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Introduction

Prelude

Computer technologies make easy the collection of
data, driving the need for effective ways to

� transmit and store data, and

� analyze data.



The former is the subject of

� Information theory

! data compression/coding.

Claude Shannon:
A Mathematical Theory of Communication (1948)

The latter is the subject of

� Statistics

! estimation/inference;

... Fisher, Neyman, Tukey, ...

The two fields shared a long history of interactions.



A personal and biased list:

� Kullback (’51) Mutual information and

sufficiency

� Jaynes (’57) Maximum entropy method

� Kullback and Leibler (’59) KL divergence

� Kolmogorov (’65) K-sufficiency in

algorithmic complexity theory

� Wallace and Boulton (’68) Minimum

Message Length (MML)

� Rissanen (’78) Minimum Description

Length (MDL)

� Csiszär and Tusnädy (’84)

Alternating minimization – EM algorithm

� Berrou, Glavieux and Thitimajshima’s (’93)

Turbo decoding

� Barron, Birgé and Massart (’98) Nonparametric

estimation by complexity regularization (’98)



A “Bit” of Information Theory

Claude Shannon
(A Mathematical Theory of Communication, 1948):

The fundamental problem of communication
is that of reproducing at one point either
exactly or approximately a message selected
at another point.

What is a code?

Given a finite alphabet (or set) A, a binary code C is a
map from A to strings of 0’s and 1’s.



Example: A = fa; b; cg

a
(0)

(10)
b

(11)
c

C : A ! f0;1g�
a ! 0

b ! 10

c ! 11

L is the code length function of C in
bits – for binary digits (Tukey):

L(0) = 1, L(10) = 2, L(11) = 2

C is “prefix” requiring no separating symbols:

0001110 must have come from aaacb.

Moreover, L(�) = � logP(�);

for P (a) = 1=2; P(b) = P(c) = 1=4:



Kraft’s inequality (1949):

L(�) is the code length function of a (binary) prefix
code on A iff X

x
2�L(x) � 1:

Key: Map a code to a binary tree, then “prefix” iff the
codewords are all end-nodes.

100

0

1111

1110111100

1011

2�1+2�3+2�4+2�5+2�5+2�4 < 1



It follows that for any probability distribution Q(�),

� logQ(x) may be regarded as the code length of
x of a prefix code.



Claude Shannon
(A Mathematical Theory of Communication, 1948):

The significant aspect is that the actual
message is one selected from a set of
possible messages.

How good is a code?

Assume the data string is generated from a source
distribution P , then we can define

Entropy of P :

H(P) =
X

P(x)[� logP(x)]:



Redundancy: Given a true (source) distribution P , the
expected redundancy of a code L is defined as

R(L; P) = EPL(X)�H(P):

Re-write as

R(L; P) = EP log[P(X)=Q(X)]

� KL(P;Q) � 0;

where Q(X) = 2�L(X), viewed as a probability
distribution by Kraft’s inequality.

Connection to Fisher’s Information:

lim
t!0

KL(P�; P�+t)

t2
=

I(�)

ln 4
:



For iid data strings from P ,

H(Pn) = nH(P):

Shannon’s Coding Theorem (for iid data strings) :
For any code Ln(xn), the per symbol redundancy

R(Ln; Pn)

n
=

EPLn(X
n)

n
�H(P) � 0;

and for code L�n(x
n) = [� logPn(xn)]+,

R(Ln; Pn)

n
=

EPLn(X
n)

n
�H(P) � 1=n:

H(P ) is the compression limit.



Universal Coding Theorem (for iid data strings):

Without knowing P , there is a code Ln that achieves
the entropy rate asymptotically,

Ln(Xn)

n
! H(P) in probability:

References on Information Theory:

Shannon (1948),
A Mathematical Theory of Communication

Book: Cover and Thomas (1990),
Elements of Information Theory

Review: Verdú (1998),
Fifty Years of Shannon Theory



From Coding to Modeling: MDL

Rissanen’s (’78) Minimum Description Length (MDL)
Principle:

Choose the model that gives the shortest
description of data.

References on MDL:

Book: Rissanen, 1989,
Review: Barron, Rissanen and Yu, 1998, IEEE-IT
Review: Hansen and Yu, 1998



Precursors to MDL:

Algorithmic complexity
(Kolmogorov, Solomonoff, Chaitin, 60’s);

Shortest description length for classification
(Wallace and Boulton, ’68)

Related earlier statistical works:

Cp model selection criterion (Mallows, ’73)

AIC model selection criterion (Akaike, ’74)

BIC model selection criterion (Schwarz, ’78)



Recall for any probability distribution P(�),

� logP (xn) may be regarded as the code length
of xn of a prefix code via Kraft’s inequality.

