approximately
650 m above the terrain height are classified as clouds. The cloud mask derived from the L2TC
algorithm is called the Stereoscopically Derived Cloud Mask (SDCM).

As we just mentioned, disparities in the location of an object in the different angle-dependent
images can be produced by the object either being located above the reference ellipsoid or by
movement of the object between the different camera views of the object. The L2TC algorithm
uses the MISR Df-Bf-An camera triplet for cloud top motion retrieval (estimation) and the Af-
An camera pair for cloud height retrieval (estimation). The L2TC algorithm estimates cloud
motion and height in two separate stages, although they can be solved with two linear equations
simultaneously after a match is found. We briefly review the algorithm here, as algorithm details
can be found in Diner et al. (1999b).

High (275-m) resolution red radiances are used in the L2TC retrieval because these radiances
are available from all nine cameras and they lead to the most accurate results. The radiances are
transformed into Bi-directional Reflectance Factors (BRFs), i.e., the ratio of the observed radiance
at a particular illumination and view geometry to the radiance that would be obtained under the
same conditions with a target consisting of a perfect lambertian reflector (cf. Diner et al, 1999b).
The first step in the L2TC algorithm is to retrieve cloud-top motion over non-overlapping regions of
70.4 km × 70.4 km. The coarse resolution of the resulting cloud-top motion vectors is a necessity of
computational speed. To this end the L2TC algorithm uses a Nested Maxima (NM) stereo-matcher
to find objects in An-Bf-Df camera triplet images. The NM matcher feature of interest is defined as
a vertical column of five pixels such that the BRF decreases monotonically in value for two pixels
on both sides of the center pixel. Since clouds are usually brighter than the underlying surface, the
NM matcher features are usually from cloudy pixels if clouds are present in the 70.4 km × 70.4 km
block. Note, however, that this assumption is not strictly valid for detecting cloud over snow- and
ice-covered surfaces since these surfaces are also bright.

For each 70.4 km × 70.4 km block, the NM matcher searches for all nested maxima in the
reference (Bf) angle image, as well as the An and Df camera images to be searched for matches
to the reference image. In the next step nested maxima from the reference image and the search
images are tested in pairs to determine if they are the same feature (Diner et al, 1999b). If no
matches are found, a label of “no retrieval” is given to the block and hence no pixels in the block
will have cloud-top motion, or cloud-top height, retrievals associated with them. If there are several
matches in a block with inconsistent cloud-top motion estimates, a “no retrieval” label will again

5



Figure 2: Left: Schematic of the three possible projections of MISR-camera radiance data, which include
ellipsoid- (E), terrain- (T) and feature- (F) projected locations. Over the oceans, the ellipsoid and terrain
projections are identical. Right: Registration of surface features and clouds to the reference ellipsoid. Note
that only three of the nine MISR cameras (i.e., the Df, Bf and Af cameras) are illustrated and that surface
objects in areas of low, smooth topography are mapped to the same location on the reference ellipsoid while
clouds are mapped to different locations on it.

be given to the block. If a match, or self-consistent set of matches, is found between the reference
and search images, the L2TC algorithm uses the following two equations to determine cloud-top
motion, together with a preliminary estimate of cloud-top height:

vc(tAn − tBf)− h(tan(θBf)− tan(θAn)) = (xAn − xBf) (1)
vc(tDf − tBf)− h(tan(θBf)− tan(θDf)) = (xDf − xBf) (2)

where vc is the along-track cloud-top motion speed, h is the cloud-top height, t is the time when
the given camera looks at that location, θ is the view zenith angle, xAn − xBf and xDf − xBf are
the along-track location shifts of the best matched features in the An/Bf and Df /Bf camera pairs.

In the second stage of L2TC processing cloud-top motion, vc, for the block is assumed known
and An/Af image pairs are used to obtain cloud-top height on a pixel-by-pixel basis. To this end
the L2TC algorithm matches features in the image pairs and incorporates their disparities, as well
as vc, into equation (1) above to retrieve cloud-top height. In the feature matching between the
Af/An image pairs the L2TC algorithm matches small patches around each pixel in the An image
with the same sized patches around each pixel in a search window within the Af image. The tests
for identifying matches are the same as those used in the first stage (Diner et al, 1999b).

There are two characteristics of the L2TC algorithm that reduce its effectiveness in the polar
regions. First, low clouds are often present in daytime Arctic regions and the L2TC stereo matching
algorithms together with the MISR data do not have sufficient accuracy to separate these clouds
from the underlying surface. Second, the NM matcher has difficulties matching cloudy pixels
between the images over snow- and ice-covered surfaces, which can be as bright, if not brighter,
than the overlying clouds. When the NM matcher fails, the L2TC retrievals for the entire block fail.
Another problem for the NM matcher, as well as the matching procedures in the cloud-top height
retrievals, is lack of texture in some snow- and ice-covered surfaces as well as in some Arctic stratus
clouds. These problems with the L2TC algorithm for cloud detection in polar regions motivated
our current study, in which we investigate the information content in the MISR angular radiances
for separating clouds from snow- and ice-covered surfaces.
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3 Data

The data that we analyzed in this study consist of 23 orbits collected in 2001 and 2002, all from
MISR path 26. Blocks 13 through 33 of this path cover the Arctic Ocean to the north and east
of Greenland, northern Greenland, Baffin Bay and Baffin Island. Because each block contains
approximately 30,000 valid 1.1-km radiance values, the total study area is about 700,000 km2. We
begin the analysis with MISR radiance values from blocks 16 through 33 of orbit 7898, which were
obtained on June 20, 2001. This data set is a good one to initiate the study because it contains sea
ice, snow-covered mountains and plateaus, and a variety of cloud types at several different altitudes
(e.g., Figure 4).

To initiate our studies we analyzed in detail MISR blocks 19, 20 and 21 of orbit 7898 (referred
as DATA-20JUNE2001 in this paper), labelling 60,111 1.1-km pixels as either “cloudy” or “clear”
with high confidence. Assignment of the labels to the pixels was based not only on the MISR
multi-angle radiances but also on the multi-spectral data from the Moderate Resolution Imaging
Spectroradiometer (MODIS), which has 36 spectral channels and is also part of the EOS Terra
satellite platform. Because high quality ground-based measurements are sparse in the polar regions,
expert labelling of clear and cloudy scenes in satellite data is the best way to produce validation
data for assessing automated polar cloud detection algorithms. In addition to orbit 7898, we also
labelled data from MISR blocks 25, 26 and 27 of orbit 13723 which occurred on July 17, 2002
(referred as DATA-17JULY2002 as shown in Figure 12). We use this second set of labelled data
to validate independently the performance of our proposed methods for cloud detection in polar
regions. We use the remaining 21 orbits to better understand the surface types for path 26 and to
assess visually the performance of our new methods when applied to a variety of scene types.

