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Rényi Institute of Mathematics,
Hungarian Academy of Sciences

POB 127, H-1364 Budapest,
Hungary

Paul C. Shields

Professor Emeritus of Mathematics,
University of Toledo,

Ohio,
USA



Foundations and Trends™ in
Communications and Information Theory

Published, sold and distributed by:
now Publishers Inc.

PO Box 1024

Hanover, MA 02339

USA

Tel. +1-781-985-4510

www.nowpublishers.com

sales@nowpublishers.com

Outside North America:
now Publishers Inc.

PO Box 179

2600 AD Delft

The Netherlands

Tel. +31-6-51115274

Printed on acid-free paper

ISSNs: Paper version 1567-2190; Electronic version 1567-2328

© 2004 I. Csiszár and P.C. Shields

All rights reserved. No part of this publication may be reproduced, stored

in a retrieval system, or transmitted in any form or by any means,

mechanical, photocopying, recording or otherwise, without prior written

permission of the publishers.

now Publishers Inc. has an exclusive license to publish this material

worldwide. Permission to use this content must obtained from the

copyright licence holder. Please apply to now Publishers, PO Box 179,

2600 AD Delft, The Netherlands; www.nowpublishers.com; e-mail:

sales@nowpublishers.com



Foundations and Trends™ in

Communications and Information Theory

Vol 1, No 4 (2004) 417-528

© 2004 I. Csiszár and P.C. Shields

Information Theory and Statistics: A Tutorial

I. Csiszár1 and P.C. Shields2

1 Rényi Institute of Mathematics, Hungarian Academy of Sciences, POB 127,
H-1364 Budapest, Hungary, csiszar@renyi.hu

2 University of Toledo, Ohio, USA, paul.shields@utoledo.edu

Abstract
This tutorial is concerned with applications of information theory

concepts in statistics, in the finite alphabet setting. The information

measure known as information divergence or Kullback-Leibler distance

or relative entropy plays a key role, often with a geometric flavor as

an analogue of squared Euclidean distance, as in the concepts of

I-projection, I-radius and I-centroid. The topics covered include large

deviations, hypothesis testing, maximum likelihood estimation in

exponential families, analysis of contingency tables, and iterative

algorithms with an “information geometry” background. Also, an

introduction is provided to the theory of universal coding, and to

statistical inference via the minimum description length principle

motivated by that theory.
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Preface

This tutorial is concerned with applications of information theory con-
cepts in statistics. It originated as lectures given by Imre Csiszár at the
University of Maryland in 1991 with later additions and corrections by
Csiszár and Paul Shields.

Attention is restricted to finite alphabet models. This excludes some
celebrated applications such as the information theoretic proof of the
dichotomy theorem for Gaussian measures, or of Sanov’s theorem in
a general setting, but considerably simplifies the mathematics and ad-
mits combinatorial techniques. Even within the finite alphabet setting,
no efforts were made at completeness. Rather, some typical topics were
selected, according to the authors’ research interests. In all of them, the
information measure known as information divergence (I-divergence) or
Kullback–Leibler distance or relative entropy plays a basic role. Sev-
eral of these topics involve “information geometry”, that is, results of
a geometric flavor with I-divergence in the role of squared Euclidean
distance.

In Section 2, a combinatorial technique of major importance in in-
formation theory is applied to large deviation and hypothesis testing
problems. The concept of I-projections is addressed in Sections 3 and

420
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4, with applications to maximum likelihood estimation in exponen-
tial families and, in particular, to the analysis of contingency tables.
Iterative algorithms based on information geometry, to compute I-
projections and maximum likelihood estimates, are analyzed in Sec-
tion 5. The statistical principle of minimum description length (MDL)
is motivated by ideas in the theory of universal coding, the theoret-
ical background for efficient data compression. Sections 6 and 7 are
devoted to the latter. Here, again, a major role is played by concepts
with a geometric flavor that we call I-radius and I-centroid. Finally, the
MDL principle is addressed in Section 8, based on the universal coding
results.

Reading this tutorial requires no prerequisites beyond basic proba-
bility theory. Measure theory is needed only in the last three Sections,
dealing with processes. Even there, no deeper tools than the martin-
gale convergence theorem are used. To keep this tutorial self-contained,
the information theoretic prerequisites are summarized in Section 1,
and the statistical concepts are explained where they are first used.
Still, while prior exposure to information theory and/or statistics is
not indispensable, it is certainly useful. Very little suffices, however,
say Chapters 2 and 5 of the Cover and Thomas book [8] or Sections
1.1, 1.3, 1.4 of the Csiszár-Körner book [15], for information theory, and
Chapters 1–4 and Sections 9.1–9.3 of the book by Cox and Hinckley
[9], for statistical theory.



1

Preliminaries

The symbol A = {a1, a2, . . . , a|A|} denotes a finite set of cardinality
|A|; xn

m denotes the sequence xm, xm+1, . . . , xn, where each xi ∈ A; An

denotes the set of all xn
1 ; A∞ denotes the set of all infinite sequences

x = x∞
1 , with xi ∈ A, i ≥ 1; and A∗ denotes the set of all finite

sequences drawn from A. The set A∗ also includes the empty string Λ.
The concatenation of u ∈ A∗ and v ∈ A∗ ∪ A∞ is denoted by uv. A
finite sequence u is a prefix of a finite or infinite sequence w, and we
write u ≺ w, if w = uv, for some v.

The entropy H(P ) of a probability distribution P = {P (a), a ∈ A}
is defined by the formula

H(P ) = −
∑
a∈A

P (a) log P (a).

Here, as elsewhere in this tutorial, base two logarithms are used and
0 log 0 is defined to be 0. Random variable notation is often used in
this context. For a random variable X with values in a finite set, H(X)
denotes the entropy of the distribution of X. If Y is another random
variable, not necessarily discrete, the conditional entropy H(X|Y ) is
defined as the average, with respect to the distribution of Y , of the
entropy of the conditional distribution of X, given Y = y. The mutual

422
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information between X and Y is defined by the formula

I(X ∧ Y ) = H(X) − H(X|Y ).

If Y (as well as X) takes values in a finite set, the following alternative
formulas are also valid.

H(X|Y ) = H(X,Y ) − H(Y )

I(X ∧ Y ) = H(X) + H(Y ) − H(X,Y )

= H(Y ) − H(Y |X).

For two distributions P and Q on A, information divergence (I-
divergence) or relative entropy is defined by

D(P‖Q) =
∑
a∈A

P (a) log
P (a)
Q(a)

.

A key property of I-divergence is that it is nonnegative and zero if and
only if P = Q. This is an instance of the log-sum inequality, namely,
that for arbitrary nonnegative numbers p1, . . . , pt and q1, . . . , qt,

t∑
i=1

pi log
pi

qi
≥
( t∑

i=1

pi

)
log
∑t

i=1 pi∑t
i=1 qi

with equality if and only if pi = cqi, 1 ≤ i ≤ t. Here p log p
q is defined

to be 0 if p = 0 and +∞ if p > q = 0.
Convergence of probability distributions, Pn → P , means point-

wise convergence, that is, Pn(a) → P (a) for each a ∈ A. Topological
concepts for probability distributions, continuity, open and closed sets,
etc., are meant for the topology of pointwise convergence. Note that
the entropy H(P ) is a continuous function of P , and the I-divergence
D(P‖Q) is a lower semi-continuous function of the pair (P,Q), contin-
uous at each (P,Q) with strictly positive Q.

A code for symbols in A, with image alphabet B, is a mapping
C:A 
→ B∗. Its length function L:A 
→ N is defined by the formula

C(a) = b
L(a)
1 .

In this tutorial, it will be assumed, unless stated explicitly other-
wise, that the image alphabet is binary, B = {0, 1}, and that all code-
words C(a), a ∈ A, are distinct and different from the empty string Λ.
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Often, attention will be restricted to codes satisfying the prefix condi-
tion that C(a) ≺ C(ã) never holds for a �= ã in A. These codes, called
prefix codes, have the desirable properties that each sequence in A∗ can
be uniquely decoded from the concatenation of the codewords of its
symbols, and each symbol can be decoded “instantaneously”, that is,
the receiver of any sequence w ∈ B∗ of which u = C(x1) . . . C(xi) is a
prefix need not look at the part of w following u in order to identify u

as the code of the sequence x1 . . . xi.
Of fundamental importance is the following fact.

Lemma 1.1. A function L:A 
→ N is the length function of some
prefix code if and only if it satisfies the so-called Kraft inequality∑

a∈A

2−L(a) ≤ 1.

Proof. Given a prefix code C:A 
→ B∗, associate with each a ∈ A

the number t(a) whose dyadic expansion is the codeword C(a) = b
L(a)
1 ,

that is, t(a) = 0.b1 . . . bL(a). The prefix condition implies that t(ã) /∈
[t(a), t(a) + 2−L(a)) if ã �= a, thus the intervals [t(a), t(a) + 2−L(a)),
a ∈ A, are disjoint. As the total length of disjoint subintervals of the
unit interval is at most 1, it follows that

∑
2−L(a) ≤ 1.

Conversely, suppose a function L:A 
→ N satisfies
∑

2−L(a) ≤ 1.
Label A so that L(ai) ≤ L(ai+1), i < |A|. Then t(i) =

∑
j<i 2

−L(aj) can

be dyadically represented as t(i) = 0.b1 . . . bL(ai), and C(ai) = b
L(ai)
1

defines a prefix code with length function L.

A key consequence of the lemma is Shannon’s noiseless coding
theorem.

Theorem 1.1. Let P be a probability distribution on A. Then each
prefix code has expected length

E(L) =
∑
a∈A

P (a)L(a) ≥ H(P ).

Furthermore, there is a prefix code with length function L(a) =
�− log P (a); its expected length satisfies

E(L) < H(P ) + 1.
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Proof. The first assertion follows by applying the log-sum inequal-
ity to P (a) and 2−L(a) in the role of pi and qi and making use of∑

P (a) = 1 and
∑

2−L(a) ≤ 1. The second assertion follows since
L(a) = �− log P (a) obviously satisfies the Kraft inequality.

By the following result, even non-prefix codes cannot “substan-
tially” beat the entropy lower bound of Theorem 1.1. This justifies
the practice of restricting theoretical considerations to prefix codes.

Theorem 1.2. The length function of a not necessarily prefix code
C:A 
→ B∗ satisfies ∑

a∈A

2−L(a) ≤ log |A|, (1.1)

and for any probability distribution P on A, the code has expected
length

E(L) =
∑
a∈A

P (a)L(a) ≥ H(P ) − log log |A|.

Proof. It suffices to prove the first assertion, for it implies the second
assertion via the log-sum inequality as in the proof of Theorem 1.1.
To this end, we may assume that for each a ∈ A and i < L(a), every
u ∈ Bi is equal to C(ã) for some ã ∈ A, since otherwise C(a) can be
replaced by an u ∈ Bi, increasing the left side of (1.1). Thus, writing

|A| =
m∑

i=1

2i + r, m ≥ 1, 0 ≤ r < 2m+1,

it suffices to prove (1.1) when each u ∈ Bi, 1 ≤ i ≤ m, is a codeword,
and the remaining r codewords are of length m+1. In other words, we
have to prove that

m + r2−(m+1) ≤ log |A| = log(2m+1 − 2 + r),

or
r2−(m+1) ≤ log(2 + (r − 2)2−m).
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This trivially holds if r = 0 or r ≥ 2. As for the remaining case r = 1,
the inequality

2−(m+1) ≤ log(2 − 2−m)

is verified by a trite calculation for m = 1, and then it holds even more
for m > 1.

The above concepts and results extend to codes for n-length mes-
sages or n-codes, that is, to mappings C:An 
→ B∗, B = {0, 1}. In
particular, the length function L:An 
→ N of an n-code is defined by
the formula C(xn

1 ) = b
L(xn

1 )
1 , xn

1 ∈ An, and satisfies∑
xn
1∈An

2−L(xn
1 ) ≤ n log |A|;

and if C:An 
→ B∗ is a prefix code, its length function satisfies the
Kraft inequality ∑

xn
1∈An

2−L(xn
1 ) ≤ 1 .

Expected length E(L) =
∑

xn
1∈An

Pn(xn
1 )L(xn

1 ) for a probability distribu-

tion Pn on An, of a prefix n-code satisfies

E(L) ≥ H(Pn) ,

while
E(L) ≥ H(Pn) − log n − log log |A|

holds for any n-code.
An important fact is that, for any probability distribution Pn on

An, the function L(xn
1 ) = �− log Pn(xn

1 ) satisfies the Kraft inequality.
Hence there exists a prefix n-code whose length function is L(xn

1 ) and
whose expected length satisfies E(L) < H(Pn) + 1. Any such code is
called a Shannon code for Pn.

Supposing that the limit

H = lim
n→∞

1
n

H(Pn)
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exists, it follows that for any n-codes Cn:An 
→ B∗ with length func-
tions Ln:An 
→ N , the expected length per symbol satisfies

lim inf
n→∞

1
n

E(Ln) ≥ H ;

moreover, the expected length per symbol of a Shannon code for Pn

converges to H as n → ∞.

We close this introduction with a discussion of arithmetic codes,
which are of both practical and conceptual importance. An arithmetic
code is a sequence of n-codes, n = 1, 2, . . . defined as follows.

Let Qn, n = 1, 2, . . . be probability distributions on the sets An

satisfying the consistency conditions

Qn(xn
1 ) =

∑
a∈A

Qn+1(xn
1a);

these are necessary and sufficient for the distributions Qn to be the
marginal distributions of a process (for process concepts, see Ap-
pendix). For each n, partition the unit interval [0, 1) into subintervals
J(xn

1 ) = [�(xn
1 ), r(xn

1 )) of length r(xn
1 ) − �(xn

1 ) = Qn(xn
1 ) in a nested

manner, i. e., such that {J(xn
1a): a ∈ A} is a partitioning of J(xn

1 ),
for each xn

1 ∈ An. Two kinds of arithmetic codes are defined by setting
C(xn

1 ) = zm
1 if the endpoints of J(xn

1 ) have binary expansions

�(xn
1 ) = .z1z2 · · · zm0 · · · , r(xn

1 ) = .z1z2 · · · zm1 · · · ,

and C̃(xn
1 ) = zm̃

1 if the midpoint of J(xn
1 ) has binary expansion

1
2

(
�(xn

1 ) + r(xn
1 )
)

= .z1z2 · · · zm̃ · · · , m̃ = �− log Qn(xn
1 ) + 1. (1.2)

Since clearly �(xn
1 ) ≤ .z1z2 · · · zm̃ and r(xn

1 ) ≥ .z1z2 · · · zm̃ + 2−m̃, we
always have that C(xn

1 ) is a prefix of C̃(xn
1 ), and the length functions

satisfy L(xn
1 ) < L̃(xn

1 ) = �− log Qn(xn
1 )+1. The mapping C:An 
→ B∗

is one-to-one (since the intervals J(xn
1 ) are disjoint) but not necessarily

a prefix code, while C̃(xn
1 ) is a prefix code, as one can easily see.

In order to determine the codeword C(xn
1 ) or C̃(xn

1 ), the nested
partitions above need not be actually computed, it suffices to find the
interval J(xn

1 ). This can be done in steps, the i-th step is to partition
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the interval J(xi−1
1 ) into |A| subintervals of length proportional to the

conditional probabilities Q(a|xi−1
1 ) = Qi(xi−1

1 a)/Qi−1(xi−1
1 ), a ∈ A.

Thus, providing these conditional probabilities are easy to compute, the
encoding is fast (implementation issues are relevant, but not considered
here). A desirable feature of the first kind of arithmetic codes is that
they operate on-line, i.e., sequentially, in the sense that C(xn

1 ) is always
a prefix of C(xn+1

1 ). The conceptual significance of the second kind of
codes C̃(xn

1 ) is that they are practical prefix codes effectively as good as
Shannon codes for the distribution Qn, namely the difference in length
is only 1 bit. Note that strict sense Shannon codes may be of prohibitive
computational complexity if the message length n is large.



2

Large deviations, hypothesis testing

2.1 Large deviations via types

An important application of information theory is to the theory
of large deviations. A key to this application is the theory of types.
The type of a sequence xn

1 ∈ An is just another name for its empirical
distribution P̂ = P̂xn

1
, that is, the distribution defined by

P̂ (a) =
|{i:xi = a}|

n
, a ∈ A.

A distribution P on A is called an n-type if it is the type of some
xn

1 ∈ An. The set of all xn
1 ∈ An of type P is called the type class of

the n-type P and is denoted by T n
P .

Lemma 2.1. The number of possible n-types is

(
n + |A| − 1
|A| − 1

)
.

Proof. Left to the reader.

Lemma 2.2. For any n-type P(
n + |A| − 1
|A| − 1

)−1

2nH(P ) ≤ |T n
P | ≤ 2nH(P ).

429
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Proof. Let A = {a1, a2, . . . , at}, where t = |A|. By the definition of
types we can write P (ai) = ki/n, i = 1, 2, . . . , t, with k1+k2+ . . .+kt =
n, where ki is the number of times ai appears in xn

1 for any fixed
xn

1 ∈ T n
P . Thus we have

|T n
P | =

n!
k1!k2! · · · kt!

.

Note that

nn = (k1 + . . . + kt)n =
∑ n!

j1! · · · jt!
kj1
1 · · · kjt

t ,

where the sum is over all t-tuples (j1, . . . , jt) of nonnegative integers

such that j1 + . . . + jt = n. The number of terms is

(
n + |A| − 1
|A| − 1

)
,

by Lemma 2.1, and the largest term is
n!

k1!k2! · · · kt!
kk1
1 kk2

2 · · · kkt
t ,

for if jr > kr, js < ks then decreasing jr by 1 and increasing js by 1
multiplies the corresponding term by

jr

kr

ks

1 + js
≥ jr

kr
> 1.

The lemma now follows from the fact that the sum is bounded below
by its largest term and above by the largest term times the number of
terms, and noting that

nn

kk1
1 kk2

2 · · · kkt
t

=
t∏

i=1

(
ki

n

)−ki

=
t∏

i=1

P (ai)−nP (ai) = 2nH(P ).

The next result connects the theory of types with general probability
theory. For any distribution P on A, let Pn denote the distribution of n

independent drawings from P , that is Pn(xn
1 ) =

∏n
i=1 P (xi), xn

1 ∈ An.

Lemma 2.3. For any distribution P on A and any n-type Q

Pn(xn
1 )

Qn(xn
1 )

= 2−nD(Q‖P ), if xn
1 ∈ T n

Q ,(
n + |A| − 1
|A| − 1

)−1

2−nD(Q‖P ) ≤ Pn(T n
Q ) ≤ 2−nD(Q‖P ).
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Corollary 2.1. Let P̂n denote the empirical distribution (type) of a
random sample of size n drawn from P . Then

Prob(D(P̂n‖P ) ≥ δ) ≤
(

n + |A| − 1
|A| − 1

)
2−nδ, ∀δ > 0.

Proof. If xn
1 ∈ T n

Q the number of times xi = a is just nQ(a), so that

Pn(xn
1 )

Qn(xn
1 )

=
∏
a

(
P (a)
Q(a)

)nQ(a)

= 2
(
n
∑

a
Q(a) log

P (a)
Q(a)

)
= 2−nD(Q‖P ),

that is,
Pn(T n

Q ) = Qn(T n
Q )2−nD(Q‖P ).