Hence for any density function f(�) and precision �,

� log[f(xn)�n] = � log f(xn)� n log �

is an (approximate) code length. Therefore,

� log f(xn)may be regarded as the (idealized) code
length of xn.



What description form to use for MDL?

For one parametric family

Mk = ff� : � 2 �k � Rkg

Foundation for MDL: Shannon’s Coding Theorem

It implies that � logP(xn) is the code length to use
in MDL IF P is known.

L(xn) = � logP�(xn) + L(�):

Hence MDL is the same as Maximum Likelihood, IF
L(�) is independent of �,

min
�
f� logP�(xn)g  ! max

�
fP�(xn)g



Over a collection of parametric families, this is the
model selection problem.

Mk = ff� : � 2 �k � Rkg; Mk 2 C

Select oneMk from C based on n samples.

Foundation for MDL: A universal coding theorem
justifies the description form based on a model class.



Universal Coding Theorem overMk (Rissanen, 1986):

� R(Ln; Pn)=n � k
2(logn=n+ o(1)); and

� a universal codeL�n which achieves the lower bound.

A universal code L�n based onMk should be used for
model selection in MDL.

Q* (j)

(k)n

n

Q*

M

M k

j

Here, Q�n = 2�L
�

n



Examples of Universal Codes or DL’s

(i)Two-stage Description Length

L(dataj�̂) + L(�̂) + L(Mk)

, maximum likelihood+ penalty;

IF L(Mk) is chosen independent of k,

where penalty = code length for the parameter
estimate (� k=2� logn),

(ii) Mixture Form of Description Length

� logm(xn) = � log
Z
�
f�(x

n)w(�)d� + L(Mk):

This form connects to Bayesian model selection.



(iii) Predictive

L(xn) + L(Mk)

=
nX
t

� log f(xtj�̂t�1) + L(Mk);

where �̂t�1 is a good estimator, say MLE, based on
the first (t� 1) observations x1; :::; xt�1.

It connects to prequential statistics of P. Dawid and to
learning theory/machine learning.



(iv) Normalized Maximum Likelihood (NML)

Example: What is the NML description length for a
0-1 sequence of length n based on the iid Bernoulli
model?

k= number of 1’s.

Use logn to code k.

a. Two-stage: �k log k
n� (n�k) log(1� k

n)+ logn

b. NML: log
�
n
k

�
+ logn

It first appeared in the coding literature and was brought
into MDL by Rissanen (1996).



MDL in Normal Linear Regression:
Bridging AIC and BIC

Ref: Hansen and Yu (1999a)

Model:

y =
X

m=1

�mxm+ �;

where

� � � N(0; �2),

�  = (1; : : : ; M) 2 f0;1gM index for the 2M

possible models.

Recall

BIC() =
n

2
� logRSS() +

k

2
� logn:

AIC() =
n

2
� logRSS() +

k

2
� 2:



� If the model is finite dimensional (parametric), BIC
is consistent and prediction optimal;

� If the model is infinite dimensional (nonparamet-
ric), AIC is prediction-optimal.



One Mixture Form of MDL: gMDL

� For any given , take an inverted gamma prior on
� = �2

p(�) =

r
a

2�
��3=2 exp

��a
2�

�
;

� given � , � has a multivariate Gaussian prior

p(�j�) � N(0; c��):



� Use Zellner’s g-prior (1986) � = (XtX)�1

� Minimize over a and c according to MDL for
each 

Then we get

L(ynj) =
8<
:

n
2 log

RSS()
(n�k)

+
k
2 logF; R2 � k=n;

n
2 log(y

ty=n) otherwise;

where F =
(yty�RSS())

kS
.



Hence

gMDL() = L(ynj) + L(â) + L(ĉ) + L():

� L(â)+L(ĉ) could be made indep. of  if we use
a fixed precision say 1=

p
n for all models; and

� L() could be that of a two-stage code on f0;1gM :

L() = log

 
M
k

!
+ logn:



Example 1: Number of Bristles on the Fruit Fly

Original data collected by Long et al (1995) to identify
genetic loci that influence the number of bristles on
the fruit fly.