The dominant scene types for DATA-20JUNE2001 are snow-covered mountains, sea ice and
three different cloud decks, one cloud deck being quite close to the surface, the other containing
intermediate level clouds in a compact shape, and the third containing relatively high clouds. As
illustrated in Figure 4, the snow-covered mountains occur at the bottom of the image with sea ice
apparent in the upper two-thirds of the image. Note that the elevations of the coastal mountains
decrease to sea level and that the two flows of ice in the bottom third of the image, which join as
they approach the sea, are visibly brighter than the snow-covered mountains. While clouds and
snow- and ice-covered surfaces have approximately the same brightness in the MISR An-camera
image, clouds are noticeably brighter than the snow- and ice-covered surfaces in the Df-camera
image. There are three types of clouds in the scene. The high clouds are to the right and bottom of
the images and form a solid bright area in the Df-camera image. At the top of the images, towards
the right, is the intermediate altitude cloud deck. A patch of low, thin clouds, almost transparent
in the An-camera image, covers a significant portion of the sea ice on the left hand side of the
image. These clouds are readily apparent in the Df-camera image.

We illustrate the expert labels for DATA-20JUNE2001 in Figure 9, where the blue colored
areas represent “cloudy” pixels and red areas represent “clear” pixels. There are 60,111 pixels
labelled with high confidence for this image, of which 38,161 are “cloud” pixels and 21,950 are
“clear” ones. The black areas between the red and blue areas represent regions where no labels
were assigned. Compared to the complicated scene in DATA-20JUNE2001, the area covered by
DATA-17JULY2002 is much simpler (Figure 12), with several well-defined patches of thin and thick
cloud cover over the Greenland plateau.
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Figure 3: Left: Projection of MISR radiances to the surface terrain for a cloud with large spatial extent;
note that radiances from the different parts of the cloud are mapped to the same spot on the terrain. Right:
Projection of MISR radiances to the surface terrain for a cloud with small spatial extent; note that radiances
from different objects are now mapped to the same spot on the terrain.

The MISR L2TC algorithm does not work well on these two scenes, with a 53.25% misclassifi-
cation rate against the expert labels and a 29.92% non-classification rate for DATA-20JUNE2001
and a 91.82% non-classification rate for pixels in DATA-17JULY2002. For DATA-20JUNE2001
misclassification mostly occurs in regions of thin, low-altitude clouds, for which matching of ob-
jects in the different camera views is extremely difficult, if not impossible. The distinct differences
in the MISR radiances from the nadir to the most forward looking MISR camera motivated our
development of three physical features for detecting clouds in polar regions.

4 Feature Selection

In our current approach for detecting clouds in polar regions, we analyze the statistical properties
of radiances scattered from clouds and snow- and ice-covered surfaces, rather than using object
disparities in the different camera images to identify clouds. We focus on the scattering properties
of snow- and ice-covered surfaces under clear skies. In the terrain projected MISR product (L1B2-
Terrain) all of the MISR camera radiances are registered to the same location on the surface,
allowing us to investigate easily the angular dependence of the radiances from the same reflecting
surface. Since all four MISR bands have similar spectral signatures over ice, snow and clouds and
only MISR red band radiances have 275 m spatial resolution for all angles, we use the MISR red
band data in this study. We develop three features to distinguish clouds from their underlying
snow- and ice-covered surfaces. The features are the linear correlation in the radiances from the
different MISR cameras, smoothness across the reflecting surfaces, and the magnitude of forward
scattering from the reflecting surface. In section 4.1 we motivate our choice of these three features,
while in section 4.2we provide the details on their computation.

4.1 Rational for the Three Features

The first feature is the linear correlation in the MISR radiances measured at different view angles.
In previous work Shi et al. (2002) developed a simple algorithm, called Linear Correlation Matching
Classification (LCMC), for detecting high altitude clouds over snow and ice surfaces. The LCMC

8



Figure 4: MISR red radiance images for blocks 19–21 of orbit 7898, i.e., images of Data-20June2001. Left:
An-camera red radiance image. Center: Bf-camera red radiance image. Right: Df-camera red radiance
image. The red, green and blue boxes delineate clear-sky, low-altitude cloud and high-altitude cloud regions,
respectively.

algorithm capitalizes on the fact that spatial correlations between radiances observed at different
angles in clear scenes are different than those in cloudy scenes. Specifically, for clear scenes the
radiances measured by different MISR cameras are, in many cases, approximately proportional to
the intensity of the light source, namely the sun. Therefore, they should be strongly correlated.
However, for cloudy scenes this is not the case as the MISR radiances from the same cloud patch
are now registered to different locations in both the terrain- and ellipsoid-projected MISR radiance
products. As a result, the linear correlations in the radiances at the same projected locations are
generally lower than for clear sky as they originate from different parts of clouds.

For example, consider the clear, high cloud and low cloud regions indicated by the red, blue and
green boxes, respectively, in Figure 4. Producing scatter plots of the An- and Bf-camera radiances
for an 8 by 8 array of pixels in each of these boxes leads to the results illustrated in Figure 5. Note the
high degree of correlaton in the radiances from the surface and low-altitude cloud regions compared
to the high-altitude cloud region. As this plot illustrates, LCMC produces low correlations for high
clouds but is unable to distinguish reliably low clouds from the surface. Moreover, LCMC has
difficulties over homogeneous scenes, such as smooth glacial ice flows, where the variations in the
radiances across the scene are quite small, with subsequent poor linear correlations in the radiances
from different MISR cameras.

To separate low-altitude clouds from rough surfaces, as well as smooth surfaces from clouds,
we need additional features. To identify smooth surfaces we use the standard deviation of the
An-camera radiances over a small window. This second feature will have small values for radi-
ances emanating from “clear” homogeneous surfaces such as the glacial flows towards the bottom
of Figure 4. For such smooth features the correlations between radiances from different angles
may approach zero, being dominated by instrument noise. To demonstrate this point more clearly
let (XAn, XBf) denote the measured An- and Bf-camera radiances for one pixel within a window
of pixels. Suppose XAn = µAn + εAn and XBf = µBf + εBf , where random variables µAn and
µBf are the true An- and Bf-camera radiances and εAn and εBf are instrument noise. We assume
corr(µAn, µBf) = ρ and var(µAn) = var(µBf) = φ2. Furthermore, we assume εAn and εBf are inde-
pendent of µAn, µBf , and each other with mean 0 and variance σ2. Then, the correlation between
XAn and XBf is CORR(XAn, XBf ) = ρ/(1 + (σ/φ)2). Therefore, when the scene variability, φ2, is
small relative to the instrument noise, σ2, the observed correlation between the camera radiances is
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Figure 5: Scatter plots showing correlations between the red radiances of the MISR Bf and An cameras
for clear scenes (left), scenes with low-altitude clouds (center), and scenes with high-altitude clouds (right).
The correlations are computed from 8 by 8 arrays of radiances located within the red, green and blue boxes
in Figure 4.

weaker than the true correlation ρ. In polar regions conditions with small scene variability appear
to be indicative of cloud-free views of ice and snow, motivating our choice of the standard deviation,
SDAn, of the An-camera radiances in a small window as an additional feature.

To detect low-altitude clouds we use the Normalized Differential Angular Index (NDAI), orig-
inally proposed by Nolin et al. (2002) to characterize the angular scattering properties of snow
and ice surfaces. As we have shown, low-altitude clouds are not easily distinguishable from clear
scenes using linear correlation because the radiances from low-level clouds may be registered to the
same location on the reference surface, just as for clear-sky regions (Figure 5a,b). However, low-
level cloudy regions tend to be much brighter than clear regions in the forward scattering direction
Df angle images (Figure 4c). The difference in brightness between zenith and forward scattering
results from clouds tending to scatter more photons in the forward direction, whereas snow- and
ice-surface scenes scatter photons relatively equally in all directions.