Here Qn(T n
Q ) ≥

(
n + |A| − 1
|A| − 1

)−1

, by Lemma 2.2 and the fact that

Qn(xn
1 ) = 2−nH(Q) if xn

1 ∈ T n
Q . The probability in the Corollary equals

the sum of Pn(T n
Q ) for all n-types Q with D(Q‖P ) ≥ δ, thus Lem-

mas 2.1 and 2.3 yield the claimed bound.

The empirical distribution P̂n in the Corollary converges to P with
probability 1 as n → ∞, by the law of large numbers, or by the very
Corollary (and Borel–Cantelli). The next result, the finite alphabet
special case of the celebrated Sanov theorem, is useful for estimating
the (exponentially small) probability that P̂n belongs to some set Π of
distributions that does not contain the true distribution P .

We use the notation D(Π‖P ) = infQ∈Π D(Q‖P ).

Theorem 2.1 (Sanov’s Theorem.). Let Π be a set of distributions
on A whose closure is equal to the closure of its interior. Then for the
empirical distribution of a sample from a strictly positive distribution
P on A,

− 1
n

log Prob
(
P̂n ∈ Π

)
→ D(Π‖P ).

Proof. Let Pn be the set of possible n-types and let Πn = Π ∩ Pn.
Lemma 2.3 implies that

Prob (P̂n ∈ Πn) = Pn
(
∪Q∈ΠnT n

Q

)
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is upper bounded by(
n + |A| − 1
|A| − 1

)
2−nD(Πn‖P )

and lower bounded by(
n + |A| − 1
|A| − 1

)−1

2−nD(Πn‖P ).

Since D(Q‖P ) is continuous in Q, the hypothesis on Π implies that
D(Πn‖P ) is arbitrarily close to D(Π‖P ) if n is large. Hence the theorem
follows.

Example 2.1. Let f be a given function on A and set Π =
{Q:

∑
a Q(a)f(a) > α} where α < maxa f(a). The set Π is open and

hence satisfies the hypothesis of Sanov’s theorem. The empirical distri-
bution of a random sample X1, ...,Xn belongs to Π iff (1/n)

∑
i f(Xi) >

α, since
∑

a P̂n(a)f(a) = (1/n)
∑

i f(Xi). Thus we obtain the large dev-
iations result

− 1
n

log Prob

(
1
n

n∑
i=1

f(Xi) > α

)
→ D(Π‖P ).

In this case, D(Π‖P ) = D(cl(Π)‖P ) = min D(Q‖P ), where the min-
imum is over all Q for which

∑
Q(a)f(a) ≥ α. In particular, for

α >
∑

P (a)f(a) we have D(Π‖P ) > 0, so that, the probability that
(1/n)

∑n
1 f(Xi) > α goes to 0 exponentially fast.

It is instructive to see how to calculate the exponent D(Π‖P ) for the
preceding example. Consider the exponential family of distributions P̃

of the form P̃ (a) = cP (a)2tf(a), where c = (
∑

a P (a)2tf(a))−1. Clearly∑
a P̃ (a)f(a) is a continuous function of the parameter t and this func-

tion tends to max f(a) as t → ∞. (Check!) As t = 0 gives P̃ = P , it
follows by the assumption∑

a

P (a)f(a) < α < max
a

f(a)
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that there is an element of the exponential family, with t > 0, such
that

∑
P̃ (a)f(a) = α. Denote such a P̃ by Q∗, so that,

Q∗(a) = c∗P (a)2t∗f(a), t∗ > 0,
∑
a

Q∗(a)f(a) = α.

We claim that

D(Π‖P ) = D(Q∗‖P ) = log c∗ + t∗α. (2.1)

To show that D(Π‖P ) = D(Q∗‖P ) it suffices to show that
D(Q‖P ) > D(Q∗‖P ) for every Q ∈ Π, i. e., for every Q for which∑

a Q(a)f(a) > α. A direct calculation gives

D(Q∗‖P ) =
∑
a

Q∗(a) log
Q∗(a)
P (a)

=
∑
a

Q∗(a) [log c∗ + t∗f(a)] = log c∗ + t∗α (2.2)

and ∑
a

Q(a) log
Q∗(a)
P (a)

=
∑
a

Q(a) [log c∗ + t∗f(a)] > log c∗ + t∗α.

Hence

D(Q‖P )−D(Q∗‖P ) > D(Q‖P )−
∑
a

Q(a) log
Q∗(a)
P (a)

= D(Q‖Q∗) > 0.

This completes the proof of (2.1).

Remark 2.1. Replacing P in (2.2) by any P̃ of the exponential family,
i. e., P̃ (a) = cP (a)2tf(a), we get that

D(Q∗‖P̃ ) =

log
c∗

c
+ (t∗ − t)α = log c∗ + t∗α − (log c + tα).

Since D(Q∗‖P̃ ) > 0 for P̃ �= Q∗, it follows that

log c + tα = − log
∑
a

P (a)2tf(a) + tα
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attains its maximum at t = t∗. This means that the “large deviations
exponent”

lim
n→∞

[
− 1

n
log Prob

(
1
n

n∑
i=1

f(Xi) > α)

)]
can be represented also as

max
t≥0

[
− log

∑
a

P (a)2tf(a) + tα

]
.

This latter form is the one usually found in textbooks, with the formal
difference that logarithm and exponentiation with base e rather than
base 2 are used. Note that the restriction t ≥ 0 is not needed when
α >

∑
a P (a)f(a), because, as just seen, the unconstrained maximum

is attained at t∗ > 0. However, the restriction to t ≥ 0 takes care also
of the case when α ≤∑a P (a)f(a), when the exponent is equal to 0.

2.2 Hypothesis testing

Let us consider now the problem of hypothesis testing. Suppose the
statistician, observing independent drawings from an unknown distri-
bution P on A, wants to test the “null-hypothesis” that P belongs to
a given set Π of distributions on A. A (nonrandomized) test of sample
size n is determined by a set C ⊆ An, called the critical region; the
null-hypothesis is accepted if the observed sample xn

1 does not belong
to C. Usually the test is required to have type 1 error probability not
exceeding some ε > 0, that is, Pn(C) ≤ ε, for all P ∈ Π. Subject to
this constraint, it is desirable that the type 2 error probability, that
is P (An − C), when P �∈ Π, be small, either for a specified P �∈ Π
(“testing against a simple alternative hypothesis”) or, preferably, for
all P �∈ Π.

Theorem 2.2. Let P1 and P2 be any two distributions on A, let α

be a positive number, and for each n ≥ 1 suppose Bn ⊆ An satisfies
Pn

1 (Bn) ≥ α. Then

lim inf
n→∞

1
n

log Pn
2 (Bn) ≥ −D(P1‖P2).
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The assertion of Theorem 2.2 and the special case of Theorem 2.3,
below, that there exists sets Bn ⊂ An satisfying

Pn
1 (Bn) → 1,

1
n

log Pn
2 (Bn) = −D(P1‖P2),

are together known as Stein’s lemma.

Remark 2.2. On account of the log-sum inequality (see Section 1),
we have for any B ⊂ An

Pn
1 (B) log

Pn
1 (B)

Pn
2 (B)

+ Pn
1 (An − B) log

Pn
1 (An − B)

Pn
2 (An − B)

≤ D(Pn
1 ‖Pn

2 )

= n D(P‖Q),

a special case of the lumping property in Lemma 4.1, Section 4. Since
t log t + (1 − t) log(1 − t) ≥ −1 for each 0 ≤ t ≤ 1, it follows that

log Pn
2 (B) ≥ −nD(P‖Q) + 1

Pn
1 (B)

.

Were the hypothesis Pn
1 (Bn) ≥ α of Theorem 2.2 strengthened to

Pn
1 (Bn) → 1, the assertion of that theorem would immediately follow

from the last inequality.

Proof of Theorem 2.2. With δn = |A| log n
n , say, Corollary 2.1 gives

that the empirical distribution P̂n of a sample drawn from P1 satis-
fies Prob(D(P̂n‖P1) ≥ δn) → 0. This means that the Pn

1 -probability of
the union of the type classes T n

Q with D(Q‖P1) < δn approaches 1 as
n → ∞. Thus the assumption Pn

1 (Bn) ≥ α implies that the intersection
of Bn with the union of these type classes has Pn

1 -probability at least
α/2 when n is large, and consequently there exists n-types Qn with
D(Qn‖P1) < δn such that

Pn
1 (Bn ∩ T n

Qn
) ≥ α

2
Pn

1 (T n
Qn

).

Since samples in the same type class are equiprobable under Pn for
each distribution P on A, the last inequality holds for P2 in place of
P1. Hence, using Lemma 2.3,

Pn
2 (Bn) ≥ α

2
Pn

2 (T n
Qn

) ≥ α

2

(
n + |A| − 1
|A| − 1

)
2−nD(Qn‖P2).
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As D(Qn‖P1) < δn → 0 implies that D(Qn‖P2) → D(P1‖P2), this
completes the proof of Theorem 2.2.

Theorem 2.3. For testing the null-hypothesis that P ∈ Π, where Π
is a closed set of distributions on A, the tests with critical region

Cn =
{

xn
1 : inf

P∈Π
D(P̂xn

1
‖P ) ≥ δn

}
, δn =

|A| log n

n
,

have type 1 error probability not exceeding εn, where εn → 0, and for
each P2 �∈ Π, the type 2 error probability goes to 0 with exponential
rate D(Π‖P2).

Proof. The assertion about type 1 error follows immediately from
Corollary 2.1. To prove the remaining assertion, note that for each
P2 �∈ Π, the type 2 error probability P2(An − Cn) equals the sum
of Pn

2 (T n
Q) for all n-types Q such that inf

P∈Π
D(Q‖P ) < δn. Denoting

the minimum of D(Q‖P2) for these n-types by ξn, it follows by Lem-
mas 2.1 and 2.3, that

Pn
2 (An − Cn) ≤

(
n + |A| − 1
|A| − 1

)
2−nξn .

A simple continuity argument gives lim
n→∞ ξn = inf

P∈Π
D(P‖P2) =

D(Π‖P2), and hence

lim sup
n→∞

1
n

log Pn
2 (An − Cn) ≤ −D(Π‖P2).

As noted in Remark 2.3, below, the opposite inequality also holds,
hence

lim
n→∞

1
n

log Pn
2 (An − Cn) = −D(Π‖P2),

which completes the proof of the theorem.

Remark 2.3. On account of Theorem 2.2, for any sets Cn ⊆ An, such
that Pn(Cn) ≤ ε < 1, for all P ∈ Π, n ≥ 1, we have

lim inf
n→∞

1
n

log Pn
2 (An − Cn) ≥ −D(Π‖P2),∀P2 �∈ Π.
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Hence, the tests in Theorem 2.3 are asymptotically optimal against all
alternatives P2 �∈ Π. The assumption that Π is closed guarantees that
D(Π‖P2) > 0, whenever P2 �∈ Π. Dropping that assumption, the type
2 error probability still goes to 0 with exponential rate D(Π‖P2) for P2

not in the closure of Π, but may not go to 0 for P2 on the boundary of Π.
Finally, it should be mentioned that the criterion inf

P∈Π
D(P̂xn

1
‖P ) ≥ δn

defining the critical region of the tests in Theorem 2.3 is equivalent, by
Lemma 2.3, to

supP∈Π Pn(xn
1 )

Qn(xn
1 )

≤ 2−nδn = n−|A|, Q = P̂xn
1
.

Here the denominator is the maximum of Pn(xn
1 ) for all distributions

P on A, thus the asymptotically optimal tests are likelihood ratio tests
in statistical terminology.

We conclude this subsection by briefly discussing sequential tests. In
a sequential test, the sample size is not predetermined, rather x1, x2, . . .

are drawn sequentially until a stopping time N that depends on the
actual observations, and the null hypothesis is accepted or rejected on
the basis of the sample xN

1 of random size N .
A stopping time N for sequentially drawn x1, x2, . . . is defined, for

our purposes, by the condition xN
1 ∈ G, for a given set G ⊂ A∗ of

finite sequences that satisfies the prefix condition: no u ∈ G is a prefix
of another v ∈ G; this ensures uniqueness in the definition of N . For
existence with probability 1, when x1, x2, . . . are i.i.d. drawings from a
distribution P on A, we assume that

P∞({x∞
1 :x∞

1 � u for some u ∈ G}) = 1

where P∞ denotes the infinite product measure on A∞. When several
possible distributions are considered on A, as in hypothesis testing, this
condition in assumed for all of them. As P∞({x∞

1 :x∞
1 � u}) = Pn(u)

if u ∈ An, the last condition equivalently means that

PN (u) = Pn(u) if u ∈ G ∩ An

defines a probability distribution PN on G.
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A sequential test is specified by a stopping time N or a set G ⊂ A∗

as above, and by a set C ⊂ G. Sequentially drawing x1, x2, . . . until
the stopping time N , the null hypothesis is rejected if xN

1 ∈ C, and
accepted if xN

1 ∈ G−C. Thus, the set of possible samples is G and the
critical region is C.

Let us restrict attention to testing a simple null hypothesis P1

against a simple alternative P2, where P1 and P2 are strictly positive
distributions on A. Then, with the above notation, the type 1 and type
2 error probabilities, denoted by α and β, are given by

α = PN
1 (C), β = PN

2 (G − C).

The log-sum inequality implies the bound

α log
α

1 − β
+ (1 − α) log

1 − α

β
≤
∑
u∈G

PN
1 (u) log

PN
1 (u)

PN
2 (u)

= D(PN
1 ‖PN

2 )

whose special case, for N equal to a constant n, appears in Remark 2.2.
Here the right hand side is the expectation of

log
PN

1 (xN
1 )

PN
2 (xN

1 )
=

N∑
i=1

log
P1(xi)
P2(xi)

under PN
1 or, equivalently, under the infinite product measure P∞

1 on
A∞. As the terms of this sum are i.i.d. under P∞

1 , with finite expec-
tation D(P1‖P2), and their (random) number N is a stopping time,
Wald’s identity gives

D(PN
1 ‖PN

2 ) = E1(N)D(P1‖P2)

whenever the expectation E1(N) of N under P∞
1 (the average sample

size when hypothesis P1 is true) is finite. It follows as in Remark 2.2
that

log β ≥ − E1(N) D(P1‖P2) + 1
1 − α

,

thus sequential tests with type 1 error probability α → 0 cannot have
type 2 error probability exponentially smaller than 2−E1(N) D(P1‖P2).
In this sense, sequential tests are not superior to tests with constant
sample size.
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On the other hand, sequential tests can be much superior in the
sense that one can have E1(N) = E2(N) → ∞ and both error proba-
bilities decreasing at the best possible exponential rates, namely with
exponents D(P1‖P2) and D(P2‖P1). This would immediately follow if
in the bound

α log
α

1 − β
+ (1 − α) log

1 − α

β
≤ D(PN

1 ‖PN
2 )

and its counterpart obtained by reversing the roles of P1 and P2, the
equality could be achieved for tests with E1(N) = E2(N) → ∞.

The condition of equality in the log-sum inequality gives that both
these bounds hold with the equality if and only if the probability ratio
P N

1 (u)

P N
2 (u)

is constant for u ∈ C and also for u ∈ G − C. That condition

cannot be met exactly, in general, but it is possible to make P N
1 (u)

P N
2 (u)

“nearly constant” on both C and G − C.
Indeed, consider the sequential probability ratio test, with stopping

time N equal to the smallest n for which

c1 <
Pn

1 (xn
1 )

Pn
2 (xn

1 )
< c2

does not hold, where c1 < 1 < c2 are given constants, and with the
decision rule that P1 or P2 is accepted according as the second or the
first inequality is violated at this stopping time. For C ⊂ G ⊂ A∗

implicitly defined by this description, it is obvious that

PN
1 (a)

PN
2 (a)

∈ (c1m, c1] if a ∈ C,
PN

1 (a)
PN

2 (a)
∈ [c2, c2M) if a ∈ G − C,

where m and M are the minimum and maximum of the ratio P1(a)
P2(a) , a ∈

A. The fact that P N
1 (a)

P N
2 (a)

is nearly constant in this sense both for a ∈ C

and a ∈ G − C, is sufficient to show that the mentioned two bounds
“nearly” become equalities, asymptotically, if E1(N) = E2(N) → ∞
(the latter can be achieved by suitable choice of c1 and c2 with c1 → 0,
c2 → ∞). Then, both the type 1 and type 2 error probabilities of
these sequential probability ratio tests go to 0 with the best possible
exponential rates. The details are omitted.
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I-projections

Information divergence of probability distributions can be inter-
preted as a (nonsymmetric) analogue of squared Euclidean distance.
With this interpretation, several results in this Section are intuitive
“information geometric” counterparts of standard results in Euclidean
geometry, such as the inequality in Theorem 3.1 and the identity in
Theorem 3.2.

The I-projection of a distribution Q onto a (non-empty) closed,
convex set Π of distributions on A is the P ∗ ∈ Π such that

D(P ∗‖Q) = min
P∈Π

D(P‖Q).

In the sequel we suppose that Q(a) > 0 for all a ∈ A. The function
D(P‖Q) is then continuous and strictly convex in P , so that P ∗ exists
and is unique.

The support of the distribution P is the set S(P ) = {a:P (a) > 0}.
Since Π is convex, among the supports of elements of Π there is one
that contains all the others; this will be called the support of Π and
denoted by S(Π).

Theorem 3.1. S(P ∗) = S(Π), and D(P‖Q) ≥ D(P‖P ∗) + D(P ∗‖Q)
for all P ∈ Π.

440
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Of course, if the asserted inequality holds for some P ∗ ∈ Π and all
P ∈ Π then P ∗ must be the I-projection of Q onto Π.

Proof. For arbitrary P ∈ Π, by the convexity of Π we have Pt =
(1 − t)P ∗ + tP ∈ Π, for 0 ≤ t ≤ 1, hence for each t ∈ (0, 1),

0 ≤ 1
t

[D(Pt‖Q) − D(P ∗‖Q)] =
d

dt
D(Pt‖Q) |t=t̃ ,

for some t̃ ∈ (0, t). But

d

dt
D(Pt‖Q) =

∑
a

(P (a) − P ∗(a)) log
Pt(a)
Q(a)

,

and this converges (as t ↓ 0) to −∞ if P ∗(a) = 0 for some a ∈ S(P ),
and otherwise to ∑

a

(P (a) − P ∗(a)) log
P ∗(a)
Q(a)

. (3.1)

It follows that the first contingency is ruled out, proving that S(P ∗) ⊇
S(P ), and also that the quantity (3.1) is nonnegative, proving the
claimed inequality.

Now we examine some situations in which the inequality of
Theorem 3.1 is actually an equality. For any given functions
f1, f2, . . . , fk on A and numbers α1, α2, . . . , αk, the set

L = {P :
∑
a

P (a)fi(a) = αi, 1 ≤ i ≤ k},

if non-empty, will be called a linear family of probability distributions.
Moreover, the set E of all P such that

P (a) = cQ(a) exp

(
k∑
1

θifi(a)

)
, for some θ1, . . . , θk,

will be called an exponential family of probability distributions; here Q

is any given distribution and

c = c(θ1, . . . , θk) =

(∑
a

Q(a) exp

(
k∑
1

θifi(a)

))−1

.
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We will assume that S(Q) = A; then S(P ) = A for all P ∈ E . Note
that Q ∈ E . The family E depends on Q, of course, but only in a weak
manner, for any element of E could play the role of Q. If necessary to
emphasize this dependence on Q we shall write E = EQ.