As a linear regression variable selection problem:
(e.g. Broman, 1997).

y: number of bristles

x: gender indicator, on-and-off indicators at 19 ge-
netic markers, and their interaction terms with gender
(39 variables total).



Broman (1997) used

BIC� =
n

2
� logRSS + � � k

2
� logn;

with � = 2;2:5;3 to adapt to this problem.

All three give rise to an 8-term model:

� constant term

� main effect for gender

� five marker main effects (markers 2, 5, 9, 13 and
17), and

� one gender � marker interaction (at marker 5).



Estimate StdErr

intercept 12.9 0.2
sex -1.4 0.1
M13.5 1.2 0.2
M35 1.1 0.3
M46 1.8 0.3
M69.5 1.1 0.2
M90 1.7 0.2
sex � M35 0.9 0.1



Dimension k
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Comparing gMDL with AIC and BIC



Example 2: A Simulation Study

Set-up: y = X�+ �

Experiment design:

� X � N(0;�20�20), �i;j = �ji�jj,

� � built from k IID exp(1) and rest zero,

� � � N(0; �2In�n).

�(f0:25;0:77g)�
k(f5;15g)�

�2(f1=3;3g)�
n(f100;250g).



Model size
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Penalty for gMDL

Sample size = 100
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BIC

AIC

high noiselow noise

Penalty for gMDL

Sample size = 250

  5 variables
15 variables

Equivalent Penalty = 2fG(M�)� n
2

logRSS(M�)g

where criterion G=AIC, or BIC, or gMDL, and M� is the optimal model according to G.



What is going on?

It can be shown (Hansen and Yu, 1999a) under the
model in Breiman and Freedman (1986) that the gMDL

penalty is approximately

log[nCk]

where

Ck = average SNR for ModelMk:

Adjusting the penalty with this factor, gMDL adapts
to act like AIC or BIC depending on the underlying
bias and variance trade-off and hence exhibits “bridg-
ing” behavior.



Wavelet Image Denoising

Wavelet Transform: Compacts energy better – sparse
wavelet coefficients.

Book References on Wavelets:

Daubechies (1992)

Vetterli and Kovačević (1995)

Strang and Nguyen (1996)

Mallat (1998)



2-D wavelet transform: product of 2 1-D transforms
with one horizontal and one vertical.

A 3-level wavelet transform is used.

H - High pass filter or Detail, e.g. differencing in Haar;

L - Low pass filter or Smooth, e.g. averaging in Haar.

Level 1: Apply the 2-D transform to the original image,
we get four subbands HH1, HL1, LH1 and LL1;

Level 2: Take LL1 ...

Level 3: Take LL2 ...



Ordinary 1-level, 2-d Wavelet Transform



Ordinary 3-level, 2-d Wavelet Transform



Key empirical fact: histograms of coefficients by
subband suggest a Laplacian distribution
(Simoncelli and Adelson, 1996):
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MDL in Wavelet Denoising and Compression

Donoho and Johnstone’s denoising model in the wavelet
domain:

y = �+ �

where � iid N(0; �2).

� Thresholding denoises and also “compresses”
because it sets coefficients to zero.

� Model selection also sets coefficients to zero and
estimates for the non-zero ones.
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Adding iid Gaussian Noise



� Donoho and Johnstone’s (1994) VisuShrink uses
hard threshold �

p
2 logn, and

� Saito’s (1994) two-stage MDL uses hard thresh-
old �

p
3 logn.

For images they both set too many coefficients to zero,
even though they possess minimax optimality proper-
ties over Besov spaces.



lMDL for simultaneous wavelet image denoising and
compression

Ref: Hansen and Yu, (1999b)

Assume noise � = 1.

IID model for each subband:

�’s are either 0 or from a Lap(�).

Marginally,

� � p�0+ (1� p)Lap(�):



Let  be the 0-1 model or state vector.

If  = 0, y � �(y) and use �̂ = 0:

If  = 1, y � m�(y) = Lap � �
and use �̂ = posterior mean.

Fortunately, both m(y) and �̂ are closed-form.



lMDL Multi-stage coding (subband-dependent)

Total code length:

lMDL(y) = Ltotal(y) = L(yj) + L(jp̂) + L(p̂)

lMDL: choose  to minimize Ltotal(y).