For daylight Arctic regions forward scattering is recorded by the MISR forward pointing cam-
eras, and especially the MISR Df-camera view. Therefore, for the Arctic regions we define NDAI
as NDAI = (XDf −XAn)/(XDf + XAn). In the scenes that we have analyzed to date NDAI is
large for cloudy areas and small for clear snow and ice surfaces. In principle, NDAI could be used
to detect high-altitude homogeneous clouds with large spatial extents (Figure 3a). High clouds
of small spatial extent and high clouds with significant inhomogeneities in them are problematic
(Figure 3b), as now the relevant Df- and An-camera radiances associated with them are variable
and are registered to distant locations on the terrain and ellipsoid reference surfaces. However, in
conjunction with the linear correlation and surface smoothness tests high-altitude clouds should
be separable from other cloud types as well as a variety of different surfaces. In fact, our working
hypothesis for this study is that these three features are sufficient to identify and distinguish most
surface and cloud types.

To illustrate separation of “cloudy” and “clear” scenes in the CORR, SD and NDAI feature
space, we consider the features from the clear-sky and low- and high-altitude cloud regions illus-
trated in Figure 4. Using methods detailed in section 4.2, we computed values for the three features
for these three regions and present them as two- and three-dimensional scatter plots in Figure 6.
As Figure 6 clearly illustrates, the points occupy disjoint regions in the space of three features.
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Figure 6: Scatter plots of SD, CORR and NDAI for the data in Figure 4. Note that the colors of the
scatterplot symbols match the color of the boxes in Figure 4from which they come. Left: Two-dimensional
scatterplot of SD versus CORR. Right: Three-dimensional scatterplot of SD, CORR and NDAI.

Moreover, synergy between the features is apparent, including the decrease in CORR when SD
decreases.

4.2 Calculating Three Features

The data of interest in our study are blocks of MISR Level 1B2 terrain projected red band radiances
from all nine cameras with a nominal spatial resolution of 275 m. The data are formatted in an n by
m by 9 matrix X, where n and m are the number of rows and columns in a block and 9 corresponds
to the nine MISR view angles. In this notation X:,:,1 denotes the block of Df-camera radiances.
Our goal is to compute features for each 1.1 km by 1.1 km region and to build classifiers at this
same resolution based on the features. A schematic of the spatial representation of one MISR block
of radiances, with one 1.1 km by 1.1 km region of 16 radiances to be classified indicated in the
northwest part of the image, is illustrated in Figure 7a.

Since the Arctic region is the focus of this study, we use radiances from the MISR An, Af, Bf,
and Df cameras to calculate the features. There are two reasons for using the MISR forward viewing
cameras. First, for daylight Arctic scenes the MISR forward viewing cameras capture photons that
are scattered in the forward direction. Second, radiances with large magnitudes are more effective
in our linear correlation feature and radiances in the forward scattering direction are generally
larger than those in the backward scattering direction. To compute the linear correlation of the
radiances between camera views, we assign an 8 by 8 window around each target region composed
of 4 by 4 pixels at 275 m resolution. We then reformat the 8 by 8 set of radiances in the An-,
Af- and Bf-camera images for this target area into three 64 by 1 vectors. We use these vectors to
compute the linear correlation coefficients between both the An- and Af-camera radiances, which
is labelled as CorAn,Af , and the An- and Bf- camera radiances, which is labelled CorAn,Bf . For the
target region we define CORR = (CorAn,Af + CorAn,Bf)/2.

We use the average of a pair of linear correlation coefficients because the cloud can be registered
to the same ground location in two view directions if the cloud movement is along the line of MISR
flight. Having the MISR orbit, flight speed, and view angles just right to make the registration of
a cloud in three images the same is extremely small. We use MISR Af- and Bf-camera radiances,
instead of MISR Cf- and Df-camera radiances, because geo-registrations of the MISR Af and Bf
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North

Figure 7: Left: Schematic representation of a block of MISR data. Each MISR block is a rectangular spatial
array of 512 rows and 2048 columns of 275-m spatial resolution pixels. The red pixels in the figure define a
4 by 4 sub-array of pixels to be classified as “clear” or “cloudy”. The blue pixels define an 8 by 8 sub-array
of pixels centered on the 4 by 4 target sub-array, while the green box defines a 12 by 12 sub-array of pixels
centered on the target sub-array. Right: Locations (in blue) of a single 8 by 8 sub-array of MISR Df-camera
radiances that are linearly correlated with the underlying 8 by 8 sub-arrays of MISR An-camera radiances
in the computation of NDAI. The 4 by 4 sub-array of An-camera radiances to be classified is shown in red.
Note that the single set of 8 by 8 MISR Df-camera radiances always covers the An-camera target region, but
cycle over all possible 8 by 8 sets of MISR An-camera radiances contained within the 12 by 12 sub-array of
An-camera search-window radiances.

cameras are more accurate than for the Cf and Df cameras. Misregistered pixels reduce linear
correlations between camera images in the absence of clouds and should be avoided. If more than
16 of the 64 radiance values are missing in a target window of any camera view, we do not compute
linear correlation coefficients for this window, assigning to it a missing value flag instead.

To compute standard deviations for the An-camera radiances we again use an 8 by 8 window of
radiances centered on the 4 by 4 pixel region of interest (Figure 7a). We then compute the standard

deviation as SDAn =
√∑k

i=1(xi − x̄)2/(k − 1), where xi, with i ≤ 64, denotes the radiances and x̄
is the sample mean. Similar to the computation of CORR, if the number of missing values in an
8 by 8 window exceeds 16, we assign a missing value to SDAn. We expect SDAn to be small when
there is no cloud over a very smooth land surface, e.g., a frozen river or a high-altitude plateau
covered by packed snow.

The third feature is a measure of the forward scattering properties of the scene viewed by
MISR. After Nolin et al. (2002), we compute the Normalized Differential Angular Index (NDAI)
as NDAI = (X̄Df − X̄An)/(X̄Df + X̄An). Registration of the Df camera is generally less accurate
than for the An camera. So, in the computation of NDAI we we first set the location of the 8 by 8
window of radiances to the same target location in the An- and Df-camera images (e.g., blue pixels
in Figure 7a). Since the misregistration of the Df-camera image relative to the An-camera image
is no more than two pixels, and usually must less than this, we shift the Df-camera window of 8
by 8 pixels by up to ±2 pixels to find the best match of the Df-camera window to the An-camera
window. This leads to 25 different locations in the Df-camera image that we match to each An-
camera target region (Figure 7b). We use the minimum linear correlation coefficient across these
25 locations to identify the best Df-camera location and we compute NDAI using it.
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5 Methodology and Results

The three physical features that we use in this study are motivated by their different information
content for clear- and cloudy-sky conditions. A natural method for separating clouds from the
surface using these features is by setting threshold values on them. As illustrated in Figure 6, the
three-dimensional scatter plot shows that “cloudy” pixels have larger NDAI values than “clear”
pixels. The two-dimensional scatter plot of CORR and SDAN shows that “clear” pixels are clustered
close to two lines, represented as CORR = 1 and SDAN = 0, while “cloudy” pixels are located
farther away from these two lines. So, properly chosen thresholds will, to some extent, separate
“clear” and “cloudy” pixels in the three-dimensional space of our features.