Linear families are closed sets of distributions, exponential families
are not. Sometimes it is convenient to consider the closure cl(E) of an
exponential family E .

Theorem 3.2. The I-projection P ∗ of Q onto a linear family L satis-
fies the Pythagorean identity

D(P‖Q) = D(P‖P ∗) + D(P ∗‖Q), ∀P ∈ L.

Further, if S(L) = A then L∩EQ = {P ∗}, and, in general, L∩cl(EQ) =
{P ∗}.

Corollary 3.1. For a linear family L and exponential family E , defined
by the same functions f1, ..., fk, the intersection L∩ cl(E) consists of a
single distribution P ∗, and

D(P‖Q) = D(P‖P ∗) + D(P ∗‖Q), ∀P ∈ L, Q ∈ cl(E).

Proof of Theorem 3.2. By the preceding theorem, S(P ∗) = S(L). Hence
for every P ∈ L there is some t < 0 such that Pt = (1− t)P ∗ + tP ∈ L.
Therefore, we must have (d/dt)D(Pt‖Q)|t=0 = 0, that is, the quantity
(3.1) in the preceding proof is equal to 0, namely,

∑
a

(P (a) − P ∗(a)) log
P ∗(a)
Q(a)

= 0, ∀P ∈ L. (3.2)

This proves that P ∗ satisfies the Pythagorean identity.
By the definition of linear family, the distributions P ∈ L, regarded

as |A|-dimensional vectors, are in the orthogonal complement F⊥ of
the subspace F of R|A|, spanned by the k vectors fi(·) − αi, 1 ≤ i ≤ k.
If S(L) = A then the distributions P ∈ L actually span the orthogonal
complement of F (any subspace of R|A| that contains a strictly positive
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vector is spanned by the probability vectors in that subspace; the proof
is left to the reader.) Since the identity (3.2) means that the vector

log
P ∗(·)
Q(·) − D(P ∗‖Q)

is orthogonal to each P ∈ L, it follows that this vector belongs to
(F⊥)⊥ = F . This proves that P ∗ ∈ E , if S(L) = A.

Next we show that any distribution P ∗ ∈ L ∩ cl(EQ) satisfies (3.2).
Since (3.2) is equivalent to the Pythagorean identity, this will show
that L ∩ cl(EQ), if nonempty, consists of the single distribution equal
to the I-projection of Q onto L. Now, let Pn ∈ E , Pn → P ∗ ∈ L. By the
definition of E ,

log
Pn(a)
Q(a)

= log cn + (log e)
k∑

i=1

θi,nfi(a).

As P ∈ L, P ∗ ∈ L implies
∑

P (a)fi(a) =
∑

P ∗(a)fi(a), i = 1, . . . , k, it
follows that ∑

a

(P (a) − P ∗(a)) log
Pn(a)
Q(a)

= 0, ∀P ∈ L.

Since Pn → P ∗, this gives (3.2).
To complete the proof of the theorem it remains to show that

L ∩ cl(E) is always nonempty. Towards this end, let P ∗
n denote the

I-projection of Q onto the linear family

Ln =
{

P :
∑
a∈A

P (a)fi(a) =
(

1− 1
n

)
αi +

1
n

∑
a∈A

Q(a)fi(a), i = 1, . . . , k
}

.

Since (1 − 1
n)P + 1

nQ ∈ Ln if P ∈ L, here S(Ln) = A and therefore
P ∗

n ∈ E . Thus the limit of any convergent subsequence of {P ∗
n} belongs

to L ∩ cl(E).

Proof of Corollary 3.1. Only the validity of the Pythagorean identity
for Q ∈ cl(E) needs checking. Since that identity holds for Q ∈ E , taking
limits shows that the identity holds also for the limit of a sequence
Qn ∈ E , that is, for each Q in cl(E).
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Remark 3.1. A minor modification of the proof of Theorem 3.2 shows
that the I-projection P ∗ of Q to a linear family with S(L) = B ⊂ A is
of the form

P ∗(a) =

{
cQ(a) exp

(∑k
1 θifi(a)

)
if a ∈ B

0 otherwise.
(3.3)

This and Theorem 3.2 imply that cl(EQ) consists of distributions of
the form (3.3), with B = S(L) for suitable choice of the constants
α1, . . . , αk in the definition of L. We note without proof that also,
conversely, all such distributions belong to cl(EQ).

Next we show that I-projections are relevant to maximum likelihood
estimation in exponential families.

Given a sample xn
1 ∈ An drawn from an unknown distribution sup-

posed to belong to a feasible set Π of distributions on A, a maximum
likelihood estimate (MLE) of the unknown distribution is a maximizer
of Pn(xn

1 ) subject to P ∈ Π; if the maximum is not attained the MLE
does not exist.

Lemma 3.1. An MLE is the same as a minimizer of D(P̂‖P ) for P in
the set of feasible distributions, where P̂ is the empirical distribution
of the sample.

Proof. Immediate from Lemma 2.3.
In this sense, an MLE can always be regarded as a “reverse I-

projection”. In the case when Π is an exponential family, the MLE
equals a proper I-projection, though not of P̂ onto Π.

Theorem 3.3. Let the set of feasible distributions be the exponential
family

E =
{

P :P (a) = c(θ1, . . . , θk)Q(a) exp(
k∑

i=1

θifi(a)), (θ1, . . . , θk) ∈ Rk
}

,

where S(Q) = A. Then, given a sample xn
1 ∈ An, the MLE is unique

and equals the I-projection P ∗ of Q onto the linear family

L = {P :
∑
a

P (a)fi(a) =
1
n

n∑
j=1

fi(xj), 1 ≤ i ≤ k},
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provided S(L) = A. If S(L) �= A, the MLE does not exist, but P ∗ will
be the MLE in that case if cl(E) rather than E is taken as the set of
feasible distributions.

Proof. The definition of L insures that P̂ ∈ L. Hence by Theorem 3.2
and its Corollary,

D(P̂‖P ) = D(P̂‖P ∗) + D(P ∗‖P ), ∀P ∈ cl(E).

Also by Theorem 3.2, P ∗ ∈ E if and only if S(L) = A, while always P ∗ ∈
cl(E). Using this, the last divergence identity gives that the minimum
of D(P̂‖P ) subject to P ∈ E is uniquely attained for P = P ∗, if
S(L) = A, and is not attained if S(L) �= A, while P ∗ is always the
unique minimizer of D(P̂‖P ) subject to P ∈ cl(E). On account of
Lemma 3.1, this completes the proof of the theorem.

We conclude this subsection with a counterpart of Theorem 3.1 for
“reverse I-projections.” The reader is invited to check that the theorem
below is also an analogue of one in Euclidean geometry.

Let us be given a distribution P and a closed convex set Π of dis-
tributions on A such that S(P ) ⊆ S(Π). Then there exists Q∗ ∈ Π
attaining the (finite) minimum minQ∈Π D(P‖Q); this Q∗ is unique if
S(P ) = S(Π), but need not be otherwise.

Theorem 3.4. A distribution Q∗ ∈ Π minimizes D(P‖Q) subject to
Q ∈ Π if and only if for all distributions P ′ on A and Q′ ∈ Π,

D(P ′‖Q′) + D(P ′‖P ) ≥ D(P ′‖Q∗).

Proof. The “if” part is obvious (take P ′ = P .) To prove the “only if”
part, S(P ′) ⊆ S(Q′) ∩ S(P ) may be assumed else the left hand side is
infinite. We claim that∑

a∈S(P )

P (a)
(

1 − Q′(a)
Q∗(a)

)
≥ 0. (3.4)
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Note that (3.4) and S(P ) ⊇ S(P ′) imply

∑
a∈S(P ′)

P ′(a)
(

1 − P (a)Q′(a)
P ′(a)Q∗(a)

)
≥ 0,

which, on account of log 1
t ≥ (1 − t) log e, implies in turn

∑
a∈S(P ′)

P ′(a) log
P ′(a)Q∗(a)
P (a)Q′(a)

≥ 0.

The latter is equivalent to the inequality in the statement of the
theorem, hence it suffices to prove the claim (3.4).

Now set Qt = (1 − t)Q∗ + tQ′ ∈ Q, 0 ≤ t ≤ 1. Then

0 ≤ 1
t

[D(P‖Qt) − D(P‖Q∗)] =
d

dt
D(P‖Qt)

∣∣
t=t̃, 0 < t̃ ≤ t.

With t → 0 it follows that

0 ≤ lim
t̃→0

∑
a∈S(P )

P (a)
(Q∗(a) − Q′(a)) log e

(1 − t̃)Q∗(a) + t̃Q′(a)

=
∑

a∈S(P )

P (a)
Q∗(a) − Q′(a)

Q∗(a)
log e.

This proves the claim (3.4) and completes the proof of Theorem 3.4.
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f-Divergence and contingency tables

Let f(t) be a convex function defined for t > 0, with f(1) = 0. The
f -divergence of a distribution P from Q is defined by

Df (P‖Q) =
∑
a

Q(x)f
(

P (x)
Q(x)

)
.

Here we take 0f(0
0 ) = 0, f(0) = limt→0 f(t), 0f(a

0 ) = limt→0 tf(a
t ) =

a limu→∞
f(u)

u .
Some examples include the following.

(1) f(t) = t log t ⇒ Df (P‖Q) = D(P‖Q).
(2) f(t) = − log t ⇒ Df (P‖Q) = D(Q‖P ).
(3) f(t) = (t − 1)2

⇒ Df (P‖Q) =
∑
a

(P (a) − Q(a))2

Q(a)
.

(4) f(t) = 1 −
√

t

⇒ Df (P‖Q) = 1 −
∑
a

√
P (a)Q(a).

(5) f(t) = |t − 1| ⇒ Df (P‖Q) = |P − Q| =
∑
a

|P (a) − Q(a)|.

In addition to information divergence obtained in (1), (2), the f-
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divergences in (3), (4), (5) are also often used in statistics. They are
called χ2-divergence, Hellinger distance, and variational distance, re-
spectively.

The analogue of the log-sum inequality is∑
i

bif

(
ai

bi

)
≥ bf

(
a

b

)
, a =

∑
ai, b =

∑
bi, (4.1)

where if f is strictly convex at c = a/b, the equality holds iff ai = cbi, for
all i. Using this, many of the properties of the information divergence
D(P‖Q) extend to general f-divergences, as shown in the next lemma.
Let B = {B1, B2, . . . , Bk} be a partition of A and let P be a distribution
on A. The distribution defined on {1, 2, . . . , k} by the formula

PB(i) =
∑
a∈Bi

P (a),

is called the B-lumping of P .

Lemma 4.1. Df (P‖Q) ≥ 0 and if f is strictly convex at t = 1 then
Df (P‖Q) = 0 only when P = Q. Further, Df (P‖Q) is a convex
function of the pair (P,Q), and the lumping property, Df (P‖Q) ≥
Df (PB‖QB) holds for any partition B of A.

Proof. The first assertion and the lumping property obviously follow
from the analogue of the log-sum inequality, (4.1). To prove convexity,
let P = αP1 + (1 − α)P2, Q = αQ1 + (1 − α)Q2. Then P and Q are
lumpings of distributions P̃ and Q̃ defined on the set A × {1, 2} by
P̃ (a, 1) = αP1(a), P̃ (a, 2) = (1 − α)P2(a), and similarly for Q̃. Hence
by the lumping property,

Df (P‖Q) ≤ Df (P̃ ||Q̃) = αDf (P1||Q1) + (1 − α)Df (P2||Q2).

A basic theorem about f-divergences is the following approximation
by the χ2-divergence χ2(P,Q) =

∑
(P (a) − Q(a))2/Q(a).

Theorem 4.1. If f is twice differentiable at t = 1 and f ′′(1) > 0 then
for any Q with S(Q) = A and P “ close” to Q we have

Df (P‖Q) ∼ f ′′(1)
2

χ2(P,Q).

Formally, Df (P‖Q)/χ2(P,Q) → f ′′(1)/2 as P → Q.
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Proof. Since f(1) = 0, Taylor’s expansion gives

f(t) = f ′(1)(t − 1) +
f ′′(1)

2
(t − 1)2 + ε(t)(t − 1)2,

where ε(t) → 0 as t → 1. Hence

Q(a)f
(

P (a)
Q(a)

)
=

f ′(1)(P (a) − Q(a)) +
f ′′(1)

2
(P (a) − Q(a))2

Q(a)

+ε

(
P (a)
Q(a)

)
(P (a) − Q(a))2

Q(a)
.

Summing over a ∈ A then establishes the theorem.

Remark 4.1. The same proof works even if Q is not fixed, replacing
P → Q by P − Q → 0, provided that no Q(a) can become arbi-
trarily small. However, the theorem (the “asymptotic equivalence” of
f-divergences subject to the differentiability hypotheses) does not re-
main true if Q is not fixed and the probabilities of Q(a) are not bounded
away from 0.

Corollary 4.1. Let f0 = 1, f1, . . . , f|A|−1 be a basis for R|A| (regarded
as the linear space of all real-valued functions on A), orthonormal with
respect to the inner product < g, h >Q=

∑
a Q(a)g(a)h(a). Then,

under the hypotheses of Theorem 4.1,

Df (P‖Q) ∼ f ′′(1)
2

|A|−1∑
i=1

(∑
a

P (a)fi(a)

)2

,

and, for the linear family

L(α) = {P :
∑
a

P (a)fi(a) = αi, 1 ≤ i ≤ k},

with α = (α1 . . . , αk) approaching the zero vector,

min
P∈L(α)

Df (P‖Q) ∼ f ′′(1)
2

k∑
i=1

α2
i .
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Proof. On account of Theorem 4.1, it suffices to show that

χ2(P,Q) =
|A|−1∑
i=1

(∑
a

P (a)fi(a)

)2

(4.2)

and, at least when α = (α1 . . . , αk) is sufficiently close to the zero
vector,

min
P∈L(α)

χ2(P,Q) =
k∑

i=1

α2
i . (4.3)

Now, χ2(P,Q) =
∑

a Q(a)
(

P (a)
Q(a) − 1

)2
is the squared norm of the

function g defined by g(a) = P (a)
Q(a) − 1 with respect to the given inner

product, and that equals
∑|A|−1

i=0 < g, fi >2
Q. Here

< g, f0 >Q =
∑
a

(P (a) − Q(a)) = 0

< g, fi >Q =
∑
a

(P (a) − Q(a))fi(a)

=
∑
a

P (a)fi(a), 1 ≤ i ≤ |A| − 1,

the latter since < f0, fi >Q= 0 means that
∑

a Q(a)fi(a) = 0. This
proves (4.2), and (4.3) then obviously follows if some P ∈ L(α) sat-
isfies

∑
a P (a)fi(a) = 0, k + 1 ≤ i ≤ |A| − 1. Finally, the as-

sumed orthonormality of 1, f1, . . . , f|A|−1 implies that P defined by
P (a) = Q(a)(1 +

∑k
i=1 αifi(a)) satisfies the last conditions, and this

P is a distribution in L(α) provided it is nonnegative, which is cer-
tainly the case if α is sufficiently close to the zero vector.

One property distinguishing information divergence among f-
divergences is transitivity of projections, as summarized in the following
lemma. It can, in fact, be shown that the only f-divergence for which
either of the two properties of the lemma holds is the informational
divergence.

Lemma 4.2. Let P ∗ be the I-projection of Q onto a linear family L.
Then
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(i) For any convex subfamily L′ ⊆ L the I-projections of Q and of P ∗

onto L′ are the same.
(ii) For any “translate” L′ of L, the I-projections of Q and of P ∗ onto
L′ are the same, provided S(L) = A.

L′ is called a translate of L if it is defined in terms of the same functions
fi, but possibly different αi.

Proof. By the Pythagorean identity

D(P‖Q) = D(P‖P ∗) + D(P ∗‖Q), P ∈ L,

it follows that on any subset of L the minimum of D(P‖Q) and of
D(P‖P ∗) are achieved by the same P . This establishes (i).

The exponential family corresponding to a translate of L is the same
as it is for L. Since S(L) = A, we know by Theorem 3.2 that P ∗ belongs
to this exponential family. But every element of the exponential family
has the same I-projection onto L′, which establishes (ii).

In the following theorem, P̂n denotes the empirical distribution of
a random sample of size n from a distribution Q with S(Q) = A,
that is, the type of the sequence (X1, . . . ,Xn) where X1,X2, . . . are
independent random variables with distribution Q.

Theorem 4.2. Given real valued functions f1, . . . , fk, (1 ≤ k <

|A| − 1) on A such that f0 = 1, f1, . . . , fk are linearly independent,
let P ∗

n be the I-projection of Q onto the (random) linear family

Ln = {P :
∑
a

P (a)fi(a) =
1
n

n∑
j=1

fi(Xj), 1 ≤ i ≤ k}.

Then

D(P̂n‖Q) = D(P̂n‖P ∗
n) + D(P ∗

n‖Q),

each term multiplied by 2n
log e has a χ2 limiting distribution with |A| −

1, |A| − 1 − k, respectively k, degrees of freedom, and the right hand
side terms are asymptotically independent.
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The χ2 distribution with k degrees of freedom is defined as the
distribution of the sum of squares of k independent random variables
having the standard normal distribution.

Proof of Theorem 4.2. The decomposition of D(P̂n‖Q) is a special case
of the Pythagorean identity, see Theorem 3.2, since clearly P̂n ∈ Ln. To
prove the remaining assertions, assume that f0 = 1, f1, . . . , fk are or-
thonormal for the inner product defined in Corollary 4.1. This does not
restrict generality since the family Ln depends on f1, . . . , fk through
the linear span of 1, f1, . . . , fk, only. Further, take additional functions
fk+1, . . . , f|A|−1 on A to obtain a basis for R|A|, orthonormal for the
considered inner product. Then, since P̂n → Q in probability, Corol-
lary 4.1 applied to f(t) = t log t, with f ′′(1) = log e, gives

D(P̂n‖Q) ∼ log e

2

|A|−1∑
i=1

(∑
a

P̂n(a)fi(a)

)2

=
log e

2

|A|−1∑
i=1

⎛⎝ 1
n

n∑
j=1

fi(Xj)

⎞⎠2

,

D(P ∗
n‖Q) = min

P∈Ln

D(P‖Q) ∼ log e

2

k∑
i=1

⎛⎝ 1
n

n∑
j=1

fi(Xj)

⎞⎠2

.

Here, asymptotic equivalence ∼ of random variables means that their
ratio goes to 1 in probability, as n → ∞.

By the assumed orthonormality of f0 = 1, f1, . . . , f|A|−1, for X with
distribution Q the real valued random variables fi(X), 1 ≤ i ≤ |A|−1,
have zero mean and their covariance matrix is the (|A| − 1)× (|A| − 1)
identity matrix. It follows by the central limit theorem that the joint
distribution of the random variables

Zn,i =
1√
n

n∑
j=1

fi(Xj), 1 ≤ i ≤ |A| − 1

converges, as n → ∞, to the joint distribution of |A| − 1 independent
random variables having the standard normal distribution.
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As the asymptotic relations established above give

2n
log e

D(P̂n‖Q) ∼
|A|−1∑
i=1

Z2
n,i,

2n
log e

D(P ∗
n‖Q) ∼

k∑
i=1

Z2
n,i,

and these imply by the Pythagorean identity that

2n
log e

D(P̂n‖P ∗
n) ∼

|A|−1∑
i=k+1

Z2
n,i,

all the remaining claims follow.