Hansen and Yu (1999b) show that lMDL

thresholds at

TlMDL = h�1((1� p̂)=p̂);

where h(y) = m(y)=�(y) (increasing), and

p̂ = proportion of fy; h(y) > 1g:



lMDL Multi-stage coding (subband-dependent)

� Estimate p by p̂ = # fy : m(y)
�(y)

> 1g=n
and code p̂ with

L(p̂) = logn=2:

� Given p̂, code the state variable or model  using
a Bernoulli coder

L(jp̂) = �
X
ij

(1�ij) log(p̂)�
X
ij

ij log(1�p̂)

� Given , code y

L(yijj) = � log�(yij) if ij = 0;

L(yijj) = � logm(yij) if ij = 1

L(yj) =
X

L(yijj)



Results ( test image Lena; SNR=4.4)

Methods in comparison:

1. MAP Soft-thresholding (Moulin and Liu, 1998):
TMAP =

p
2�2=��.

2. Optimal MSE Soft-thresholding (Chang, Yu and
Vetterli , 1997):
TMSE = �2=��:

It outperforms most of the time SureShrink (by up to
6%), and is simpler to compute.

3. lMDL

TlMDL = h�1((1� p̂)=p̂):

All are iid model and Lap-based and of computation
of order O(n).



Number of Coefficients Kept
(512� 512 = 262;144 total pixels)

subband (level) Moulin and Liu Chang et al lMDL
LL (3) 4096 4096 4096

HH (3) 1296 1909 591
HL (3) 3010 3298 1491
LH (3) 1697 2299 758
HH (2) 29 242 88
HL (2) 2716 5047 1563
LH (2) 283 1102 324
HH (1) 0 0 0
HL (1) 94 384 215
LH (1) 0 0 0

Total 13,221 18,377 9,126
Percentage (%) 5.0 7.0 3.5

measure Moulin and Liu Chang et al lMDL
MSE 71.12 63.84 70.56
MSE/�2 0.178 0.160 0.176
PSNR 29.61 30.08 29.65

where PSNR = 10 log10[255
2=MSE].



Performance Comparison for Lena with SNR =4.4

Moulin and Liu Chang et al lMDL
% of coef. kept 5.0 7.0 3.5

MSE 0.178 0.160 0.176

Moulin and Liu (1998): MAP Soft Thresholding
TMAP =

p
2�2=��.

Chang, Yu and Vetterli (1997): Optimal MSE Soft Thres.
TMSE = �2=��:



Moulin and Liu (1998)lMDL (1999)Chang et al. (1997)
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Recap: lMDL achieves a good trade-off between
denoising and compression.



Note: under the Lap model,

entropy of kept coefficients /# of kept coefficients:

Thus lMDL uses half of the bit rate of Chang et al while
losing only 0.4 dB PSNR (or 10% MSE), and uses
70 % of the bit rate as Moulin and Liu while having the
same PSNR (or MSE).

(In comparison, in compression literature, cutting the
bit rate into half results in about 3 dB of distortion
loss.)



From Modeling to Coding:

Wavelet Image Coder

Yoo, Ortega and Yu (1999): one of the best image
compression schemes.

Key idea: use Lap. model to quantize wavelet
coefficients:

� Optimal quantization becomes a uniform
quantizer under entropy constraint (Sullivan, 1996);

� Estimation based on quantized data is
ML estimation;

� Bit allocation is done by table-look-up; and

� Spatial adaptivity is achieved by predicting the
variance of the current pixel using the neighboring
quantized pixels.



Performance Comparison in MSE For Lena

Rate (bpp) EZW SPIHT EQ CBCAQ
0.25 31.34 25.12 23.34 23.29
0.50 15.31 12.28 11.35 11.40
1.00 7.21 5.85 5.34 5.47

(Average Power or Energy Level �2: 19,760.66)

EZW: Shapiro (1993).

SPIHT: Said and Pearlman (1996).

EQ: LoPresto et al (1997).

CBCAQ: Yoo et al (1999).



Concluding Remarks

We have seen at various levels the interaction
between “codes” and “models”, or between
information theory and statistics.

Future will see more of this interaction...

The goals of information theory and statistics will
become more entangled. For example, statisticians
have to take into account formally the compression
aspect of their data; and the information/coding the-
orists have to compress while keeping inference in
mind.



At the concrete coding level, models will be useful for

� image
� video
� speech
� hyperspectral (or curve) data
� ...

At the meta-coding level, MDL principle gives rise to
gMDL and lMDL with impressive performances in
their respective problem.

It will be useful for

� linear models
� time series
� classification problems based on hyperspectral data

(e.g. forestry)
� nonparametric estimation
� ...