After investigating the distributions of the three features using scenes from different orbits
and visually inspecting results obtained from different thresholds, we conclude that thresholds
for CORR and SDAN are stable and robust across different scenes and under different sunlight
conditions. However, appropriate thresholds for NDAI vary a great deal from scene to scene.
These results motivate our setting the thresholds for CORR and SDAN to empirically determined
fixed values of thresholdCORR = 0.8 and thresholdSD = 2. To determine the threshold for NDAI
we automatically fit a one-dimensional mixture Gaussian model to NDAI values computed from
three adjacent blocks of data using the Expectation/Maximization (EM) algorithm (see details
in section 5.1). We call the combination of three thresholds thus develop the Enhanced Linear
Correlation Matching Classification (ELCMC) algorithm, which is designed to operate on every set
of three MISR blocks of data.

Inspecting Figure 6, we see immediately that the class boundaries between “clear” and “cloudy”
are not rectangles, as in the ELCMC algorithm. To go beyond the thresholding method in the
ELCMC algorithm, we investigate Quadratic Discriminate Analysis (QDA) and Gaussian kernel
Support Vector Machine (SVM) approaches to construct curvier and smoother decision boundaries,
in the hope of improving upon the results obtained from the ELCMC algorithm. Both QDA and
SVM methods require training data, which are unavailable when new scenes are encountered.
Therefore, in the current study we use ELCMC classification results as training data for the QDA
and SVM methods. In this paradigm we label our two approaches as the ELCMC-QDA and
ELCMC-SVM methods.

Misclassified pixels in the ELCMC results are now problematic in that they now contaminate
the training data for the QDA and SVM methods. To ameliorate this problem note that SVM
methods are more robust than QDA when the training data contain errors because the hinge loss
function used in SVM is an L1-type loss (see details in section 5.3). Consequently, as we will see
in section 5.3.2, a SVM approach does lead to slightly better classification results against expert
labelled data than QDA. Keep in mind, though, that the QDA method is computationally cheaper
and thereby more suited for on-line processing of MISR data in the generation of cloud masks in
polar regions.

5.1 The Three-feature Based ELCMC Algorithm

The underlying logic of the ELCMC algorithm is straightforward. To illustrate this point, again
consider the two- and three-dimensional scatter plots in Figure 6 for the clear-sky surface (red),
low cloud (green) and high cloud (blue) regions in Figure 4. For clear-sky regions with underlying
smooth surface features SDAn is generally less than 2, while for rough surface features and clouds
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it usually greater than 2. To separate rough surface features from clouds we use the CORR and
NDAI features. We note that CORR is generally greater than 0.8 for rough surface features and
low clouds and less than 0.8 for high clouds, while NDAI is greater for low clouds than for rough
surface features. In the three-dimensional scatterplot of Figure 6, a threshold of 0.2 is sufficient to
separate rough surfaces from low clouds. For all 22 orbits of MISR path 26 that we have inspected
to date, we find similar results.

These observations motivate the following sequence of tests for separating clear from cloudy
regions:

ELCMC Algorithm:
A 1.1 km by 1.1 km target region is claimed “clear” when
· SDAN < thresholdSD OR
· CORR > thresholdCORR AND NDAI < thresholdNDAI.
When the above tests fail, the region is labelled as “cloudy.”

The algorithm claims “clear” for two types of situations: small SDAN suggests smooth ice or
snow surfaces, on which both linear correlation and forward scattering tests can fail; large CORR
and small NDAI together suggest no clouds above the snow and ice surface. To determine the
best thresholds, we investigated all 23 orbits of MISR data by visually comparing the results from
different thresholds with images of the observed radiances. We find that the best thresholds for
SDAn and CORR are very stable across different locations. The threshold for SDAn is mainly
related to the instrument noise level of the An camera, which changes little with the magnitude of
the radiance and from one location to the next. Thus, thresholdSD is set to 2 for all scenes. The
linear correlation between MISR camera views depends on both the ratio of the radiance to the level
of the instrument noise (i.e., the signal to noise ratio) and the accuracy of MISR geo-registration.
Both factors do not change much from one location to the next under nominal satellite platform
operations, so we set thresholdCORR to a fixed value of 0.8. Although there are small scene and
time changes in the optimal thresholds on SDAN and CORR, these changes are small relative to
values that we provide above.

Compared to the stability of thresholdSD and thresholdCORR, the best thresholdNDAI varies
across a large range of values, usually falling between 0.08 and 0.40. The magnitude of forward
scattered radiation depends on at least two factors and both of these two factors vary across location
and time. One factor is the exact angle between the line of sight of a MISR camera to a reflecting
surface and the line from the sun to the same reflecting surface, which is mostly determined by
the location of the NASA EOS Terra satellite and the height of the reflecting surface. The other
factor is the size and shape of the particles that form clouds as the directionality of scattering by
clouds is affected by these properties of cloud particles. Since both factors are unknown before data
processing, thresholdNDAI should be chosen in a data driven manner.

We employ a method to select thresholdNDAI based on modelling the distribution of NDAI
values across three MISR blocks as a mixture of two Gaussian distributions, one for the “cloudy”
area and the other for the “clear” area. The choice of two Gaussian distributions to model the
NDAI distribution is made for two reasons: two Gaussians fit the distribution of NDAI well and
the computation of mixed Gaussian fits by the EM algorithm is easier than fitting a mixture of other
distributions, such as Laplacian distributions. Three blocks of MISR data are modelled together,
representing a compromise between ensuring both “cloudy” and “clear” areas within the analysis
region and separability of NDAI values for ”cloudy” and ”clear” areas. Although modelling more
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Figure 8: Histogram (black lines) of NDAI from Data-20June2001 together with the fit (blue line) of the
two one-dimensional Gaussian functions mixture model to it. The vertical red line indicates the NDAI
threshold derived from this histogram.

than three MISR blocks of data together provides a greater probability of having both ”clear”
and ”cloudy” scene types in the block range, the distributions of NDAI from both “cloudy” and
“clear” areas in extended block ranges may change as a result of changes in the angles between the
illumination and view directions to the reflecting surface.

The one-dimensional mixture of two Gaussian distributions is fitted by an EM algorithm and
the dip in the fitted density is taken as thresholdNDAI, assuming, of course, that there is a dip in
the distribution between 0.08 and 0.40. Before applying the EM algorithm on NDAI distributions,
the upper and lower 2.5% of data are trimmed off to avoid outliers and extreme values in both
tails, thereby improving robustness of the fitting scheme. To find the dip in the fitted Gaussian
distribution functions we set the derivative of the distribution function to zero and solved for a
solution between the means of the two Gaussian distributions in the mixture. When no dip is
found within the expected range of NDAI values from 0.08 and 0.40, the threshold from either
the previous orbit or the next orbit is selected if one of the two is available. If neither of these two
thresholds exists, we use the average of all available thresholds for this path and range of blocks.
Finally, we use the dip in the fit of the two Gaussians to the distribution, instead of Bayes decision
rule, because the dip is more robust than Bayes decision rule when the empirical distribution has
a heavier tail than a mixture Gaussian model. Support for this choice is evident in 22 orbits that
we inspected.