Remark 4.2. D(P̂n‖P ∗
n) is the preferred statistic for testing the hypo-

thesis that the sample has come from a distribution in the exponential
family

E =

{
P : P (a) = cQ(a) exp

(
k∑

i=1

θifi(a)

)
, (θ1, . . . , θk) ∈ Rk

}
.

Note that D(P̂n‖P ∗
n) equals the infimum of D(P̂n‖P ), subject to P ∈ E ,

by Corollary 3.1 in Section 3, and the test rejecting the above hypo-
thesis when D(P̂n‖P ∗

n) exceeds a threshold is a likelihood ratio test,
see Remark 2.3 in Subsection 2.2. In this context, it is relevant that
the limiting distribution of 2n

log eD(P̂n‖P ∗
n) is the same no matter which

member of E the sample is coming from, as any P ∈ E could play the
role of Q in Theorem 4.2.

Note also that Theorem 4.2 easily extends to further decompositions
of D(P̂n‖Q). For example, taking additional functions fk+1, . . . , f� with
1, f1, . . . , f� linearly independent, let P ∗∗

n be the common I-projection
of Q and P ∗

n to

L1 =

⎧⎨⎩P :
∑
a

P (a)fi(a) =
1
n

n∑
j=1

fi(Xj), 1 ≤ i ≤ �

⎫⎬⎭ .

Then

D(P̂n‖Q) = D(P̂n‖P ∗∗
n ) + D(P ∗∗

n ‖P ∗
n) + D(P ∗

n‖Q),

the right hand side terms multiplied by 2n
log e have χ2 limiting distribu-

tions with degrees of freedom |A|−1−�, �−k, k respectively, and these
terms are asymptotically independent.
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Table 4.1 A 2-dimensional contingency table

x(0, 0) x(0, 1) · · · x(0, r2) x(0·)
x(1, 0) x(1, 1) · · · x(1, r2) x(1·)

...
...

. . .
...

...
x(r1, 0) x(r1, 1) · · · x(r1, r2) x(r1·)
x(·0) x(·1) · · · x(·r2) n

Now we apply some of these ideas to the analysis of contingency
tables. A 2-dimensional contingency table is indicated in Table 4.1.
The sample data have two features, with categories 0, . . . , r1 for the
first feature and 0, . . . , r2 for the second feature. The cell counts

x(j1, j2), 0 ≤ j1 ≤ r1, 0 ≤ j2 ≤ r2

are nonnegative integers; thus in the sample there were x(j1, j2) mem-
bers that had category j1 for the first feature and j2 for the second.
The table has two marginals with marginal counts

x(j1·) =
r2∑

j2=0

x(j1, j2), x(·j2) =
r1∑

j1=0

x(j1, j2).

The sum of all the counts is

n =
∑
j1

x(j1·) =
∑
j2

x(·j2) =
∑
j1

∑
j2

x(j1, j2).

The term contingency table comes from this example, the cell counts
being arranged in a table, with the marginal counts appearing at the
margins. Other forms are also commonly used, e. g., the counts are
replaced by the empirical probabilities p̂(j1, j2) = x(j1, j2)/n, and the
marginal counts are replaced by the marginal empirical probabilities
P̂ (j1.) = x(j1.)/n and P̂ (.j2) = x(.j2)/n.

In the general case the sample has d features of interest, with the
ith feature having categories 0, 1, . . . , ri. The d-tuples ω = (j1, . . . , jd)
are called cells; the corresponding cell count x(ω) is the number of
members of the sample such that, for each i, the ith feature is in the
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jith category. The collection of possible cells will be denoted by Ω. The
empirical distribution is defined by p̂(ω) = x(ω)/n, where n =

∑
ω x(ω)

is the sample size. By a d-dimensional contingency table we mean either
the aggregate of the cell counts x(ω), or the empirical distribution p̂,
or sometimes any distribution P on Ω (mainly when considered as a
model for the “true distribution” from which the sample came.)

The marginals of a contingency table are obtained by restrict-
ing attention to those features i that belong to some given set γ ⊂
{1, 2, . . . , d}. Formally, for γ = (i1, . . . , ik) we denote by ω(γ) the γ-
projection of ω = (j1, . . . , jd), that is, ω(γ) = (ji1 , ji2 , . . . , jik). The
γ-marginal of the contingency table is given by the marginal counts

x(ω(γ)) =
∑

ω′:ω′(γ)=ω(γ)

x(ω′)

or the corresponding empirical distribution p̂(ω(γ)) = x(ω(γ))/n. In
general the γ-marginal of any distribution {P (ω):ω ∈ Ω} is defined as
the distribution Pγ defined by the marginal probabilities

Pγ(ω(γ)) =
∑

ω′:ω′(γ)=ω(γ)

P (ω′).

A d-dimensional contingency table has d one-dimensional marginals,
d(d− 1)/2 two-dimensional marginals, ..., corresponding to the subsets
of {1, . . . , d} of one, two, ..., elements.

For contingency tables the most important linear families of distri-
butions are those defined by fixing certain γ-marginals, for a family Γ
of sets γ ⊂ {1, . . . , d}. Thus, denoting the fixed marginals by P̄γ , γ ∈ Γ,
we consider

L = {P :Pγ = P̄γ , γ ∈ Γ}.

The exponential family (through any given Q) that corresponds to this
linear family L consists of all distributions that can be represented in
product form as

P (ω) = cQ(ω)
∏
γ∈Γ

aγ(ω(γ)). (4.4)

In particular, if L is given by fixing the one-dimensional marginals (i. e.,
Γ consists of the one point subsets of {1, . . . , d}) then the corresponding
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exponential family consists of the distributions of the form

P (i1, . . . , id) = cQ(i1, . . . , id)a1(i1) · · · ad(id).

The family of all distributions of the form (4.4) is called a log-linear
family with interactions γ ∈ Γ. In most applications, Q is chosen as the
uniform distribution; often the name “log-linear family” is restricted
to this case. Then (4.4) gives that the log of P (ω) is equal to a sum of
terms, each representing an “interaction” γ ∈ Γ, for it depends on ω =
(j1, . . . , jd) only through ω(γ) = (ji1 , . . . , jik), where γ = (i1, . . . , ik).

A log-linear family is also called a log-linear model. It should be
noted that the representation (4.4) is not unique, because it corresponds
to a representation in terms of linearly dependent functions. A common
way of achieving uniqueness is to postulate aγ(ω(γ)) = 1 whenever at
least one component of ω(γ) is equal to 0. In this manner a unique
representation of the form (4.4) is obtained, provided that with every
γ ∈ Γ also the subsets of γ are in Γ. Log-linear models of this form are
called hierarchical models.

Remark 4.3. The way we introduced log-linear models shows that
restricting to the hierarchical ones is more a notational than a real
restriction. Indeed, if some γ-marginal is fixed then so are the γ′-
marginals for all γ′ ⊆ γ.

In some cases of interest it is desirable to summarize the information
content of a contingency table by its γ-marginals, γ ∈ Γ. In such cases
it is natural to consider the linear family L consisting of those distribu-
tions whose γ-marginals equal those of the empirical distribution, P̂ .
If a prior guess Q is available, then we accept the I-projection P ∗ of Q

onto L as an estimate of the true distribution. By Theorem 3.2, this P ∗

equals the intersection of the log-linear family (4.4), or its closure, with
the linear family L. Also, P ∗ equals the maximum likelihood estimate
of the true distribution if it is assumed to belong to the family (4.4).

By Theorem 2.3, an asymptotically optimal test of the null-
hypothesis that the true distribution belongs to the log-linear family E
with interactions γ ∈ Γ consists in rejecting the null-hypothesis if

D(P̂‖P ∗) = min
P∈E

D(P̂‖P )
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is “large”. Unfortunately the numerical bounds obtained in
Theorem 2.3 appear too crude for most applications, and the rejection
criterion there, namely D(P̂‖P ∗) ≥ |Ω| log n

n , admits false acceptance
too often. A better criterion is suggested by the result in Theorem 4.2
(see also Remark 4.3) that 2n

log eD(P̂‖P ∗) has χ2 limit distribution, with
specified degrees of freedom, if the null hypothesis is true. Using this
theorem, the null-hypothesis is rejected if (2n/ log e)D(P̂‖P ∗) exceeds
the threshold found in the table of the χ2 distribution for the selected
level of significance. Of course, the type 1 error probability of the re-
sulting test will be close to the desired one only when the sample size
n is sufficiently large for the distribution of the test statistic to be close
to its χ2 limit. The question of how large n is needed is important but
difficult, and will not be entered here.

Now we look at the problem of outliers. A lack of fit (i. e., D(P̂‖P ∗)
“large”) may be due not to the inadequacy of the model tested, but
to outliers. A cell ω0 is considered to be an outlier in the following
case: Let L be the linear family determined by the γ-marginals (say
γ ∈ Γ) of the empirical distribution P̂ , and let L′ be the subfamily
of L consisting of those P ∈ L that satisfy P (ω0) = P̂ (ω0). Let P ∗∗

be the I-projection of P ∗ onto L′. Ideally, we should consider ω0 as an
outlier if D(P ∗∗‖P ∗) is “large”, for if D(P ∗∗‖P ∗) is close to D(P̂‖P ∗)
then D(P̂‖P ∗∗) will be small by the Pythagorean identity. Now by the
lumping property (Lemma 4.1):

D(P ∗∗‖P ∗) ≥ P̂ (ω0) log
P̂ (ω0)
P ∗(ω0)

+
(
1 − P̂ (ω0

)
log

P̂ (ω0)
P ∗(ω0)

,

and we declare ω0 as an outlier if the right-hand side of this inequality
is “large”, that is, after scaling by (2n/ log e), it exceeds the critical
value of χ2 with one degree of freedom.

If the above method produces only a few outliers, say ω0, ω1, . . . , ω�,
we consider the subset L̃ of L consisting of those P ∈ L that satisfy
P (ωj) = P̂ (ωj) for j = 0, . . . , �. If the I-projection of P ∗ onto L̃ is
already “close” to P̂ , we accept the model and attribute the original
lack of fit to the outliers. Then the “outlier” cell counts x(ωj) are
deemed unreliable and they may be adjusted to nP ∗(ωj).
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Similar techniques are applicable in the case when some cell counts
are missing.



5

Iterative algorithms

In this Section we discuss iterative algorithms to compute I-
projections and to minimize I-divergence between two convex sets of
distributions, as well as to estimate a distribution from incomplete
data.

5.1 Iterative scaling

The I-projection to a linear family L is very easy to find if L is de-
termined by a partition B = (B1, . . . , Bk) of A and consists of all those
distributions P whose B-lumping is a given distribution (α1, . . . , αk) on
{1, . . . , k}. Indeed, then D(P‖Q) ≥ D(PB‖QB) =

∑
αi log αi/Q(Bi)

for each P ∈ L, by the lumping property (see Lemma 4.1), and here
the equality holds for P ∗ defined by

P ∗(a) = ciQ(a), a ∈ Bi, where ci =
αi

Q(Bi)
. (5.1)

It follows that P ∗ obtained by “scaling” Q as above is the I-projection
of Q to L.

In the theory of contingency tables, see Section 4, lumpings occur
most frequently as marginals. Accordingly, when L is defined by pre-

459



460 Iterative algorithms

scribing some γ-marginal of P , say Lγ = {P :Pγ = P γ}, where
γ ⊂ {1, . . . , d}, the I-projection P ∗ of Q to Lγ is obtained by scaling Q

to adjust its γ-marginal: P ∗(ω) = Q(ω)P γ(ω(γ))/Qγ(ω(γ)). Suppose
next that L can be represented as the intersection of families Li, i =
1, . . . ,m, each of form as above. Then, on account of Theorem 5.1,
below, and the previous paragraph, I-projections to L can be com-
puted by iterative scaling. This applies, in particular, to I-projections
to families defined by prescribed marginals, required in the analysis
of contingency tables: For L = {Pγ = P γ , γ ∈ Γ},Γ = {γ1, . . . , γm},
the I-projection of Q to L equals the limit of the sequence of dis-
tributions P (n) defined by iterative scaling, that is, P (0) = Q, and
P (n)(ω) = P (n−1)(ω)P γn(ω(γn))/P (n−1)

γn (ω(γn)), where γ1, γ2, . . . is a
cyclic repetition of Γ.

Suppose L1, . . . ,Lm, are given linear families and generate a se-
quence of distributions Pn as follows: Set P0 = Q (any given distribu-
tion with support S(Q) = A), let P1 be the I-projection of P0 onto L1,
P2 the I-projection of P1 onto L2, and so on, where for n > m we mean
by Ln that Li for which i ≡ n (mod m); i. e., L1, . . . ,Lm is repeated
cyclically.

Theorem 5.1. If ∩m
i=1Li = L �= ∅ then Pn → P ∗, the I-projection of

Q onto L.

Proof. By the Pythagorean identity, see Theorem 3.2, we have for
every P ∈ L (even for P ∈ Ln) that

D(P‖Pn−1) = D(P‖Pn) + D(Pn‖Pn−1), n = 1, 2, . . .

Adding these equations for 1 ≤ n ≤ N we get that

D(P‖Q) = D(P‖P0) = D(P‖PN ) +
N∑

n=1

D(Pn‖Pn−1).

By compactness there exists a subsequence PNk
→ P ′, say, and then

from the preceding inequality we get for Nk → ∞ that

D(P‖Q) = D(P‖P ′) +
∞∑

n=1

D(Pn‖Pn−1). (5.2)
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Since the series in (5.2) is convergent, its terms go to 0, hence also the
variational distance |Pn − Pn−1| =

∑
a |Pn(a) − Pn−1(a)| goes to 0 as

n → ∞. This implies that together with PNk
→ P ′ we also have

PNk+1 → P ′, PNk+2 → P ′, . . . , PNk+m → P ′.

Since by the periodic construction, among the m consecutive elements,

PNk
, PNk+1, . . . , PNk+m−1

there is one in each Li, i = 1, 2, . . . ,m, it follows that P ′ ∈ ∩Li = L.
Since P ′ ∈ L it may be substituted for P in (5.2) to yield

D(P ′‖Q) =
∞∑
i=1

D(Pn‖Pn−1).

With this, in turn, (5.2) becomes

D(P‖Q) = D(P‖P ′) + D(P ′‖Q),

which proves that P ′ equals the I-projection P ∗ of Q onto L. Finally, as
P ′ was the limit of an arbitrary convergent subsequence of the sequence
Pn, our result means that every convergent subsequence of Pn has the
same limit P ∗. Using compactness again, this proves that Pn → P ∗ and
completes the proof of the theorem.

In the general case when L = ∩m
i=1Li but no explicit formulas are

available for I-projections to the families Li, Theorem 5.1 need not
directly provide a practical algorithm for computing the I-projection
to L. Still, with a twist, Theorem 5.1 does lead to an iterative algo-
rithm, known as generalized iterative scaling (or the SMART algorithm)
to compute I-projections to general linear families and, in particular,
MLE’s for exponential families, see Theorem 3.3.

Generalized iterative scaling requires that the linear family

L =

{
P :
∑
a∈A

P (a)f(a) = αi, 1 ≤ i ≤ k

}
be given in terms of functions fi that satisfy

fi(a) ≥ 0,
k∑

i=1

fi(a) = 1, a ∈ A ; (5.3)
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accordingly, (α1, . . . , αk) has to be a probability vector. This does not
restrict generality, for if L is initially represented in terms of any func-
tions f̃i, these can be replaced by fi = Cf̃i +D with suitable constants
C and D to make sure that fi ≥ 0 and

∑k
i=1 fi(a) ≤ 1; if the last

inequality is strict for some a ∈ A, one can replace k by k + 1, and
introduce an additional function fk+1 = 1 −∑k

i=1 fi.

Theorem 5.2. Assuming (5.3), the nonnegative functions bn on A de-
fined recursively by

b0(a) = Q(a), bn+1(a) = bn(a)
k∏

i=1

(
αi

βn,i

)fi(a)

, βn,i =
∑
a∈A

bn(a)fi(a)

converge to the I-projection P ∗ of Q to L, that is, P ∗(a) =
lim

n→∞ bn(a), a ∈ A.

Intuitively, in generalized iterative scaling the values bn(a) are updated
using all constraints in each step, via multiplications by weighted geo-
metric means of the analogues αi/βn,i of the ratios in (5.1) that have
been used in standard iterative scaling, taking one constraint into ac-
count in each step. Note that the functions bn need not be probability
distributions, although their limit is.

Proof of Theorem 5.2. Consider the product alphabet Ã = A ×
{1, . . . , k}, the distribution Q̃ = {Q(a)fi(a), (a, i) ∈ Ã}, and the linear
family L̃ of those distributions P̃ on Ã that satisfy P̃ (a, i) = P (a)fi(a)
for some P ∈ L. Since for such P̃ we have D(P̃‖Q̃) = D(P‖Q), the
I-projection of Q̃ to L̃ equals P̃ ∗ = {P ∗(a)fi(a)} where P ∗ is the I-
projection of Q to L.

Note that L̃ = L̃1 ∩ L̃2 where L̃1 is the set of all distributions
P̃ = {P̃ (a, i)} whose marginal on {1, . . . , k} is equal to (α1, . . . , αk),
and

L̃2 = {P̃ : P̃ (a, i) = P (a)fi(a), P any distribution on A}.

It follows by Theorem 5.1 that the sequence of distributions
P̃0, P̃0

′
, P̃1, P̃1

′
, . . . on Ã defined iteratively, with P̃0 = Q̃, by

P̃ ′
n = I-projection to L̃1 of P̃n, P̃n+1 = I-projection to L̃2 of P̃n

′
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converges to P̃ ∗. In particular, writing P̃n(a, i) = Pn(a)fi(a), we have
Pn → P ∗. The theorem will be proved if we show that Pn(a) = cnbn(a),
where cn → 1 as n → ∞.

Now, by the first paragraph of this subsection, P̃ ′
n is obtained from

P̃n by scaling, thus

P̃ ′
n(a, i) =

αi

γn,i
Pn(a)fi(a), γn,i =

∑
a∈A

Pn(a)fi(a) .

To find P̃n+1, note that for each P̃ = {P (a)fi(a)} in L̃2 we have,
using (5.3),

D(P̃‖P̃ ′
n) =

∑
a∈A

k∑
i=1

P (a)fi(a) log

(
P (a)
Pn(a)

/
αi

γn,i

)

=
∑
a∈A

P (a) log
P (a)
Pn(a)

−
∑
a∈A

P (a)
k∑

i=1

fi(a) log
αi

γn,i

=
∑
a∈A

P (a) log
P (a)

Pn(a)
k∏

i=1

(
αi

γn,i

)fi(a)
.

This implies, by the log-sum inequality, that the minimum of D(P̃‖P̃ ′
n)

subject to P̃ ∈ L̃2 is attained by P̃n+1 = {Pn+1(a)fi(a)} with

Pn+1(a) = cn+1Pn(a)
k∏

i=1

(
αi

γn,i

)fi(a)

where cn+1 is a normalizing constant. Comparing this with the recur-
sion defining bn in the statement of the theorem, it follows by induction
that Pn(a) = cnbn(a), n = 1, 2, . . ..

Finally, cn → 1 follows since the above formula for D(P̃‖P̃ ′
n) gives

D(P̃n+1‖P̃ ′
n) = log cn+1, and D(P̃n+1‖P̃ ′

n) → 0 as in the proof of
Theorem 5.1.

5.2 Alternating divergence minimization

In this subsection we consider a very general alternating minimiza-
tion algorithm which, in particular, will find the minimum divergence
between two convex sets P and Q of distributions on a finite set A.
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In the general considerations below, P and Q are arbitrary sets
and D(P,Q) denotes an extended real-valued function on P ×Q which
satisfies the following conditions.