An example of a NDAI distribution and our model fit to it is illustrated in Figure 8. These
results are generated using MISR radiances from DATA-20JUNE2001. For this case the dip in the
fit is quite clear, occurring at a value of 0.215. Using thresholdSD = 2.0, thresholdCORR = 0.80
and thresholdNDAI = 0.215, we obtain a misclassification rate of 6.05% against the expert labelled
data. To test the validity of these thresholds, we search for the best thresholds for this particular
data set using a small proportion, approximately 10%, of randomly selected expert labels. The best
thresholds we find are thresholdSD = 2.2, thresholdCORR = 0.76, and thresholdNDAI = 0.210 with
a misclassification rate of 5.82%. Most of the change is a result of the lower value for thresholdCORR.

To illustrate the ELCMC algorithm performance for DATA-20JUNE2001 we present the Df-
camera image, the expert labels and ELCMC results in Figure 9. The black areas on the left
and right margins of Figure 9c are not classified because only the central area in this image has
data from the MISR Af, An, Bf and Df cameras. Relative to the ”clear” and ”cloudy” labelled
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Figure 9: ELCMC algorithm cloud-detection results for Data-20June2001. Left: Df-camera red radiance
image. Center: Image of expert labels, where red labels indicate clear pixels, blue labels indicate cloudy pix-
els, and black labels indicate pixels ignored in the labelling process. Right: ELCMC algorithm classification
results, where white labels indicate cloudy pixels.

pixels, the algorithm has a misclassification rate of 6.05%. For expert labelled “clear” areas the
misclassification rate is 15.09%, while for ”cloudy” areas the misclassification rate is only 1.14%.
That is, the algorithm readily identifies clouds while classifying many pixels in clear regions of
rough terrain as cloudy. For example, towards the bottom left of Figure 9, the expert labels show
that there are no clouds over this mountainous area. However, in this region the ELCMC algorithm
claims some pixels as “cloudy”. An analysis of these false positive ”cloudy” pixels indicates that
they are labelled ”cloudy” as a result of the linear correlation test. We subsequently trace this result
to slight misregistration problems between the different MISR camera images. Unfortunately, in
polar regions terrain height information is sometimes inaccurate, leading to MISR registration
errors when the MISR data are projected to the terrain. These errors reduce linear correlations
between different MISR camera images for these scenes resulting in the misclassifications that we
have found.

In summary, the ELCMC algorithm in this exploratory data analysis is accurate to approxi-
mately 94% in separating cloud from surface features. Computations of the NDAI thresholds by
fitting a two Gaussian distribution model to the data is simple and fast. But any misregistration
errors in the MISR camera images used in the linear correlation test are going to cause some ”clear”
pixels of rough terrain to be misclassified as ”cloudy” pixels. To circumvent these problems we ex-
plore two nonlinear classifiers, i.e., QDA and SVM, in an attempt to improve upon the ELCMC
algorithm. We also investigate log(SDAN), instead of SDAN, as a feature because the distribution
of SDAN is heavy tailed and has a much larger range than both the CORR and NDAI features.
Moreover, QDA models data as Gaussian distributions that are symmetric, and distributions of
log(SDAN) tend to be more symmetric than those for SDAN. For training of SVM algorithms
the elements of the input vectors should have comparable magnitudes, so log(SDAN), which has a
range of values closer to those of CORR and NDAI, is more appropriate for this application as
well. Finally, we apply QDA and SVM methods directly to the red radiances from all nine MISR
cameras to test the value of our three-feature set.
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5.2 Quadratic Discriminate Analysis Classifiers

The ELCMC algorithm divides the three-dimensional feature space into rectangular regions. How-
ever, Figure 6 shows that the boundary between the ”clear” and ”cloudy” points is nonlinear and
does not particularly follow any one of the three coordinate axes. Fisher’s Quadratic Discriminate
Analysis (QDA) supplies a quadratic classification boundary that is expected to be more accurate
than simply thresholding on each feature. Implementation of QDA requires training data to con-
struct the boundary (cf. Mardia et. al. 1979; Ripley 1996). We use three blocks of MISR data to
train and test QDA for the same reasons in the development of the ELCMC algorithm, namely as
a trade-off between ensuring ”clear” and ”cloudy” pixels in each scene and enhancing separability
amongst the different features.

In a two class classification problem, QDA models each class density as a multivariate Gaussian
distribution:

fk(x) =
1

(2π)p/2|Σk|1/2
e−

1
2
(x−µk)T Σ−1

k
(x−µk),

where k = 1, 2 denotes the class label. Let πk be the prior probability of class k. The a posterior
distribution for x belonging to class k is then given by

P (x ∈ Class k|X = x) =
fk(x)πk

f1(x)π1 + f2(x)π2
.

The classification rule of QDA is to place x in the class that has the largest a posterior probability
at x. Using training data, parameters πk, µk, and Σk are estimated by the empirical class propor-
tions, means and variances, and subsequently substituted into the above two equations to form the
classifier.

To test the value of our three-feature set relative to the MISR radiances, we apply the QDA
method to two sets of features, one consisting of our three-feature set (log(SDAN), CORR, NDAI)
and the other comprised of the red radiances from the nine MISR cameras. For both sets of input
to QDA, we performed two experiments that used different training data from DATA-20JUNE2001.
In the first experiment the training data are the expert labelled data, as we want to quantify the
accuracy of the QDA classifiers when accurate labels are available. We use two-thirds of the 60,111
labelled pixels, selected at random, in order to estimate the QDA parameters for the two sets of
inputs. We subsequently apply the two QDA classifiers to the remaining one-third of pixels and
compute their misclassification rates. In the second experiment the training data are the labels
generated by the ELCMC algorithm when applied to DATA-20JUNE2001. Now, we are testing if
QDA can improve upon the ELCMC algorithm results by generalizing the decision boundaries of
the ELCMC algorithm to nonlinear ones. As before, the results of the QDA method are compared
with the expert labels to obtain error rates. The results of these two experiments when applied to
the two sets of input features are listed in Table 1 of summary section 5.5.

As Table 1 illustrates, the QDA approach when developed with expert labels produces much
lower misclassification rates, i.e., 0.96% with radiances as input and 2.94% with the three-feature
set of inputs, than the ELCMC algorithm, whose misclassification rates are 6.05% for automatically
chosen thresholds and 5.82% for the optimal set of thresholds developed from the expert labels.
That is, the QDA approach with either feature set performs better than the ELCMC algorithm when
accurate labels are available. Unfortunately, accurate labels are usually unavailable. Using ELCMC
algorithm results as training data, the QDA method based on radiances has a misclassification rate
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Figure 10: QDA cloud-detection results for Data-20June2001 when the QDA algorithm is trained using
ELCMC algorithm classification results. Left: Df-camera red radiance image. Center: ELCMC-QDA algo-
rithm results when applied to our set of three features. Right: ELCMC-QDA algorithm results when applied
to the red radiances from the nine MISR cameras. White labels indicate cloudy pixels.

of 3.59%, while the QDA method based on the three features has a misclassification rate of 4.09%.
In both cases QDA provides a nontrivial improvement over the ELCMC algorithm misclassification
rate of 6.05%. We illustrate the results from the ELCMC-QDA approach for DATA-20JUNE2001 in
Figure 10b with the three features as input and in Figure 10c for the nine MISR camera radiances.
The two sets of results are self-consistent, as we would expect from the misclassification rates, and
both sets of inputs lead to fewer mistakes, especially over the “clear” mountain area towards the
bottom and left of the image, than the ELCMC algorithm (Figure 9).