(a) −∞ < D(P,Q) ≤ +∞, P ∈ P, Q ∈ Q.
(b) ∀P ∈ P ,∃Q∗ = Q∗(P ) ∈ Q such that min

Q∈Q
D(P,Q) = D(P,Q∗).

(c) ∀Q ∈ Q,∃P ∗ = P ∗(Q) ∈ P such that min
P∈P

D(P,Q) = D(P ∗, Q).

A problem of interest in many situations is to determine

Dmin
def= inf

P∈P ,Q∈Q
D(P,Q). (5.4)

A naive attempt to solve this problem would be to start with some
Q0 ∈ Q and recursively define

Pn = P ∗(Qn−1), Qn = Q∗(Pn), n = 1, 2, . . . (5.5)

hoping that D(Pn, Qn) → Dmin, as n → ∞.
We show that, subject to some technical conditions, the naive iter-

ation scheme (5.5) determines the infimum in (5.4). This is stated as
the following theorem.

Theorem 5.3. Suppose there is a nonnegative function δ(P,P ′) de-
fined on P × P with the following properties:

(i) “three-points property,”

δ(P,P ∗(Q)) + D(P ∗(Q), Q) ≤ D(P,Q), ∀P ∈ P, Q ∈ Q,

(ii) “four-points property,” for P ∈ P with min
Q∈Q

D(P‖Q) < ∞,

D(P ′, Q′) + δ(P ′, P ) ≥ D(P ′, Q∗(P )), ∀P ′ ∈ P, Q′ ∈ Q.

(iii) δ(P ∗(Q), P1) < ∞ for Q ∈ Q with min
P∈P

D(P,Q) < ∞.

Then, if min
P∈P

D(P,Q0) < ∞, the iteration (5.5) produces (Pn, Qn)

such that

lim
n→∞D(Pn, Qn) = inf

P∈P,Q∈Q
D(P,Q) = Dmin. (5.6)



5.2. Alternating divergence minimization 465

Under the additional hypotheses that (iv) P is compact, (v)
D(P,Q∗(P )) is a lower semi-continuous function of P , and (vi)
δ(P,Pn) → 0 iff Pn → P , we also have Pn → P∞, where
D(P∞, Q∗(P∞)) = Dmin; moreover, δ(P∞, Pn) ↓ 0 and

D(Pn+1, Qn) − Dmin ≤ δ(P∞, Pn) − δ(P∞, Pn+1). (5.7)

Proof. We have, by the three-points property,

δ(P,Pn+1) + D(Pn+1, Qn) ≤ D(P,Qn),

and, by the four-points property

D(P,Qn) ≤ D(P,Q) + δ(P,Pn),

for all P ∈ P, Q ∈ Q. Hence

δ(P,Pn+1) ≤ D(P,Q) − D(Pn+1, Qn) + δ(P,Pn) (5.8)

We claim that the iteration (5.5) implies the basic limit result (5.6).
Indeed, since

D(P1, Q0) ≥ D(P1, Q1) ≥ D(P2, Q1) ≥ D(P2, Q2) ≥ . . .

by definition, if (5.6) were false there would exist Q and ε > 0 such
that D(Pn+1, Qn) > D(P ∗(Q), Q)+ ε, n = 1, 2, . . .. Then the inequality
(5.8) applied with this Q and P ∗(Q) would give δ(P ∗(Q), Pn+1) ≤
δ(P ∗(Q), Pn) − ε, for n = 1, 2, . . ., contradicting assumption (iii) and
the nonnegativity of δ.

Supposing also the assumptions (iv)-(vi), pick a convergent subse-
quence of {Pn}, say Pnk

→ P∞ ∈ P . Then by (v) and (5.6),

D(P∞, Q∗(P∞)) ≤ lim inf
k→∞

D(Pnk
, Qnk

) = Dmin,

and by the definition of Dmin, here the equality must hold. By (5.8)
applied to D(P,Q) = D(P∞, Q∗(P∞)) = Dmin, it follows that

δ(P∞, Pn+1) ≤ Dmin − D(Pn+1, Qn) + δ(P∞, Pn),

proving (5.7). This last inequality also shows that δ(P∞, Pn+1) ≤
δ(P∞, Pn), n = 1, 2, . . . , and, since δ(P∞, Pnk

) → 0, by (vi), this
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proves that δ(P∞, Pn) ↓ 0. Finally, again by (vi), the latter implies
that Pn → P∞.

Next we want to apply the theorem to the case when P and Q
are convex, compact sets of measures on a finite set A (in the remain-
der of this subsection by a measure we mean a nonnegative, finite-
valued measure, equivalently, a nonnegative, real-valued function on
A), and D(P,Q) = D(P‖Q) =

∑
a P (a) log(P (a)/Q(a)), a definition

that makes sense even if the measures do not sum to 1. The existence
of minimizers Q∗(P ) and P ∗(Q) of D(P‖Q) with P or Q fixed is obvi-
ous.

We show now that with

δ(P,P ′) = δ(P‖P ′) def=
∑
a∈A

[
P (a) log

P (a)
P ′(a)

− (P (a) − P ′(a)) log e

]
,

which is nonnegative term-by-term, all assumptions of Theorem 5.3 are
satisfied, with the possible exception of assumption (iii) to which we
will return later.

Indeed, the three-points and four-points properties have already
been established in the case when the measures in question are proba-
bility distributions, see Theorems 3.1 and 3.4. The proofs of these two
theorems easily extend to the present more general case.

Of assumptions (iv)–(vi), only (v) needs checking, that is,
we want to show that if Pn → P then minQ∈QD(P‖Q) ≤
lim infn→∞ D(Pn‖Qn), where Qn = Q∗(Pn). To verify this, choose
a subsequence such that D(Pnk

‖Qnk
) → lim infn→∞ D(Pn‖Qn) and

Qnk
converges to some Q∗ ∈ Q. The latter and Pnk

→ P imply that
D(P‖Q∗) ≤ limk→∞ D(Pnk

‖Qnk
), and the assertion follows.

Returning to the question whether assumption (iii) of Theorem 5.3
holds in our case, note that δ(P ∗(Q)‖P1) = δ(P ∗(Q)‖P ∗(Q0)) is finite
if the divergence D(P ∗(Q)‖P ∗(Q0)) is finite on account of the three-
points property (i). Now, for each Q ∈ Q with infP∈P D(P‖Q) <

∞ whose support is contained in the support of Q0, the inclusions
S(P ∗(Q)) ⊆ S(Q) ⊆ S(Q0) imply that D(P ∗(Q)‖P ∗(Q0) is finite. This
means that assumption is always satisfied if Q0 has maximal support,
that is, S(Q0) = S(Q). Thus we have arrived at
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Corollary 5.1. SupposeP and Q are convex compact sets of measures
on a finite set A such that there exists P ∈ P with S(P ) ⊆ S(Q),
and let D(P,Q) = D(P‖Q), δ(P,Q) = δ(P‖Q). Then all assertions of
Theorem 5.3 are valid, provided the iteration (5.5) starts with a Q0 ∈ Q
of maximal support.

Note that under the conditions of the corollary, there exists a unique
minimizer of D(P‖Q) subject to P ∈ P , unless D(P‖Q) = +∞ for
every P ∈ P. There is a unique minimizer of D(P‖Q) subject to Q ∈
Q if S(P ) = S(Q), but not necessarily if S(P ) is a proper subset
of S(Q); in particular, the sequences Pn, Qn defined by the iteration
(5.5) need not be uniquely determined by the initial Q0 ∈ Q. Still,
D(Pn‖Qn) → Dmin always holds, Pn always converges to some P∞ ∈ P
with minQ∈QD(P∞‖Q) = Dmin, and each accumulation point of {Qn}
attains that minimum (the latter can be shown as assumption (v) of
Theorem 5.3 was verified above). If D(P∞, Q) is minimized for a unique
Q∞ ∈ Q, then Qn → Q∞ can also be concluded.

The following consequence of (5.7) is also worth noting, for it pro-
vides a stopping criterion for the iteration (5.5).

D(Pn+1‖Qn) − Dmin ≤ δ(P∞‖Pn) − δ(P∞‖Pn+1) =

=
∑
a∈A

P∞(a) log
Pn+1(a)
Pn(a)

+
∑
a∈A

[Pn(a) − Pn+1(a)] log e

≤
(

max
P∈P

P (A)
)

max
a∈A

log
Pn+1(a)
Pn(a)

+ [Pn(A) − Pn+1(A)] log e

where P (A) def=
∑

a∈A P (a); using this, the iteration can be stopped
when the last bound becomes smaller than a prescribed ε > 0. The
criterion becomes particularly simple if P consists of probability dis-
tributions.

Corollary 5.1 can be applied, as we show below, to minimizing I-
divergence when either the first or second variable is fixed and the
other variable ranges over the image of a “nice” set of measures on a
larger alphabet. Here “nice” sets of measures are those for which the
divergence minimization is “easy.”
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For a mapping T :A 
→ B and measures P on A, write P T for
the image of P on B, that is, P T (b) =

∑
a:Ta=b P (a). For a set P of

measures on A write PT = {P T :P ∈ P}.
Problem 1. Given a measure P on B and a convex set Q of measures

on A, minimize D(P‖Q) subject to Q ∈ QT .
Problem 2. Given a measure Q on B and a convex set P of measures

on A, minimize D(P‖Q) subject to P ∈ PT .

Lemma 5.1. The minimum in Problem 1 equals Dmin = minP∈P ,Q∈Q
for P = {P :P T = P} and the given Q, and if (P ∗, Q∗) attains Dmin

then Q∗T attains the minimum in Problem 1.
A similar result holds for Problem 2, with the roles of P and Q

interchanged.

Proof. The lumping property of Lemma 4.1, which also holds for ar-
bitrary measures, gives

D(P T ‖QT ) ≤ D(P‖Q), with equality if
P (a)
Q(a)

=
P T (b)
QT (b)

, b = Ta.

From this it follows that if P = {P :P T = P} for a given P , then the
minimum of D(P‖Q) subject to P ∈ P (for Q fixed) is attained for
P ∗ = P ∗(Q) with

P ∗(a) =
Q(a)
QT (b)

P (b), b = Ta (5.9)

and this minimum equals D(P‖QT ). A similar result holds also for
minimizing D(P‖Q) subject to Q ∈ Q (for P fixed) in the case when
Q = {Q:QT = Q} for a given Q, in which case the minimizer Q∗ =
Q∗(P ) is given by

Q∗(a) =
P (a)
P T (b)

Q(b), b = Ta (5.10)

The assertion of the lemma follows.

Example 5.1 (Decomposition of mixtures.). Let P be a proba-
bility distribution and let µ1, . . . , µk be arbitrary measures on a fi-
nite set B. The goal is to minimize D(P‖∑k ciµi) for weight vectors
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(c1, . . . , ck) with nonnegative components that sum to 1. If µ1, . . . , µk

are probability distributions and P is the empirical distribution of a
sample drawn from the mixture

∑
i ciµi then the goal is identical to

finding the MLE of the weight vector (c1, . . . , ck).
This example fits into the framework of Problem 1, above, by set-

ting A = {1, . . . , k} × B, T (i, b) = b, Q = {Q:Q(i, b) = ciµi(b)}.
Thus we consider the iteration (5.5) as in Corollary 5.1, with P =
{P :

∑
i P (i, b) = P (b), b ∈ B} and Q above, assuming for nontriviality

that S(P ) ⊆ ∪iS(µi) (equivalent to the support condition in Corol-
lary 5.1 in our case). As Corollary 5.1 requires starting with Q0 ∈ Q of
maximal support, we assume Q0(i, b) = c0

i µi(b), c0
i > 0, i = 1, . . . , k.

To give the iteration explicitly, note that if Qn−1(i, b) = cn−1
i µi(b) is

already defined then Pn is obtained, according to (5.9), as

Pn(i, b) =
Qn−1(i, b)
QT

n−1(b)
P (b) =

cn−1
i µi(b)∑

j cn−1
j µj(b)

P (b).

To find Qn ∈ Q minimizing D(Pn‖Q), put Pn(i) =
∑

b∈B Pn(i, b) and
use Q(i, b) = ciµi(b) to write

D(Pn‖Q) =
k∑

i=1

∑
b∈B

Pn(i, b) log
Pn(i, b)
ciµi(b)

=
k∑

i=1

Pn(i) log
Pn(i)

ci
+

k∑
i=1

∑
b∈B

Pn(i, b) log
Pn(i, b)

Pn(i)µi(b)
.

This is minimized for cn
i = Pn(i), hence the recursion for cn

i will be

cn
i = cn−1

i

∑
b∈B

µi(b)P (b)∑
j cn−1

j µj(b)
.

Finally, we show that (cn
1 , . . . , cn

k ) converges to a minimizer
(c∗1, . . . , c∗k) of D(P‖∑k ciµi). Indeed, Pn converges to a limit P∞ by
Corollary 5.1, hence cn

i = Pn(i) also has a limit c∗i and Qn → Q∗ with
Q∗(i, b) = c∗i µi(b). By the passage following Corollary 5.1, (P∞, Q∗)
attains Dmin = minP∈P ,Q∈QD(P‖Q), and then, by Lemma 5.1,
Q∗T =

∑
i c

∗
i µi attains min

Q∈QT D(P‖Q) = Dmin.

Remark 5.1. A problem covered by Example 5.1 is that of finding
weights ci > 0 of sum 1 that maximize the expectation of log

∑
i ciXi,
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where X1, . . . ,Xk are given nonnegative random variables defined on a
finite probability space (B,P ). Indeed, then

E(log
∑

i

ciXi) = −D(P‖
∑

i

ciµi),

for µi(b) = P (b)Xi(b). In this case, the above iteration takes the form

cn
i = cn−1

i E(
Xi∑

j cn
j Xj

),

which is known as Cover’s portfolio optimization algorithm. We note
without proof that the algorithm works also for nondiscrete X1, . . . ,Xk.

Remark 5.2. The counterpart of the problem of Example 5.1, namely,
the minimization of D(

∑
k ciµi‖Q) can be solved similarly. Then the

iteration of Corollary 5.1 has to be applied to the set P consist-
ing of the measures of the form P (i, b) = ciµi(b) and to Q =
{Q:

∑
i Q(i, b) = Q(b), b ∈ B}. Actually, the resulting iteration

is the same as that in the proof of Theorem 5.2 (assuming the
µi and Q are probability distributions), with notational difference
that the present i, b, ci, µi(b), Q(b), Pn ∈ P , Qn ∈ Q correspond to
a, i, P (a), fi(a), αi, P̃n ∈ L̃2, P̃

′
n ∈ L̃1 there. To see this, note that while

the even steps of the two iterations are conceptually different divergence
minimizations (with respect to the second, respectively, first variable,
over the set denoted by Q or L̃1), in fact both minimizations require
the same scaling, see (5.9), (5.10).

This observation gives additional insight into generalized iterative
scaling, discussed in the previous subsection. Note that Theorem 5.2
involves the assumption L �= ∅ (as linear families have been defined to
be non-empty, see Section 3), and that assumption is obviously nec-
essary. Still, the sequence {Pn} in the proof of Theorem 5.2 is well
defined also if L = ∅, when L̃1 and L̃2 in that proof are disjoint.
Now, the above observation and Corollary 5.1 imply that Pn converges
to a limit P ∗ also in that case, moreover, P = P ∗ minimizes the
I-divergence from (α1, . . . , αk) of distributions (γ1, . . . , γk) such that
γi =

∑
a P (a)fi(a), 1 ≤ i ≤ k, for some probability distribution P on

A.
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5.3 The EM algorithm

The expectation–maximization or EM algorithm is an iterative
method frequently used in statistics to estimate a distribution supposed
to belong to a given set Q of distributions on a set A when, instead
of a “full” sample xn

1 = x1 . . . xn ∈ An from the unknown distribution,
only an “incomplete” sample yn

1 = y1 . . . yn ∈ Bn is observable. Here
yi = Txi for a known mapping T : A 
→ B. As elsewhere in this tutorial,
we restrict attention to the case of finite A,B.

The EM algorithm produces a sequence of distributions Qk ∈ Q,
regarded as consecutively improved estimates of the unknown distribu-
tion, iterating the following steps E and M, starting with an arbitrary
Q0 ∈ Q.

Step E: Calculate the conditional expectation Pk = EQk−1
(P̂n|yn

1 )
of the empirical distribution P̂n of the unobservable full sample, condi-
tioned on the observed incomplete sample, pretending the true distri-
bution equals the previous estimate Qk−1.

Step M: Calculate the MLE of the distribution the full sample xn
1

is coming from, pretending that the empirical distribution of xn
1 equals

Pk calculated in Step E. Set Qk equal to this MLE.

Here, motivated by Lemma 3.1, by “MLE pretending the empirical
distribution equals Pk” we mean the minimizer of D(Pk||Q) subject to
Q ∈ Q, even if Pk is not a possible empirical distribution (implicitly
assuming that a minimizer exists; if there are several, any one of them
may be taken). For practicality, we assume that step M is easy to
perform; as shown below, step E is always easy.

The EM algorithm is, in effect, an alternating divergence minimiza-
tion, see the previous subsection. To verify this, it suffices to show that
Pk in Step E minimizes the divergence D(P ||Qk−1) subject to P ∈ P,
for P = {P : P T = P̂ T

n }, where P T denotes the image of P under the
mapping T :A 
→ B. Actually, we claim that for any distribution Q on
A, the conditional expectation P = EQ(P̂n|yn

1 ) attains the minimum
of D(P ||Q) subject to P T = P̂ T

n .
Now, writing δ(x, a) = 1 if x = a and 0 otherwise, we have for any
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a ∈ A

EQ(P̂n(a)|yn
1 ) = EQ

(
1
n

n∑
i=1

δ(xi, a)
∣∣∣yn

1

)

=
1
n

n∑
i=1

EQ(δ(xi, a)|yi) =
|{i : yi = Ta}|

n

Q(a)
QT (Ta)

.

Indeed, under the condition that yi = Txi is given, the conditional
expectation of δ(xi, a), that is, the conditional probability of xi = a,
equals Q(a)/QT (Ta) if yi = Ta, and zero otherwise. As the empirical
distribution of yn

1 is equal to P̂ T
n , this means that P = EQ(P̂n|yn

1 ) is
given by

P (a) = P̂ T
n (Ta)

Q(a)
QT (Ta)

.

Since D(P ||Q) ≥ D(P T ||QT ) for any P (by the lumping property, see
Lemma 4.1), and for P given above here clearly the equality holds, it
follows that P = EQ(P̂n|yn

1 ) minimizes D(P ||Q) subject to P T = P̂ T
n ,

as claimed.
An immediate consequence is that

D(P1||Q0) ≥ D(P1||Q1) ≥ D(P2||Q1) ≥ D(P2||Q2) ≥ . . .