The differences in the misclassification rates when training with expert labels and ELCMC
algorithm-produced labels are caused by mistakes in the ELCMC algorithm labels. Overall, when
training labels are accurate, the QDA method is accurate; otherwise, errors in the training produce
errors in the classifications. We tested on both sets of inputs a robust version of QDA based
on Minimum Covariance Determinant estimators (c.f. Rousseeuw, 1985; Croux and Haesbroeck,
1999), but it does not improve the results. This result motivated our search for other types of robust
classifiers that we could train with ELCMC algorithm results. The Support Vector Machine (SVM)
approach is one candidate for providing robust classification results when trained with errors in the
data.

5.3 Support Vector Machine Classifiers

Research on machine learning algorithms led to the development of the Support Vector Machine
(SVM) approach (Vapnik, 1996; Burges, 1998; Cristianini and Shawe-Taylor, 2000; Schölkopf and
Smola, 2002; Hastie et al., 2001), which is able to construct nonlinear classifiers as does QDA.
Originally motivated by Vapnik (1996) using the concept of margins, SVMs turn out to have
equivalent regularization formulations in Reproducing Kernel Hilbert Spaces (RKHS), as shown
by Wahba et al. (1999). The SVM approach has proven to be successful in many classification
problems with high dimensional inputs and is robust to mistakes in the training data due to its
hinge loss function, which is related to L1 type of loss function. Therefore, a SVM approach might
be more effective than QDA when using ELCMC labels as training data.

In a two-class classification problem we have training data, i.e., predictors (x1, x2, · · · , xN),
(xi ∈ Rp) and corresponding labels (y1, y2, · · · , yN) ∈ {−1, 1}. A SVM maps x to a feature space
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z = φ(x) (z ∈ Rm) and searches for the linear hyperplane in Rm with the largest margin across the
transformed features z. Letting zi = φ(xi), we can write the original optimization problem (Vapnik,
1996) solved by a SVM as

min
ω,b

1
2
‖ω‖2 + C

N∑

i=1

ξi, (3)

subject to: yi(ωzi − b) ≥ 1− ξi; ξi ≥ 0∀i.
Equation (3) is a quadratic optimization problem with linear constraints, where C is a penalization
parameter for constraint violation. The computation of a SVM involves an inner product in the
feature space, K(xi, xj) =< φ(xi), φ(xj) >, which is called the kernel function. The classifier
learned from the optimization problem is in the form of f(x) = sign(ω̂z− b̂), which can be written
as f(x) = sign(

∑N
i=1 αiK(xi, x) + c) with the nonzero αi called support vectors.

Wahba et al. (1999) proved that a SVM with kernel K(·, ·) in the predictor space is the solution
of the following regularization problem:

minimize L(f, training data) + λJ(f), (4)

where L is the empirical loss function and J(f) is a penalty function. Here, f is a member of a
Reproducing Kernel Hilbert Space (RKHS) with kernel K on the predictor space and a hinge loss
function L(f, training data) =

∑N
n=1 [1− ynf(xn)]+, where [s]+ = s if s > 0 and zero otherwise.

The function J(f) is the norm in the RKHS of the reproducing kernel K. Since the hinge loss
function shares one piece with the L1 loss function, it provides a SVM with some robustness to
mislabelled data.

We choose Gaussian kernels in this cloud detection problem for two reasons. First, the Gaus-
sian kernel is the most commonly used in machine learning and has been applied successfully to
many classification problems. Second, smooth boundaries between “cloudy” and “clear” areas (c.f.
Figure 6) need to be found in this problem. Lin and Brown (2002) demonstrated in the case
of regression that the SVM Gaussian kernel tends to approximate smooth boundaries well and
conjectured that it would work well in classification problems. The Gaussian kernel is defined as

K(xi, xj) = exp
(
−‖xi − xj‖2/2σ2

)
, (5)

for xi and xi two points in the predictor space. In our cloud detection problem, the predictors
are either x = (log(SD), CORR, NDAI) or 1.1-km resolution red radiances from the nine MISR
cameras and we attempt to classify them as either resulting from a ”clear” or ”cloudy” 1.1-km
resolution region.

The software that we used to train the SVM is the Ohio State University SVM Classifier
Matlab Toolbox (Junshui Ma et al. – http://www.eleceng.ohio-state.edu/∼maj/osu smv/).
The OSU SVM toolbox implements SVM classifiers in C++ using the LIBSVM algorithm of Chih-
Chung Chang and Chih-Jen Lin. The LIBSVM algorithm is a simplification of both SMO by Platt
(1999) and SVMLight by Joachims (1999). Both the SMO and SVMLight algorithms break the
large SVM Quadratic Programming (QP) optimization problem into a series of small QP problems.
The computational complexity of training SVM using SMO and SVMLight are both empirically
around O(N2

1 ) in the examples shown in Joachims (1999), where N1 is the training sample size. The
complexity of testing is O(m N2) where N2 is the test size and m is the number of support vectors,
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which usually increases linearly with the size of the training data set. The LIBSVM algorithm
uses C in equation (3) as a parameter for the cost of constraint violations and σ as the bandwidth
parameter of the Gaussian kernel in equation (5). Both C and σ must be provided by the user
and, as will be discussed below, we compute values for them using expert-labelled data from some
scenes and then we fix them for other scenes.

In the analysis to follow we describe and compare the dependencies of SVM performance on the
source of the SVM training data. First, using expert labelled scenes, we compare the performance
of our SVM classifiers when trained with the set of three features and the red radiances from all
nine MISR cameras. Second, we assess SVM performance degradation when the labelled scenes
are derived from the ELCMC algorithm, again using the set of three features and the nine MISR
camera red radiances as input features. The motivation for these experiments is the same as for
the QDA method analysis. The SVM results are compared with the QDA results using the same
training and testing data in order to assess the relative performance of the two methods.

5.3.1 SVM Results with Expert Labelled Training Data

Using the expert labelled data, we first train our first SVM with the three-feature set of log(SD),
CORR, and NDAI. We then train a second SVM using the red radiances from the nine MISR
cameras. We normalize all features and radiances to a mean of 0 and a standard deviation of 1,
thereby ensuring that all input features have approximately the same magnitudes. These experi-
ments are identical to those with the QDA, as we want to compare the results of the two methods
and what are the optimal parameters.

In training a SVM computational demands increase rapidly with the number of samples in
the training data set. Therefore, we use only 1%, 2%, 5%, and 10% of the 60,111 expert labels
for DATA-20JUNE2001 to train the SVM, as opposed to the 66% that we use to train the QDA
algorithm. As in the QDA algorithm, all of the training samples are drawn at random from the
pool of expert labels. As mentioned earlier, we train two SVM classifiers, one on our set of three
features and the other on the red radiances from the nine MISR cameras. We apply the classifiers
to the expert labels not used in the training data set in order to assess SVM performance. To
compare SVM and QDA algorithm performance we also train the QDA algorithm on exactly the
same training data that we use for the SVM algorithm.