In particular, as D(Pk||Qk−1) = D(P̂ T
n ||QT

k−1), the sequence
D(P̂ T

n ||QT
k ) is always non-increasing and hence converges to a limit

as k → ∞.
In the ideal case, this limit equals

min
Q∈Q

D(P̂ T
n ||QT ) = min

P∈P,Q∈Q
D(P ||Q) = Dmin

where P = {P : P T = P̂ T
n }. In this ideal case, supposing some Q̄ in

QT = {QT : Q ∈ Q} is the unique minimizer of D(P̂ T
n ||Q′) subject to

Q′ ∈ cl(QT ), it also holds that QT
k → Q̄. Indeed, for any convergent

subsequence of QT
k , its limit Q′ ∈ cl(QT ) satisfies

D(P̂ T
n ||Q′) = lim

k→∞
D(P̂ T

n ||QT
k ) = Dmin,

hence Q′ = Q̄ by the uniqueness assumption. Note that Q̄ is the MLE
of the distribution governing the elements yi = Txi of the incomplete
sample yn

1 , by Lemma 3.1.
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If the set Q of feasible distributions is convex and compact, the
above ideal situation always obtains if the EM algorithm is started
with a Q0 ∈ Q of maximal support, by Corollary 5.1 in the previous
subsection. Then by the last paragraph, supposing the minimizer of
D(P̂ T

n ||Q′) subject to Q′ ∈ QT is unique (for which S(P̂ T
n ) = S(QT ) is

a sufficient condition), the EM algorithm always provides a sequence
of distributions Qk whose T -images approach that minimizer, that is,
the MLE of the distribution underlying the incomplete sample. This
implies, in turn, that the distributions Qk themselves converge to a
limit, because the Pk’s obtained in the steps E as

Pk(a) = P̂ T
n (Ta)

Qk−1(a)
QT

k−1(Ta)

do converge to a limit, by Corollary 5.1.
An example of the EM algorithm with convex, compact Q is the

decomposition of mixtures in Example 5.1. It should be noted, however,
that in most situations where the EM algorithm is used in statistics, the
set Q of feasible distributions is not convex. Then Corollary 5.1 does not
apply, and the ideal case D(P̂ T

n ||QT
k ) → Dmin need not obtain; indeed,

the iteration often gets stuck at a local optimum. A practical way to
overcome this problem is to run the algorithm with several different
choices of the initial Q0.
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Universal coding

A Shannon code for a distribution Pn on An has the length func-
tion �− log Pn(xn

1 ) and produces expected length within 1 bit of the
entropy lower bound H(Pn); it therefore provides an almost optimal
method for coding if it is known that the data xn

1 is governed by Pn.
In practice, however, the distribution governing the data is usually not
known, though it may be reasonable to assume that the data are com-
ing from an unknown member of a known class P of processes, such
as the i.i.d. or Markov or stationary processes. Then it is desirable to
use “universal” codes that perform well no matter which member of
P is the true process. In this Section, we introduce criteria of “good
performance” of codes relative to a process. We also describe universal
codes for the classes of i.i.d. and Markov processes, and for some oth-
ers, which are almost optimal in a strong sense and, in addition, are
easy to implement.

By a process with alphabet A we mean a Borel probability measure
P on A∞, that is, a probability measure on the σ-algebra generated by
the cylinder sets

[an
1 ] = {x∞

1 :xn
1 = an

1}, an
1 ∈ An, n = 1, 2, . . . ;

474



6.1. Redundancy 475

see the Appendix for a summary of process concepts. The marginal
distribution Pn on An of a process P is defined by

Pn(an
1 ) = P ([an

1 ]), an
1 ∈ An;

we also write briefly P (an
1 ) for Pn(an

1 ).
Simple examples are the i.i.d. processes with

P (an
1 ) =

n∏
t=1

P (at), an
1 ∈ An,

and the Markov chains with

P (an
1 ) = P1(a1)

n∏
t=2

P (at|at−1), an
1 ∈ An,

where P1 = {P1(a): a ∈ A} is an initial distribution, and {P (a|ã),
a ∈ A, ã ∈ A} is a transition probability matrix, that is, P (·|ã) is a
probability distribution on A for each ã ∈ A. Stationary processes are
those that satisfy

P ({x∞
1 :xi+n

i+1 = an
1}) = P ([an

1 ]), for each i, n, and an
1 ∈ An.

6.1 Redundancy

The ideal codelength of a message xn
1 ∈ An coming from a process

P is defined as − log P (xn
1 ). For an arbitrary n-code Cn:An 
→ B∗,

B = {0, 1}, the difference of its length function from the “ideal” will
be called the redundancy function R = RP,Cn :

R(xn
1 ) = L(xn

1 ) + log P (xn
1 ).

The value R(xn
1 ) for a particular xn

1 is also called the pointwise redun-
dancy.

One justification of this definition is that a Shannon code for Pn,
with length function equal to the rounding of the “ideal” to the next
integer, attains the least possible expected length of a prefix code
Cn:An 
→ B∗, up to 1 bit (and the least possible expected length of
any n-code up to log n plus a constant), see Section 1. Note that while
the expected redundancy

EP (R) = EP (L) − H(Pn)
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is non-negative for each prefix code Cn:An 
→ B∗, the redundancy func-
tion takes also negative values, in general. The next theorem shows,
however, that pointwise redundancy can never be “substantially” neg-
ative for large n, with P -probability 1. This provides additional justi-
fication of the definition above.

In the sequel, the term code will either mean an n-code Cn:An 
→
B∗, or a sequence {Cn:n = 1, 2, . . .} of n-codes. The context will make
clear which possibility is being used. A code {Cn:n = 1, 2, . . .} is said
to be a prefix code if each Cn is one, and strongly prefix if Cm(ym

1 ) ≺
Cn(xn

1 ) can hold only when ym
1 ≺ xn

1 .

Theorem 6.1. Given an arbitrary process P and code {Cn:n =
1, 2, . . .} (not necessarily prefix),

R(xn
1 ) ≥ −cn eventually almost surely,

for any sequence of numbers {cn} with
∑

n2−cn < +∞, e.g., for cn =
3 log n. Moreover, if the code is strongly prefix, or its length function
satisfies L(xn

1 ) ≥ − log Q(xn
1 ) for some process Q, then

EP (inf
n

R(xn
1 )) > −∞.

Proof. Let

An(c) = {xn
1 :R(xn

1 ) < −c} = {xn
1 : 2L(xn

1 )P (xn
1 ) < 2−c}.

Then

Pn(An(c)) =
∑

xn
1∈An(c)

P (xn
1 ) < 2−c

∑
xn
1∈An(c)

2−L(xn
1 ) ≤ 2−c log |An|

where, in the last step, we used Theorem 1.2. Hence
∞∑

n=1

Pn(An(cn)) ≤ log |A| ·
∞∑

n=1

n 2−cn ,

and the first assertion follows by the Borel–Cantelli principle.
The second assertion will be established if we show that for codes

with either of the stated properties

P ({x∞
1 : inf n R(xn

1 ) < −c}) < 2−c, ∀ c > 0 ,



6.1. Redundancy 477

or in other words,
∞∑

n=1

Pn(Bn(c)) < 2−c

where
Bn(c) = {xn

1 :R(xn
1 ) < −c, R(xk

1) ≥ −c, k < n}.

As in the proof of the first assertion,

Pn(Bn(c)) < 2−c
∑

xn
1∈Bn(c)

2−L(xn
1 ),

hence it suffices to show that
∞∑

n=1

∑
xn
1∈Bn(c)

2−L(xn
1 ) ≤ 1.

If {Cn:n = 1, 2, . . .} is a strongly prefix code, the mapping
C: (∪∞

n=1Bn(c)) 
→ B∗ defined by C(xn
1 ) = Cn(xn

1 ), xn
1 ∈ Bn(c), satis-

fies the prefix condition, and the claim holds by the Kraft inequality.
If L(xn

1 ) ≥ − log Q(xn
1 ), we have∑

xn
1∈Bn(c)

2−L(xn
1 ) ≤

∑
xn
1∈Bn(c)

Q(xn
1 ) = Qn(Bn(c)),

and the desired inequality follows since

∞∑
n=1

Qn(Bn(c)) = Q({x∞
1 : inf n R(xn

1 ) < −c}) ≤ 1.

In the literature, different concepts of universality, of a code
{Cn:n = 1, 2, . . .} for a given class P of processes, have been used.
A weak concept requires the convergence to 0 of the expected redun-
dancy per symbol,

1
n

EP (RP,Cn) → 0, for each P ∈ P; (6.1)

stronger concepts require uniform convergence to 0, for P ∈ P , of either
(1/n)EP (RP,Cn) or of (1/n) max

xn
1∈An

RP,Cn(xn
1 ).
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In the context of “strong” universality, natural figures of merit of
a code Cn:An 
→ B∗ (for a given class of processes) are the worst case
expected redundancy

RCn = sup
P∈P

EP (RP,Cn)

and the worst case maximum redundancy

R∗
Cn

= sup
P∈P

max
xn
1∈An

RP,Cn(xn
1 ).

Example 6.1. For the class of i.i.d. processes, natural universal codes
are obtained by first encoding the type of xn

1 , and then identifying xn
1

within its type class via enumeration. Formally, for xn
1 of type Q, let

Cn(xn
1 ) = C(Q)CQ(xn

1 ), where C:Pn 
→ B∗ is a prefix code for n-types
(Pn denotes the set of all n-types), and for each Q ∈ Pn, CQ:T n

Q 
→ B∗

is a code of fixed length �log |T n
Q|. This code is an example of what

are called two-stage codes. The redundancy function RP,Cn = L(Q) +
�log |T n

Q| + log P (xn
1 ) of the code Cn equals L(Q) + log Pn(T n

Q), up
to 1 bit, where L(Q) denotes the length function of the type code
C:Pn 
→ B∗. Since Pn(T n

Q) is maximized for P = Q, it follows that for
xn

1 in T Q, the maximum pointwise redundancy of the code Cn equals
L(Q) + log Qn(T n

Q), up to 1 bit.
Consider first the case when the type code has fixed length L(Q) =

�log |Pn|. This is asymptotically equal to (|A| − 1) log n as n → ∞,
by Lemma 2.1 and Stirling’s formula. For types Q of sequences xn

1 in
which each a ∈ A occurs a fraction of time bounded away from 0,
one can see via Stirling’s formula that log Qn(T n

Q) is asymptotically
−((|A| − 1)/2) log n. Hence for such sequences, the maximum redun-
dancy is asymptotically ((|A| − 1)/2) log n. On the other hand, the
maximum for xn

1 of L(Q) + log Qn(T n
Q) is attained when xn

1 consists of
identical symbols, when Qn(T n

Q) = 1; this shows that R∗
Cn

is asymp-
totically (|A| − 1) log n in this case.

Consider next the case when C:Pn 
→ B∗ is a prefix code of length
function L(Q) = �log(cn/Qn(T n

Q)) with
cn =

∑
Q∈Pn

Qn(T n
Q) ; this is a bona-fide length function, satisfy-

ing the Kraft inequality. In this case L(Q) + log Qn(T n
Q) differs from
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log cn by less than 1, for each Q in Pn, and we obtain that R∗
Cn

equals
log cn up to 2 bits. We shall see that this is essentially best possible
(Theorem 6.2), and in the present case R∗

Cn
= ((|A|−1)/2) log n+O(1)

(Theorem 6.3).

Note that to any prefix code Cn:An 
→ B∗, with length function
L(xn

1 ), there is a probability distribution Qn or An such that L(xn
1 ) ≥

− log Qn(xn
1 ) (one can take Qn(xn

1 ) = c2−L(xn
1 ), with c ≥ 1, using the

Kraft inequality). Conversely, to any distribution Qn on An there exists
a prefix code with length function L(xn

1 ) < − log Qn(xn
1 )+1 (a Shannon

code for Qn). It follows that for any class P of processes with alphabet
A, the least possible value of RCn or R∗

Cn
for prefix codes Cn:An 
→ B∗

“almost” equals

Rn = min
Qn

sup
P∈P

∑
xn
1∈An

P (xn
1 ) log

P (xn
1 )

Qn(xn
1 )

(6.2)

or

R∗
n = min

Qn

sup
P∈P

max
xn
1∈An

log
P (xn

1 )
Qn(xn

1 )
. (6.3)

More exactly, each prefix code Cn : An 
→ B∗ has worst case expected
and maximal redundancy not smaller than Rn and R∗

n, respectively,
and a Shannon code for a Qn attaining the minimum in (6.2) or (6.3)
achieves this lower bound up to 1 bit. In particular, for a class P of
processes, there exist “strongly universal codes” with expected or max-
imum redundancy per symbol converging to 0 uniformly for P ∈ P , if
and only if Rn = o(n) or R∗

n = o(n), respectively.
Our next theorem identifies the minimizer in (6.3) and the value

R∗
n. The related problem for Rn will be treated in Section 7.

We use the following notation. Given a class P of processes with
alphabet A, we write

PML(xn
1 ) def= sup

P∈P
P (xn

1 ), xn
1 ∈ An,

where the subscript on PML emphasizes its interpretation as the maxi-
mizer of P (xn

1 ) subject to P ∈ P (if it exists), that is, as the maximum
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likelihood estimate of the process P ∈ P that generates xn
1 . The nor-

malized form

NMLn(an
1 ) def= PML(an

1 )/
∑

xn
1∈An

PML(xn
1 ), an

1 ∈ An,

is called the the normalized maximum likelihood distribution.

Theorem 6.2. For any class P of processes with finite alphabet A,
the minimum in (6.3) is attained for Qn = NMLn, the normalized
maximum likelihood distribution, and

R∗
n = log

∑
xn
1∈An

PML(xn
1 ).

Proof. For arbitrary Qn,

sup
P∈P

max
xn
1∈An

log
P (xn

1 )
Qn(xn

1 )
= log max

xn
1∈An

PML(xn
1 )

Qn(xn
1 )

.

Here

max
xn
1∈An

PML(xn
1 )

Qn(xn
1 )

≥
∑

xn
1∈An

Qn(xn
1 )

PML(xn
1 )

Qn(xn
1 )

=
∑

xn
1∈An

PML(xn
1 ),

with equality if Qn = NMLn.

6.2 Universal codes for certain classes of processes

While Shannon codes for the distributions NMLn, n = 1, 2, . . . are
optimal for the class P within 1 bit, with respect to the maximum
redundancy criterion, by Theorem 6.2, they are typically not practical
from the implementation point of view. We will show that for some
simple but important classes P there exist easily implementable arith-
metic codes {Cn:n = 1, 2, . . .} which are nearly optimal, in the sense
that

R∗
Cn

≤ R∗
n + constant, n = 1, 2, . . . (6.4)

Recall that an arithmetic code (of the second kind, see equation (1.2) in
Section 1) determined by the marginals Qn, n = 1, 2, . . . of any process
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Q, is a prefix code {Cn:n = 1, 2, . . .} with length function L(xn
1 ) =

�− log Q(xn
1 )+ 1. Note that the obvious idea to take a process Q with

marginals Qn = NMLn does not work, since such a process typically
does not exist (that is, the distributions NMLn, n = 1, 2, . . ., do not
meet the consistency criteria for a process).

Below we describe suitable “coding processes” Q, and for the cor-
responding arithmetic codes we prove upper bounds to R∗

Cn
. For the

class of i.i.d processes, we also determine R∗
n, up to a constant, and

establish the bound (6.4) for our code. For other classes, the proof of
the claimed near optimality will be completed in the next subsection,
where we also prove near optimality in the expected redundancy sense.

In the rest of this subsection, we assume with no loss of generality
that A = {1, . . . , k}.

Consider first the case when P is the class of i.i.d. processes with
alphabet A. Let the “coding process” be the process Q whose marginal
distributions Qn = {Q(xn

1 ):xn
1 ∈ An} are given by

Q(xn
1 ) =

n∏
t=1

n(xt|xt−1
1 ) + 1

2

t − 1 + k
2

,

where n(i|xt−1
1 ) denotes the number of occurrences of the symbol i in

the “past” xt−1
1 . Equivalently,

Q(xn
1 ) =

∏k
i=1 [(ni − 1

2 )(ni − 3
2) · · · 1

2 ]
(n − 1 + k

2 )(n − 2 + k
2 ) · · · k

2

, (6.5)

where ni = n(i|xn
1 ), and (ni − 1

2 )(ni − 3
2) . . . 1

2 = 1, by definition, if
ni = 0.

Note that the conditional probabilities needed for arithmetic coding
are given by the simple formula

Q(i|xt−1
1 ) =

n(i|xt−1
1 ) + 1

2

t − 1 + k
2

.

Intuitively, this Q(i|xt−1
1 ) is an estimate of the probability of i from

the “past” xt−1
1 , under the assumption that the data come from an

unknown P ∈ P . The unbiased estimate n(i|xt−1
1 )/(t − 1) would

be inappropriate here, since an admissible coding process requires
Q(i|xt−1

1 ) > 0 for each possible xt−1
1 and i.
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Remark 6.1. It is not intuitively obvious at this point in our discus-
sion why exactly 1/2 is the “right” bias term that admits the strong
redundancy bound below. Later, in Section 7, we establish a deep con-
nection between minimax expected redundancy R̄n and mixture distri-
butions with respect to priors (which is closely connected to Bayesian
ideas); the 1/2 then arises from using a specific prior. For now we note
only that replacing 1/2 by 1 in formula (6.5) leads to the coding distri-

bution Q(xn
1 ) =

∏n

1
ni!

(n−1+k)(n−2+k)···k which equals 1
|Pn|·|T Q| , if xn

1 ∈ T Q,

see Lemma 2.1. In this case, the length function is the same (up to 2
bits) as the first, suboptimal, version of the two-stage code in Exam-
ple 6.1.

We claim that the arithmetic code determined by the process Q

satisfies
R∗

Cn
≤ k − 1

2
log n + constant. (6.6)

Since the length function is L(xn
1 ) = �log Q(xn

1 )+ 1, our claim will be
established if we prove

Theorem 6.3. For Q determined by (6.5), and any i.i.d. process P

with alphabet A = {1, . . . , k},

P (xn
1 )

Q(xn
1 )

≤ K0 n
k−1
2 , ∀ xn

1 ∈ An,

where K0 is a constant depending on the alphabet size k only.

Proof. We begin by noting that given xn
1 ∈ An, the i.i.d. process

with largest P (xn
1 ) is that whose one-dimensional distribution equals

the empirical distribution (n1/n, . . . , nk/n) of xn
1 , see Lemma 2.3, and

hence

P (xn
1 ) ≤ PML(xn

1 ) =
k∏

i=1

(
ni

n

)ni

.

In a moment we will use a combinatorial argument to establish the
bound

k∏
i=1

(
ni

n

)n

≤
∏k

i=1 [(ni − 1
2)(ni − 3

2 ) · · · 1
2 ]

(n − 1
2)(n − 3

2 ) · · · 1
2

. (6.7)
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This is enough to yield the desired result, for if it is true, then we
can use P (xn

1 )/Q(xn
1 ) ≤ PML(xn

1 )/Q(xn
1 ) and the Q-formula, (6.5), to

obtain
P (xn

1 )
Q(xn

1 )
≤

n∏
j=1

n + k
2 − j

n + 1
2 − j

, ∀ xn
1 ∈ An. (6.8)

If the alphabet size k is odd, the product here simplifies, and is obvi-
ously of order n

k−1
2 . If k is even, using

(n − 1
2)(n − 3

2 ) · · · 1
2 =

(2n − 1)(2n − 3) · · · 1
2n

=
(2n)!
22nn!

=
2n(2n − 1) · · · (n + 1)

22n
, (6.9)

the product in (6.8) can be rewritten as

(n + k
2 − 1)!/(k

2 − 1)!
(2n)!/22nn!

,

and Stirling’s formula gives that this is of order n
k−1
2 . Hence, it indeed

suffices to prove (6.7).
To prove (6.7), we first use (6.9) to rewrite it as

k∏
i=1

(
ni

n

)n

≤
∏k

i=1[2ni(2ni − 1) · · · (ni + 1)]
2n(2n + 1) · · · (n + 1)

, (6.10)

which we wish to establish for k-tuples of non-negative integers ni with
sum n. This will be done if we show that it is possible to assign to each
� = 1, . . . , n in a one-to-one manner, a pair (i, j), 1 ≤ i ≤ k, 1 ≤ j ≤ n,
such that

ni

n
≤ ni + j

n + �
. (6.11)

Now, for any given � and i, (6.11) holds iff j ≥ ni�/n. Hence the number
of those 1 ≤ j ≤ ni that satisfy (6.11) is greater than ni − ni�/n, and
the total number of pairs (i, j), 1 ≤ i ≤ k, 1 ≤ j ≤ n, satisfying (6.11)
is greater than

k∑
i=1

(
ni −

ni

n
�

)
= n − �.

It follows that if we assign to � = n any (i, j) satisfying (6.11) (i. e., i

may be chosen arbitrarily and j = ni), then recursively assign to each
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� = n−1, n−2, etc., a pair (i, j) satisfying (6.11) that was not assigned
previously, we never get stuck; at each step there will be at least one
“free” pair (i, j) (because the total number of pairs (i, j) satisfying
(6.11) is greater than n − �, the number of pairs already assigned.)
This completes the proof of the theorem.

Remark 6.2. The above proof has been preferred for it gives a sharp
bound, namely, in equation (6.7) the equality holds if xn

1 consists of
identical symbols, and this bound could be established by a purely
combinatorial argument. An alternative proof via Stirling’s formula,
however, yields both upper and lower bounds. Using equation (6.9),
the numerator in equation (6.5) can be written as∏

i:ni 	=0

(2ni)!
22nin!

,

which, by Stirling’s formula, is bounded both above and below by con-
stant times e−n∏

i:ni 	=0 nni
i . The denominator in equation (6.5) can also

be expressed by factorials (trivially if k is even, and via equation (6.9)
if k is odd), and Stirling’s formula shows that it is bounded both above
and below by a constant times e−nnn+ k−1

2 . This admits the conclusion
that PML(xn

1 )/Q(xn
1 ) is bounded both above and below by a constant

times n
k−1
2 , implying

Theorem 6.4. For the class of i.i.d processes,

R∗
n = log

∑
xn
1∈An

PML(xn
1 ) =

k − 1
2

log n + O(1).

Consequently, our code satisfying equation (6.6) is nearly optimal in
the sense of equation (6.4).

Next, let P be the class of Markov chains with alphabet A =
{1, . . . , k}. We claim that for this class, the arithmetic code determined
by the process Q below satisfies

R∗
Cn

≤ k(k − 1)
2

log n + constant. (6.12)
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Let the “coding process” be that Q whose marginal distributions Qn =
{Q(xn

1 ):xn
1 ∈ An} are given by

Q(xn
1 ) =

1
k

k∏
i=1

∏k
j=1 [(nij − 1/2)(nij − 3/2) . . . 1/2]

(ni − 1 + k/2)(ni − 2 + k/2) . . . k/2
; (6.13)

here nij is the number of times the pair i, j occurs in adjacent places
in xn

1 , and ni =
∑

j nij. Note that ni is now the number of occurrences
of i in the block xn−1

1 (rather than in xn
1 as before). The conditional

Q-probabilities needed for arithmetic coding are given by

Q(j|xt−1
1 ) =

nt−1(i, j) + 1
2

nt−1(i) + k
2

, if xt−1 = i,

where nt−1(i, j) and nt−1(i) have similar meaning as nij and ni above,
with xt−1

1 in the role of xn
1 .

Similarly to the i.i.d. case, to show that the arithmetic code de-
termined by Q above satisfies (6.12) for the class of Markov chains, it
suffices to prove

Theorem 6.5. For Q determined by (6.13) and any Markov chain
with alphabet A = {1. . . . , k},

P (xn
1 )

Q(xn
1 )

≤ K1 n
k(k−1)

2 , ∀ xn
1 ∈ An,

where K1 is a constant depending on k only.

Proof. For any Markov chain, the probability of xn
1 ∈ An is of form

P (xn
1 ) = P1(x1)

n∏
t=2

P (xt|xt−1) = P1(x1)
k∏

i=1

k∏
j=1

P (j|i)nij .

This and (6.13) imply that

P (xn
1 )

Q(xn
1 )

≤ k
k∏

i=1

[
k∏

j=1

P (j|i)nij

/∏k
j=1[(nij − 1/2)(nij − 3/2) . . . 1/2]

(ni − 1 + k/2)(ni − 2 + k/2) . . . k/2

]
.

Here, when ni �= 0, the square bracket is the same as the ratio in
Theorem 6.3 for a sequence xni

1 ∈ Ani with empirical distribution
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(ni1/ni, . . . , nik/ni), and an i.i.d. process with one-dimensional distri-
bution P (·|i). Hence, it follows from Theorem 6.3 that

P (xn
1 )

Q(xn
1 )

≤ k
∏

ni 	=0

[
K0 n

k−1
2

i

]
≤ (k Kk

0 )n
k(k−1)

2 .

Consider next the class of Markov chains of order at most m, namely
of those processes P (with alphabet A = {1, . . . , k}) for which the
probabilities P (xn

1 ), xn
1 ∈ An, n ≥ m can be represented as

P (xn
1 ) = Pm(xm

1 )
n∏

t=m+1

P (xt|xt−1
t−m),

where P (·|am
1 ) is a probability distribution for each an

1 ∈ An. The
Markov chains considered before correspond to m = 1. To the anal-
ogy of that case we now define a “coding process” Q whose marginal
distributions Qn, n ≥ m, are given by

Q(xn
1 ) =

1
km

∏
am
1 ∈Am

∏k
j=1[(nam

1 j − 1/2)(nam
1 j − 3/2) . . . 1/2]

(nam
1
− 1 + k/2)(nam

1
− 2 + k/2) . . . k/2

, (6.14)

where nam
1 j denotes the number of times the block am

1 j occurs in xn
1 ,

and nam
1

=
∑

j nam
1 j is the number of times the block am

1 occurs in
xn−1

1 .
The same argument as in the proof of Theorem 6.5 gives that for

Q determined by (6.14), and any Markov chain of order m,

P (xn
1 )

Q(xn
1 )

≤ Km n
km(k−1)

2 , Km = km Kkm

0 . (6.15)

It follows that the arithmetic code determined by Q in (6.14) is a
universal code for the class of Markov chains of order m, satisfying

R∗
Cn

≤ km(k − 1)
2

log n + constant. (6.16)

Note that the conditional Q-probabilities needed for arithmetic coding
are now given by

Q(j|xt−1
1 ) =

nt−1(am
1 , j) + 1

2

nt−1(am
1 ) + k

2

, if xt−1
t−m = am

1 ,
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where nt−1(am
1 , j) and nt−1(am

1 ) are defined similarly to nam
1 j and nam

1
,

with xt−1
1 in the role of xn

1 .
A subclass of the Markov chains of order m, often used in statistical

modeling, is specified by the assumption that the transition probabil-
ities P (j|am

1 ) depend on am
1 through a “context function” f(am

1 ) that
has less than km possible values, say 1, . . . , s. For m < t ≤ n, the
t’th symbol in a sequence xn

1 ∈ An is said to occur in context � if
f(xt−1

t−m) = �. A suitable coding process for this class, determined by
the context function f , is defined by

Q(xm
1 ) =

1
km

s∏
�=1

∏k
j=1 [(n�,j − 1/2)(n�,j − 3/2) . . . 1/2]

(n� − 1 + k/2)(n� − 2 + k/2) . . . k/2
,

where n�,j denotes the number of times j occurs in context � in the

sequence xn
1 , and n� =

k∑
j=1

n�,j. The arithmetic code determined by

this process Q satisfies, for the present class,

R∗
Cn

≤ s(k − 1)
2

log n + constant, (6.17)

by the same argument as above. The conditional Q-probabilities needed
for arithmetic coding are now given by

Q(j|xt−1
1 ) =

nt−1(�, j) + 1
2

nt−1(�) + k
2

, if f(xt−1
t−m) = �.

Finally, let P be the class of all stationary processes with alphabet
A = {1, . . . , k}. This is a “large” class that does not admit strong sense
universal codes, that is, the convergence in (6.1) cannot be uniform for
any code, see Example 8.3 in Section 8. We are going to show, however,
that the previous universal codes designed for Markov chains of order m

perform “reasonably well” also for the class P of stationary processes,
and can be used to obtain universal codes for P in the weak sense of
(6.1).

To this end, we denote by Q(m) the coding process defined by (6.14)
tailored to the class of Markov chains of order m (in particular, Q(0) is
the process defined by (6.5)), and by {Cm

n :n = 1, 2, . . .} the arithmetic
code determined by the process Q(m).
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Theorem 6.6. Let P ∈ P have entropy rate H = limn→∞ Hm

where, with {Xn} denoting a representation of P , Hm =
H(Xm+1|X1, . . . ,Xm). Then

1
n

EP (RP,Cm
n

) ≤ Hm − H +
km(k − 1)

2
log n

n
+

cm

n
,

where cm is a constant depending only on m and the alphabet size k,
with cm = O(km) as m → ∞.

Corollary 6.1. For any sequence of integers mn → ∞ with mn ≤
α log n, α < 1/ log k, the prefix code {Cmn

n :n = 1, 2, . . .} satisfies (6.1).
Moreover, the arithmetic code determined by the mixture process

Q =
∞∑

m=0

αmQ(m) (with αm > 0,
∑

αm = 1)

also satisfies (6.1).

Proof. Given a stationary process P , let P (m) denote its m’th Markov
approximation, that is, the stationary Markov chain of order m with

P (m)(xn
1 ) = P (xm

1 )
n∏

t=m+1

P (xt|xt−1
t−m), xn

1 ∈ An,

where
P (xt|xt−1

t−m) = Prob{Xt = xt|Xt−1
t−m = xt−1

t−m}.
The bound (6.15) applied to P (m) in the role of P gives

log
P (xn

1 )
Q(m)(xn

1 )
= log

P (xn
1 )

P (m)(xn
1 )

+ log
P (m)(xn

1 )
Q(m)(xn

1 )

≤ log
P (xn

1 )
P (m)(xn

1 )
+

km(k − 1)
2

log n + log Km,

where log Km = O(km).
Note that the expectation under P of log P (xn

1 ) equals −H(Pn),
and that of log P (xt|xt−1

t−m) equals −Hm . Hence for the code Cm
n with

length function L(xn
1 ) = �− log Q(m)(xn

1 )+1, the last bound gives that

EP (RP,Cn) < EP

(
log

P (xn
1 )

Q(m)(xn
1 )

)
+ 2

≤ −H(Pn) + H(Pm) + (n − m)Hm + km(k−1)
2 log n + log Km + 2.
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Since

H(Pn) − H(Pm) = H(Xn
1 ) − H(Xm

1 ) =
n−1∑
i=m

H(Xi+1|Xi
1) ≥ (n − m)H,

the assertion of the theorem follows.

The corollary is immediate, noting for the second assertion that
Q(xn

1 ) ≥ αmQ(m)(xm
1 ) implies

log
P (xn

1 )
Q(xn

1 )
≤ log

P (xn
1 )

Q(m)(xn
1 )

− log αm.

Remark 6.3. The last inequality implies that for Markov chains of

any order m, the arithmetic code determined by Q =
∞∑

m=0
αmQ(m) per-

forms effectively as well as that determined by Q(m), the coding process
tailored to the class of Markov chains of order m: the increase in point-
wise redundancy is bounded by a constant (depending on m). Of course,
the situation is similar for other finite or countable mixtures of coding
processes. For example, taking a mixture of coding processes tailored
to subclasses of the Markov chains of order m corresponding to differ-
ent context functions, the arithmetic code determined by this mixture
will satisfy the bound (6.17) whenever the true process belongs to one
of the subclasses with s possible values of context function. Such codes
are sometimes called twice universal. Their practicality depends on how
easily the conditional probabilities of the mixture process, needed for
arithmetic coding, can be calculated. This issue is not entered here, but
we note that for the case just mentioned (with a natural restriction on
the admissible context functions) the required conditional probabilities
can be calculated via a remarkably simple “context weighting algo-
rithm”.



7

Redundancy bounds

In this Section, we address code performance for a class of processes
with respect to the expected redundancy criterion. We also show that
the universal codes constructed for certain classes in the previous Sec-
tion are optimal within a constant, both for the maximum and expected
redundancy criteria.

As noted in the previous Section, the least possible worst case ex-
pected redundancy RCn , attainable for a given class P of processes by
prefix codes Cn:An 
→ B∗, exceeds by less than 1 bit the value

Rn = min
Qn

sup
P∈P

D(Pn‖Qn), (7.1)

see (6.2). Moreover, a distribution Q∗
n attaining this minimum is effec-

tively an optimal coding distribution for n-length messages tailored to
the class P , in the sense that a Shannon code for Q∗

n attains the least
possible worst case expected redundancy within 1 bit.

Next we discuss a remarkable relationship of the expression (7.1) to
the seemingly unrelated concepts of mutual information and channel
capacity. As process concepts play no role in this discussion, we shall
simply consider some set Π of probability distributions on A, and its
I-divergence radius, defined as the minimum for Q of supP∈Π D(P‖Q).

490
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Later the results will be applied to An and the set of marginal distri-
butions on An of the processes P ∈ P , in the role of A and Π.

7.1 I-radius and channel capacity

The I-radius of a set Π of distributions on A is the minimum, for
distributions Q on A, of supP∈Π D(P‖Q) . If the minimum is attained
by a unique Q = Q∗ (as we shall show, this is always the case), the
minimizer Q∗ is called the I-centroid of the set Π.

In the following lemma and theorems, we consider “parametric” sets
of probability distributions Π = {Pθ, θ ∈ Θ}, where Θ is a Borel subset
of Rk, for some k ≥ 1, and Pθ(a) is a measurable function of θ for each
a ∈ A.

In information theory parlance, {Pθ, θ ∈ Θ} defines a channel with
input alphabet Θ and output alphabet A: when an input θ ∈ Θ is se-
lected, the output is governed by the distribution Pθ = {Pθ(a), a ∈ A}.
If the input is selected at random according a probability measure ν on
Θ, the information that the output provides for the input is measured
by the mutual information

I(ν) = H(Qν) −
∫

H(Pθ)ν(dθ),

where Qν = {Qν(a): a ∈ A} is the “output distribution” on A corre-
sponding to the “input distribution” ν, that is,

Qν(a) =
∫

Pθ(a)ν(dθ), a ∈ A.

The supremum of the mutual information I(ν) for all probability mea-
sures ν on Θ is the channel capacity. A measure ν0 is a capacity achiev-
ing distribution if I(ν0) = supν I(ν).

Lemma 7.1. For arbitrary distributions Q on A and ν on Θ,∫
D(Pθ‖Q)ν(dθ) = I(ν) + D(Qν‖Q).
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Proof. Both sides equal +∞ if S(Q), the support of Q, does not contain
S(Pθ) for ν-almost all θ ∈ Θ. If it does we can write∫

D(Pθ‖Q)ν(dθ) =
∫ (∑

a∈A

Pθ(a) log
Pθ(a)
Q(a)

)
ν(dθ)

=
∫ (∑

a∈A

Pθ(a) log
Pθ(a)
Qν(a)

)
ν(dθ) +

∫ (∑
a∈A

Pθ(a) log
Qν(a)
Q(a)

)
ν(dθ).

Using the definition of Qν , the first term of this sum is equal to I(ν),
and the second term to D(Qν‖Q).

Theorem 7.1. For arbitrary distributions Q on A and ν on Θ,

sup
θ∈Θ

D(Pθ‖Q) ≥ I(ν),

with equality if and only if ν is a capacity achieving distribution and
Q = Qν .

Proof. The inequality follows immediately from Lemma 7.1, as does
the necessity of the stated condition of equality. To prove sufficiency,
suppose on the contrary that there is a capacity achieving distribution
ν0 such that D(Pθ0‖Qν0) > I(ν0), for some θ0 ∈ Θ.

Denote by ν1 the point mass at θ0 and set νt = (1 − t)ν0 + tν1,
0 < t < 1. Then by the definition of I(ν),

I(νt) = H(Qνt) − (1 − t)
∫

H(Pθ)ν0(dθ) − tH(Pθ0),

so that,

d

dt
I(νt) =

d

dt
H(Qνt) +

∫
H(Pθ)ν0(dθ) − H(Pθ0).

Since Qνt = (1 − t)Qν0 + tPθ0 , simple calculus gives that

d

dt
H(Qνt) =

∑
a

(Qν0(a) − Pθ0(a)) log Qνt(a).

It follows that

lim
t↓0

d

dt
I(νt) = −I(ν0) + D(Pθ0‖Qν0) > 0,
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contradicting the assumption that ν0 is capacity achieving (which im-
plies that I(νt) ≤ I(ν0)). The proof of the theorem is complete.

Note that any set Π of distributions on A which is a Borel subset
of R|A| (with the natural identification of distributions with points in
R|A|) has a natural parametric representation, with Θ = Π and θ 
→
Pθ the identity mapping. This motivates consideration, for probability
measures µ on Π, of the mutual information

I(µ) = H(Qµ) −
∫
Π

H(P )µ(dP ), Qµ =
∫
Π

Pµ(dP ). (7.2)

Lemma 7.2. For any closed set Π of distributions on A, there exists a
probability measure µ0 concentrated on a finite subset of Π of size m ≤
|A| that maximizes I(µ). If a parametric set of distributions {Pθ, θ ∈ Θ}
is closed, there exists a capacity achieving distribution ν0 concentrated
on a finite subset of Θ of size m ≤ |A|.

Proof. If Π is a closed (hence compact) subset of R|A|, the set of all
probability measures on Π is compact in the usual topology of weak
convergence, where µn → µ means that

∫
Π

Φ(P )µn(dP ) →
∫
Π

Φ(P )µ(dP )

for every continuous function Φ on Π. Since I(µ) is continuous in that
topology, its maximum is attained.

Theorem 7.1 applied with the natural parametrization of Π gives
that if µ∗ maximizes I(µ) then Q∗ = Qµ∗ satisfies D(P‖Q∗) ≤ I(µ∗) for
each θ ∈ Θ. Since I(µ∗) =

∫
Π

D(P‖Q∗)µ∗(dP ), by Lemma 4.2, it follows

that D(P‖Q∗) = I(µ∗) for µ∗-almost all P ∈ Π, thus Q∗ =
∫
Π

Pµ∗(dP )

belongs to the convex hull of the set of those P ∈ Π that satisfy
D(P‖Q) = I(µ∗). Since the probability distributions on A belong
to an (|A| − 1)-dimensional affine subspace of R|A|, this implies by
Caratheodory’s theorem that Q∗ is a convex combination of m ≤ |A|
member of the above set, that is, Q∗ =

m∑
i=1

αiPi where the distributions

Pi ∈ Π satisfy D(Pi‖Q∗) = I(µ∗), i = 1, . . . ,m. Then the probability
measure µ0 concentrated on {P1, . . . , Pm} that assigns weight αi to Pi,
satisfies I(µ0) = I(µ∗), completing the proof of the first assertion.



494 Redundancy bounds

The second assertion follows by applying the one just proved to
Π = {Pθ, θ ∈ Θ}, because any probability measure ν on Θ and its
image µ on Π under the mapping θ 
→ Pθ satisfy I(ν) = I(µ), and
any measure concentrated on a finite subset {Pθ1 , . . . , Pθm} of Π is the
image of one concentrated on {θ1, . . . , θm} ⊆ Θ.