To ascertain optimal values for C and σ we first set C and σ to a pair of values within a
large range of values for them. We would then run the SVM training procedure 20 times for each
percentage of expert labels listed above. We then compute the mean and standard deviation of
the misclassification rates for each set of 20 training runs. We repeat this procedure for different
values of C and σ, covering the large range of values for them. We then take as the optimal pair
of values for C and σ the set that produced the lowest average misclassification rate. We obtain
C = 200 and σ = 0.01 for the optimal SVM parameters when using our three features as input and
C = 180 and σ = 0.03 for the optimal SVM parameters when using the nine MISR radiances as
input. We obtain both of these sets of values using 10% of the expert labels for the training data
set. We then use these values for C and σ when training the SVM using ELCMC algorithm results
as training data. The misclassification rates that we obtained with the SVM and QDA approaches
just described are reported in Table 2.

As Table 2 illustrates, the average misclassification rates of the SVM are slightly lower than for
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Figure 11: SVM cloud-detection results for Data-20June2001 when the SVM is trained using ELCMC
algorithm classification results. Left: Df-camera red radiance image. Center: ELCMC-SVM algorithm
results when applied to our set of three features. Right: ELCMC-SVM algorithm results when applied to
the red radiances from the nine MISR cameras. White labels indicate cloudy pixels.

the QDA algorithm when using the same training data, whether it uses the set of three features or
the red radiances from the nine MISR cameras. The most accurate results were obtained using SVM
on radiances, which produced a 0.72% misclassification rate using 10%, i.e., around 6000 values, of
the expert labels. Note that the misclassification rates of the QDA and SVM algorithms decrease
as the training sample size increases. Overall, we conclude that the SVM with expert labels for
training produces significantly better results than the ELCMC algorithm, while its results are only
slightly better than QDA when using expert labels. As expert labels are usually unavailable with
new data, we now test the SVM when training it with ELCMC algorithm results.

5.3.2 SVM Results with ELCMC Labelled Training Data

In this study we use the output of the ELCMC algorithm (section 5.1) as training data for an SVM
classifier. We perform the same experiments as in section 5.3.1, except we use randomly selected
ELCMC classification results as training data in conjunction with the optimal values chosen in
section 5.3.1 for C and σ. The SVM classifiers are applied to the entire data set, while the mis-
classification rates are relative to the expert labels. In Table 1 we show the average and standard
deviation of the misclassification rates for 20 runs using 10% of ELCMC algorithm results as train-
ing data. The average and standard deviation of the misclassification rate for the ELCMC-SVM
approach using the set of three features as input is 3.93±0.13%, while for the nine MISR radiances
as input the mean and standard deviation are 3.13± 0.18%. Overall, the average misclassification
rates for the SVM are lower than for the ELCMC algorithm and they are slightly lower than those
from the ELCMC-QDA approach. The SVM classification results for one of the 20 runs are shown
in Figure 11b and Figure 11c. The SVM appears generally robust to errors in the training data
set, as expected.

In summary, the SVM performs slightly better than QDA as a second stage classifier that utilizes
ELCMC algorithm results. One potential reason for this improvement is that the SVM more readily
adapts to smooth classification boundaries compared to QDA methods. However, visual inspection
of the results from the ELCMC-QDA and ELCMC-SVM methods shows no important differences
between the two approaches. This finding is important as the computational cost of the SVM is
much higher than for QDA. The computational costs of training a SVM with the LIBSVM algorithm
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Figure 12: ELCMC-QDA algorithm cloud-detection results for Data-17July2002. Upper left: An-camera
red radiance image. Upper center: Df-camera red radiance image. Upper right: Image of expert labels, where
red labels indicate clear pixels, blue labels indicate cloudy pixels, and black labels indicate pixels ignored
in the labelling process. Lower left: ELCMC algorithm classification results. Lower center: ELCMC-QDA
algorithm results when applied to our set of three features. Lower right: ELCMC-QDA algorithm results
when applied to the red radiances from the nine MISR cameras.

is approximately O(N2
1 ), whereas the costs for testing go as O(mN2), where N1 and N2 are the

number of training and testing data samples, respectively, and m is the number of support vectors,
which increases linearly with N1. The computational cost of QDA is O(N1) for training and O(N2)
for testing. Therefore, the ELCMC-QDA approach is not nearly as computationally demanding as
the ELCMC-SVM approach.

5.4 Classifier Results for DATA-17JULY2002

To test the three proposed classifier methods on a different orbit, as well as assess the capability
of classifiers trained on one region to perform accurately in other regions, we analyze DATA-
17JULY2002. Red radiances from the MISR An and Df cameras, expert labels and classification
results for this scene are presented in Figure 12. The scene consists primarily of clear-sky snow-
covered regions of the Greenland plateau and several cloud decks scattered across it. For this
scene the MISR L2TC stereo-derived cloud product contains no retrievals for 91.82% of the pixels
and misclassifications for 0.28% of the pixels. The L2TC algorithm has difficulties with this scene
because of the lack of significant texture in the reflecting surfaces, which makes matching the same
object in the different MISR camera views difficult.

We obtain the classification results presented in Figure 12 and Table 1 section 5.5 of in a manner
identical to the earlier studies in sections 5.1, 5.2 and 5.3. In particular, we train the classifiers on
expert labels, as well as ELCMC algorithms results, for this scene and then test on subsets of the
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training data withheld for this purpose. For the ELCMC algorithm we determine the threshold
on NDAI in the two Gaussian mixture model to be 0.177. As Table 1 illustrates, the ELCMC
algorithm obtains a misclassification rate of 6.28%, which improved to 2.02% when supplemented
by the ELCMC-QDA method applied to radiances and to 1.94% when supplemented by the same
approach applied to features. The misclassification rates obtained by supplementing the ELCMC
algorithm with an ELCMC-SVM approach are 2.08% with radiances as input features and 1.82%
when using the set of three features as the input. Visual inspection of the results in Figure 12
once again demonstrates no significant performance differences between the ELCMC-QDA and
ELCMC-SVM approaches.

To test the performance of classifiers trained on one region when applied to a different re-
gion, we apply the ELCMC-QDA and ELCMC-SVM algorithms trained on DATA-17JULY2002 to
DATA-20JUNE2001. We obtain misclassification rates of 17.05% for ELCMC-QDA and 19.21%
for ELCMC-SVM using the radiances as features and 20.25% for ELCMC-QDA and 25.70% for
ELCMC-QDA with the set of three features as inputs. These results suggest that classifiers trained
for one area are not appropriate without modification for other areas, mainly because of the re-
quirement of different thresholds for different locations and times.

To demonstrate necessariness of feature selection, we consider the means of the expert labelled
”clear” and ”cloudy” sky radiances listed in Table 3. Clearly, the Df-camera radiances are greater
in magnitude in cloudy regions as compared to clear-sky regions, confirming enhanced forward
scattering from clouds relative to the underlying surface. However, the mean of Df angle radiances
(355.36) of clear regions in DATA-17JULY2002 is even higher than that (321.87) of cloud regions in
DATA-20JUNE2001. It suggests that the feature selection based ELCMC algorithm is a necessary
step to provide good training data for QDA and SVM, although a quadratic boundary in the raw
radiances space can separate “clear” and “cloud” pixels well in each location.

To determine the best thresholds for the data collected at different locations and times is not
simple. One approach for reducing the significance of this problem is to develop features that are
scene independent, while a second approach, albeit a time consuming one, is to develop specific
time-dependent sets of thresholds for each location. Our research results presented here indicate
a third possibility: use the ELCMC algorithm with two fixed thresholds and a third that can
be computed automatically to provide classification results for training the ELCMC-QDA and
ELCMC-SVM algorithms. Although the thresholds chosen in the ELCMC step are not always the
best ones for a particular scene, the post-process QDAs or SVMs are robust enough to provide
good approximations of the classification boundary based on the ElCMC labels. The results from
the current study indicate that misclassification rates of approximately 2-4% can be obtained with
this approach.

We wish to emphasize that the expert “cloudy” and “clear” labels for pixels in DATA-20JUNE2001
and DATA-17JULY2002 were provided with high confidence. As such, pixels with a nebulous clas-
sification, such as near cloud boundaries, were generally not part of the expert label data sets.
Radiances originating near cloud boundaries will be registered to different locations on the ref-
erence ellipsoid from one MISR camera image projection to the next, a situation similar to the
cloud with small spatial extent presented in Figure 3). For these types of scenes the use of fea-
tures, rather than radiances, might produce more accurate results. We plan to investigate the
performances of ELCMC algorithm post-processors for these types of difficult scenes using both
radiances and specific feature sets as their input.

23



Table 1: Misclassification rates of tested classifiers

Classifiers Error Rates (SD) Error Rate (SD)
DATA-20JUNE2001 DATA-17JULY2002

Operational algorithm [no retrieval percentage] 53.25% [29.92%] 0.28% [91.82%]
ELCMC on SD, CORR, and NDAI 6.05% 6.28%
QDA on features using expert training labels 2.94% 1.55%
QDA on radiances using expert training labels 0.96% 1.38%
SVM on features using expert training labels 1.82% (0.06%) 1.20% (0.05%)
SVM on radiances using expert training labels 0.72% (0.08%) 0.60% (0.09%)
QDA on features using ELCMC training labels 4.09% 1.94%
QDA on radiances using ELCMC training labels 3.59% 2.02%
SVM on features using ELCMC training labels 3.84% (0.07%) 1.82% (0.16%)
SVM on radiances using ELCMC training labels 3.19% (0.09%) 2.08% (0.36%)

NOTE: Misclassification rates are produced by the three classifiers when applied both to the set of three
features and the red radiances from the nine MISR cameras obtained from Data-20June2001 and Data-
17July2002.

Table 2: Mean misclassification rates of the QDA and SVM on expert labels

Training size QDA on features QDA on radiance SVM on features SVM on radiances
600(1%) 3.20% (0.44%) 1.17% (0.15%) 2.22% (0.25%) 1.26% (0.30%)
1200(2%) 3.13% (0.29%) 1.04% (0.23%) 2.02% (0.22%) 1.05% (0.19%)
3000(5%) 3.10% (0.28%) 1.00% (0.12%) 1.90% (0.08%) 0.90% (0.14%)
6000(10%) 3.06% (0.23%) 0.99% (0.12%) 1.82% (0.06%) 0.72% (0.08%)

NOTE: Mean misclassification rates of the QDA and SVM are trained and tested on 20 identical sets of
random samples drawn from the expert labels of Data-20June2001. Standard deviations about the mean
misclassification rates over the 20 runs are in parentheses.

5.5 Summary Tables

As a summary of our study, we present the misclassification rates from all classifiers tested on
DATA-20JUNE2001 and DATA-17JULY2002 in Table 1. To illustrate the dependence of the mis-
classification rates on the size of the training data sets we present in Table 2 results from QDA
and SVM algorithms applied to DATA-20JUNE2001 that were trained with different percentages
of the expert labelled data sets. Finally, in Table 3 we demonstrate the scene-dependence of the
radiances for expert labelled “cloudy” and “clear” radiances, indicating the problems associated
with training them on one regions and then applying them to other regions.

6 Conclusions and Discussions

In this paper we developed three features, i.e., (SDAn, CORR,NDAI), using MISR data for de-
tection of clouds over polar regions. Three classification methods, i.e., ELCMC, ELCMC-QDA
and ELCMC-SVM, were developed and applied to the set of three features for cloud detection in
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Table 3: Means of the red radiances from the nine MISR cameras

Mean Radiances Df Cf Bf Af An Aa Ba Ca Da
Cloudy(20JUNE2001) 321.87 257.60 206.87 174.34 163.89 190.79 192.95 197.70 197.58
Clear(20JUNE2001) 222.09 207.02 193.02 176.35 167.80 176.81 182.66 188.92 192.92
Cloudy(17JULY2002) 408.32 354.22 310.17 277.21 262.26 284.82 286.18 281.94 272.19
Clear(17JULY2002) 355.36 341.10 324.96 302.58 285.26 284.43 282.97 278.27 272.05

NOTE: Means of the red radiances are calculated from the nine MISR cameras for Data-20June2001 and
Data-17July2002, partitioned according to expertly labelled “clear” and “cloudy” pixels.

polar regions. All three methods produced significantly more accurate results compared to the
operational MISR stereo cloud detection algorithm, both in terms of classification accuracy when
compared with expert labelled data and in terms of computational speed. In an operational setting
the most fundamental method among the three is the ELCMC algorithm since we propose using it
to create the training data for the QDA and SVM methods.

In this study the ELCMC algorithm produced misclassification rates of 6.05% and 6.28% against
expert labels for data sets coming from MISR orbits 7898 and 13723, which are much lower than the
rates for the MISR operational algorithm. Using the results of the ELCMC algorithm as training
data for the QDA and SVM algorithms, we find that both the QDA and SVM algorithms improve
upon the accuracy of the ELCMC results, with the SVM producing slightly better results than
QDA. But the computational expense of the SVM is significantly greater than for QDA and we
currently favor the ELCMC-QDA approach for processing massive amounts of MISR data. We
obtained comparable results from the ELCMC-QDA approach when we replaced the set of three
features with the red radiances from the nine MISR cameras. So, either radiances or the set
of three features are appropriate as inputs to the ELCMC-QDA algorithm, although in practice
greater efficiency can be gained by using the set of three features as they are always generated by
the ELCMC algorithm as a pre-processor.

The methods that we tested in this study can facilitate, as a pre-processor, the MISR L2TC
operational cloud-height retrieval algorithm . Using either ELCMC-QDA or ELCMC-SVM for
”clear” and ”cloudy” sky detection, one could then run the L2TC matching algorithm only on
the “cloudy” pixels. Moreover, in the L2TC cloud-motion retrieval algorithm, we would be more
confident that we are matching “cloudy” pixels and snow- and ice-covered surface features. This
approach would improve the accuracy and speed of the L2TC cloud algorithms as pattern matching
of “clear-sky” pixels would be eliminated.

As we have learned through this project, feature selection based on the physics knowledge and
statistical exploratory analysis is very important for massive data set problems of the information
technology age. Understanding the physics behind the problem is not only the final goal of the
scientific research, but also provides us insights for solving the statistical detection problem. The
traditional statistical approach as well as the cutting-edge method SVM from machine learning led
to the huge improvements of our methods over the operational algorithm.
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