Corollary 7.1. Any set Π of probability distributions on A has an
I-centroid, that is, a unique Q∗ attains the minimum of sup

P∈Π
D(P‖Q).

Proof: For Π closed, the existence of I-centroid follows from the fact
that the maximum of I(µ) is attained, by Theorem 7.1 applied with
the natural parametrization of Π. For arbitrary Π, it suffices to note
that the I-centroid of the closure of Π is also the I-centroid on Π, since
supP∈Π D(P‖Q) = supP∈c�(Π) D(P‖Q), for any Q.

Theorem 7.2. For any parametric set of distributions {Pθ, θ ∈ Θ},
the I-radius equals the channel capacity sup I(ν), and Qνn converges
to the I-centroid Q∗ whenever I(νn) → sup I(ν).

Proof: Let Π denote the closure of {Pθ, θ ∈ Θ}. Then both sets have the
same I-radius, whose equality to sup I(ν) follows from Theorem 7.1 and
Lemma 7.2 if we show that to any probability measure µ0 concentrated
on a finite subset {P1, . . . , Pm} of Π, there exist probability measures
νn on Θ with I(νn) → I(µ0).

Such νn’s can be obtained as follows. Take sequences of distributions
in {Pθ, θ ∈ Θ} that converge to the Pi’s, say Pθi,n

→ Pi, i = 1, . . . ,m.
Let νn be the measure concentrated on {θ1,n, . . . , θm,n}, giving the same
weight to θi,n that µ0 gives to Pi.

Finally, we establish a lower bound to channel capacity, more ex-
actly, to the mutual information I(ν) for a particular choice of ν, that
will be our key tool to bounding worst case expected redundancy from
below. Given a parametric set {Pθ, θ ∈ Θ} of distributions on A, a
mapping θ̂:A 
→ Θ is regarded as a good estimator of the parameter θ
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if the mean square error

Eθ‖θ − θ̂‖2 =
∑
x∈A

Pθ(x)‖θ − θ̂(x)‖2

is small for each θ ∈ Θ. We show that if a good estimator exists, the
channel capacity cannot be too small.

Theorem 7.3. If the parameter set Θ ⊆ Rk has Lebesgue measure
0 < λ(Θ) < ∞, and an estimator θ̂:A 
→ Θ exists with

Eθ‖θ − θ̂‖2 ≤ ε for each θ ∈ Θ ,

then for ν equal to the uniform distribution on Θ,

I(ν) ≥ k

2
log

k

2πeε
+ log λ(Θ).

To prove this theorem, we need some standard facts from informa-
tion theory, stated in the next two lemmas. The differential entropy
of a random variable X with values in Rk that has a density f(x), is
defined as

H(X) = −
∫

f(x) log f(x)dx;

thus H denotes entropy as before in the discrete case, and differential
entropy in the continuous case. The conditional differential entropy of
X given a random variable Y with values in a finite set A (more general
cases will not be needed below), is defined similarly as

H(X|Y ) =
∑
a∈A

P (a)
[
−
∫

f(x|a) log f(x|a)dx

]
,

where P (a) is the probability of Y = a, and f(x|a) is the conditional
density of X on the condition Y = a.

Lemma 7.3. For X and Y as above, I(X ∧ Y ) = H(X) − H(X|Y ).
Moreover, if Z is a function of Y then H(X|Y ) ≤ H(X|Z) ≤ H(X).
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Proof. By the definition of mutual information of random variables,
one with values in a finite set and the other arbitrary, see Section 1,

I(X ∧ Y ) = H(Y ) − H(Y |X) = H(P ) −
∫

H(P (·|x))f(x)dx,

where P (·|x) denotes the conditional distribution of Y on the con-
dition X = x. Substituting the formula for the latter, P (a|x) =
P (a)f(x|a)/f(x), into the above equation, the claimed identity

I(X ∧ Y ) = −
∫

f(x) log f(x)dx +
∑
a∈A

P (a)
∫

f(x|a) log f(x|a)dx

follows by simple algebra.
Next, if Z is a function of Y , for each possible value c of Z let A(c)

denote the set of possible values of Y when Z = c. Then the conditional
density of X on the condition Z = c is given by

g(x|c) =
∑

a∈A(c) P (a)f(x|a)∑
a∈A(c) P (a)

,

and Jensen’s inequality for the concave function −t log t yields that∑
a∈A(c)

P (a)(−f(x|a) log f(x|a)) ≤ (
∑

a∈A(c)

P (a))(−g(x|c) log g(x|c)).

Hence, by integrating and summing for all possible c, the claim
H(X|Y ) ≤ H(X|Z) follows. Finally, H(X|Z) ≤ H(X) follows simi-
larly.

Lemma 7.4. A k-dimensional random variable V = (V1, . . . , Vk) with
E‖V ‖2 ≤ kσ2 has maximum differential entropy if V1, . . . , Vk are inde-
pendent and have Gaussian distribution with mean 0 and variance σ2,
and this maximum entropy is k

2 log(2πeσ2).

Proof. The integral analogue of the log-sum inequality is∫
a(x) log

a(x)
b(x)

dx ≥ a log
a

b
, a =

∫
a(x)dx, b =

∫
b(x)dx,

valid for any non-negative integrable functions on Rk. Letting a(x) be
any k-dimensional density for which E‖V ‖2 ≤ kσ2, and b(x) be the
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Gaussian density
∏

i(2πσ2)−1/2e(−x2
i /2σ2), this inequality gives∫

a(x) log a(x)dx−
∫

a(x)
[
(k/2) log(2πσ2)+

∑
(x2

i /2σ
2) log e

]
dx ≥ 0.

Here
∫

a(x)(
∑

x2
i )dx ≤ kσ2 by assumption, hence the assertion

−
∫

a(x) log a(x)dx ≤ (k/2) log(2πeσ2)

follows, with equality if a(x) = b(x).

Proof of Theorem 7.3. Let X be a random variable uniformly dis-
tributed on Θ, and let Y be the channel output corresponding to input
X, that is, a random variable with values in A whose conditional dis-
tribution on the condition X = θ equals Pθ. Further, let Z = θ̂(Y ).
Then, using Lemma 7.3,

I(ν) = I(X ∧ Y ) = H(X) − H(X|Y )

≥ H(X) − H(X|Z) = H(X) − H(X − Z|Z)

≥ H(X) − H(X − Z). (7.3)

The hypothesis on the estimator θ̂ implies that

E‖X − Z‖2 = E(E‖X − Z‖2|X) =
∫

Eθ‖θ − θ̂‖2ν(dθ) ≤ ε.

Hence, by Lemma 7.4 applied with σ2 = ε/k,

H(X − Z) ≤ k

2
log

2πeε

k
.

On account of the inequality (7.3), where H(X) = log λ(Θ), this com-
pletes the proof of the theorem.

7.2 Optimality results

Returning to the problem of least possible worst case expected
redundancy, it follows from Corollary 7.1 that for any class P of pro-
cesses with alphabet A, there exists, for each n, a unique Q∗

n attaining
the minimum in (7.1). As discussed before, this I-centroid of the set
{Pn:P ∈ P} of the marginals on An of the processes in P is effec-
tively an optimal coding distribution for n-length messages, tailored
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to the class P . When P is a parametric class of processes, that is,
P = {Pθ: θ ∈ Θ} where Θ is a Borel subset of Rk, for some k ≥ 1,
and Pθ(an

1 ) is a measurable function of θ for each n and an
1 ∈ An,

Theorem 7.1 identifies the I-centroid Q∗
n as

Q∗
n(xn

1 ) =
∫

Pθ,n(xn
1 )νn(dθ), xn

1 ∈ An

where νn is a capacity achieving distribution for the channel determined
by {Pθ,n, θ ∈ Θ} provided that a capacity achieving distribution exists;
a sufficient condition for the latter is the closedness of the set {Pθ,n, θ ∈
Θ} of the marginal distributions on An, see Lemma 7.2.

Typically, νn does depend on n, and no process exists of which Q∗
n

would be the marginal on An for n = 1, 2, . . . (a similar inconvenience
occurred also in the context of Theorem 6.2). Still, for important pro-
cess classes P = {Pθ, θ ∈ Θ}, there exists a probability measure ν on Θ
not depending on n, such that the marginals Qn = {Q(xn

1 ), xn
1 ∈ An}

of the “mixture process” Q =
∫

Pθν(dθ) given by

Q(xn
1 ) =

∫
Pθ,n(xn

1 )ν(dθ), xn
1 ∈ An, n = 1, 2, . . . (7.4)

attain the minimum of supθ∈Θ D(Pθ,n‖Qn) within a constant. Then Q

is a “nearly optimal coding process”: the arithmetic code determined
by Q attains the least possible worst case expected redundancy for P ,
within a constant. Typical examples are the coding processes tailored
to the classes of i.i.d. and Markov processes, treated in the previous
subsection. We now show that these are mixture processes as in (7.4).
Their “near optimality” will be proved later on.

First, let P be the class of i.i.d. processes with alphabet A =

{1, . . . , k}, parametrized by Θ = {(p1, . . . , pk−1): pi ≥ 0,
k−1∑
i=1

pi ≤ 1},
with

Pθ(xn
1 ) =

k∏
i=1

pni
i , ni = |{1 ≤ t ≤ n:xt = i}|;

here, for θ = (p1, . . . , pk−1), pk = 1 − (p1 + . . . + pk−1).
Let ν be the Dirichlet distribution on Θ with parameters αi > 0,
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i = 1, . . . , k, whose density function, with the notation above, is

fα1,...,αk
(θ) def=

Γ(
k∑

i=1
αi)

k∏
i=1

Γ(αi)

k∏
i=1

pαi−1
i ,

where Γ(s) =
∞∫
0

xs−1e−xdx. Then (7.4) gives

Q(xn
1 ) =

∫
Θ

Pθ(xn
1 )fα1,...,αk

(θ)dθ =
Γ(

k∑
i=1

αi)∏k
i=1 Γ(αi)

∫
Θ

k∏
i=1

pni+αi−1
i dθ

=
Γ(

k∑
i=1

αi)

k∏
i=1

Γ(αi)
·

k∏
i=1

Γ(ni + αi)

Γ(
k∑

i=1
(ni + αi))

·
∫
Θ

fn1+α1,...,nk+αk
(θ) dθ

=

k∏
i=1

[(ni + αi − 1)(ni + αi − 2) . . . αi]

(n +
k∑

i=1
αi − 1)(n +

k∑
i=1

αi − 2) . . . (
k∑

i=1
αi)

,

where the last equality follows since the integral of a Dirichlet density is
1, and the Γ-function satisfies the functional equation Γ(s+1) = sΓ(s).
In particular, if α1 = . . . = αk = 1

2 , the mixture process Q =
∫

Pθν(dθ)
is exactly the coding process tailored to the i.i.d. class P , see (6.5).

Next, let P the class of Markov chains with alphabet A = {1, . . . , k},
with initial distribution equal to the uniform distribution on A, say,

parametrized by Θ = {(pij)1≤i≤k,1≤j≤k−1: pij ≥ 0,
k−1∑
j=1

pij ≤ 1}:

Pθ(xn
1 ) =

1
|A|

k∏
i=1

k∏
j=1

p
nij

ij , nij = |{1 ≤ t ≤ n− 1:xt = i, xt+1 = j}|,

where, for θ = (pij), pik = 1−(pi1+ . . .+pik−1). Let ν be the Cartesian
product of k Dirichlet (1

2 , . . . , 1
2) distributions, that is, a distribution

on Θ under which the rows of the matrix (pij) are independent and
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Dirichlet (1
2 , . . . , 1

2) distributed. The previous result implies that the
corresponding mixture process Q =

∫
Pθν(dθ) equals the coding process

tailored to the Markov class P , see (6.13).
Similarly, the coding process tailored to the class of m’th order

Markov chains, see (6.14), or to its subclass determined by a context
function, can also be represented as Q =

∫
Pθν(dθ), with ν equal to a

Cartesian product of Dirichlet (1
2 , . . . , 1

2) distributions.
To prove “near optimality” of any code, a lower bound to Rn in

equation (7.1) is required. Such bound can be obtained applying The-
orems 7.1 and 7.3, with An in the role of A.

Theorem 7.4. Let P = {Pθ, θ ∈ Θ} be a parametric class of pro-
cesses, with Θ ⊆ Rk of positive Lebesgue measure, such that for some
estimators θ̂n:An 
→ Θ

Eθ‖θ − θ̂n‖2 ≤ c(θ)
n

, θ ∈ Θ , n = 1, 2, . . . .

Then, for a suitable constant K,

Rn ≥ k

2
log n − K, n = 1, 2, . . . .

Moreover, if λ(Θ) < +∞, then to any δ > 0 there exists a constant K

such that for each n and distribution Qn on An

λ({θ ∈ Θ:D(Pθ,n‖Qn) <
k

2
log n − K}) < δ.

Proof: It suffices to prove the second assertion. Fixing 0 < δ ≤ λ(Θ),
take C so large that Θ′ = {θ ∈ Θ, c(θ) > C} has λ(Θ′) ≤ δ/2. Then, for
arbitrary Θ1 ⊆ Θ with λ(Θ1) ≥ δ, Theorem 7.3 applied to {Pθ,n: θ ∈
Θ1 \ Θ′} with ε = C/n gives

I(ν) ≥ k

2
log

kn

2πeC
+ log λ(Θ1 \ Θ′)

where ν is the uniform distribution on Θ1 \ Θ′.
Since here λ(Θ1 \ Θ′) ≥ δ/2, this and Theorem 7.1 applied to

{Pθ,n: θ ∈ Θ1} yield

sup
θ∈Θ1

D(Pθ‖Qn) ≥ I(ν) ≥ k

2
log

kn

2πeC
+ log

δ

2
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=
k

2
log n − K; K =

k

2
log

2πeC

k
+ log

2
δ

,

whenever λ(Θ1) ≥ δ. This proves that the set {θ ∈ Θ:D(Pθ,n‖Qn) <
k
2 log n − K} cannot have Lebesgue measure ≥ δ, as claimed.

Corollary 7.2. For P as above, if the expected redundancy of a prefix
code {Cn:n = 1, 2, . . .} satisfies

EP (RP,Cn) − k

2
log n → −∞, P = Pθ, θ ∈ Θ0

for some subset Θ0 of Θ then λ(Θ0) = 0.

Proof. Note that EP (RP,Cn) − k
2 log n → −∞ implies D(P‖Qn) −

k
2 log n → −∞ for the distributions Qn associated with Cn by Qn(xn

1 ) =
c2−L(xn

1 ). Hence it suffices to show that for no Θ0 ⊆ Θ with λ(Θ0) > 0
can the latter limit relation hold for each P = Pθ with θ ∈ Θ0.

Now, if such Θ0 existed, with λ(Θ0) = 2δ, say, Theorem 7.4 applied
to Θ0 in the role of Θ would give λ({θ ∈ Θ0,D(Pθ,n‖Qn) ≥ k

2 log n −
K}) > δ, n = 1, 2, . . . , contradicting D(Pθ,n‖Qn)− k

2 log n → −∞, θ ∈
Θ0.

Theorem 7.5. (i) For the class of i.i.d. processes with alphabet A =
{1, . . . , k},

k − 1
2

log n − K1 ≤ Rn ≤ R∗
n ≤ k − 1

2
log n + K2,

where K1 and K2 are constants. The worst case maximum and expected
redundancies R∗

Cn
and RCn of the arithmetic code determined by the

coding process Q given by (6.5) are the best possible for any prefix
code, up to a constant.

(ii) For the class of m’th order Markov chains with alphabet A =
{1, . . . , k},

(k − 1)km

2
log n − K1 ≤ Rn ≤ R∗

n ≤ (k − 1)km

2
log n + K2

with suitable constants K1 and K2. The arithmetic code determined
by the coding process Q given by (6.14) is nearly optimal in the sense
of (i).
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Proof. (i) The class P of i.i.d. processes satisfies the hypothesis of
Theorem 7.4, with k replaced by k − 1. Suitable estimators θ̂n are the
natural ones: for xn

1 ∈ An with empirical distribution P̂ = (p̂1, . . . , p̂k),
set θ̂n(xn

1 ) = (p̂1, . . . , p̂k−1). Thus the lower bound to Rn follows from
Theorem 7.4. Combining this with the bound in (6.6) completes the
proof.

(ii) To prove the lower bound to Rn, consider the m’th order Markov
chains with uniform initial distribution, say, restricting attention to the
irreducible ones. The role of θ is now played by the (k − 1)km-tuple
of transition probabilities P (j|am

1 ), am
1 ∈ Am, j = 1, . . . , k − 1. It is

not hard to see that estimating P (j|am
1 ) from xm

1 ∈ An by the ratio
nam

1 j/nam
1

(with the notation in equation (6.14)) gives rise to estimators
θ̂n of θ that satisfy the hypothesis of Theorem 7.4, with (k − 1)km in
the role of k. Then the claimed lower bound follows, and combining it
with the bound in (6.16) completes the proof.

Remark 7.1. Analogous results hold, with similar proofs, for any sub-
class of the m’th order Markov chains determined by a context function,
see Subsection 6.2.
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Redundancy and the MDL principle

Further results about redundancy for processes are discussed in
this Section, with applications to statistical inference via the minimum
description length (MDL) principle.

As in the last Sections, the term code means either an n-code
Cn:An 
→ {0, 1}∗, or a sequence of n-codes {Cn:n = 1, 2, . . .}. Codes
{Cn:n = 1, 2, . . .} determined by a “coding process” Q will play
a distinguished role. For convenience, we will use the term Q-code
for an “ideal code” determined by Q, with length function L(xn

1 ) =
− log Q(xn

1 ), whose redundancy function relative to a process P is

R(xn
1 ) = log

P (xn
1 )

Q(xn
1 )

.

The results below stated for such ideal codes are equally valid for real
(Shannon or arithmetic) codes whose length and redundancy functions
differ from those of the ideal Q-codes by less than 2 bits.

Theorem 8.1. If P and Q are mutually singular probability mea-
sures on A∞, the P -redundancy of a Q-code goes to infinity, with
P -probability 1.

Proof: Let Fn be the σ-algebra generated by the cylinder sets [xn
1 ],

503
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xn
1 ∈ An. Then

{
Zn = Q(xn

1 )
P (xn

1 ) , n = 1, 2, . . .
}

is a non-negative martin-

gale with respect to the filtration {Fn}, with underlying probability
measure P, hence the almost sure limit

lim
n→∞Zn = Z ≥ 0

exists. We have to show that Z = 0 (a.s.), or equivalently that E(Z) =
0.

By the singularity hypothesis, there exists a set Ã ∈ F = σ(∪Fn)
such that P (Ã) = 1, Q(Ã) = 0. Define a measure µ by

µ(B) = Q(B) +
∫
B

ZdP, B ∈ F .

Since F = σ(∪Fn), to every ε > 0 and sufficiently large m there exists
Ãm ∈ Fm such that the symmetric difference of Ã and Ãm has

µ-measure less than ε; thus,

Q(Ãm) +
∫

Ã\Ãm

ZdP < ε .

Since the definition of Zn implies
∫
Ãm

ZndP = Q(Ãm) for n ≥ m,
Fatou’s lemma gives∫

Ãm

ZdP ≤ lim inf
n→∞

∫
Ãm

ZndP = Q(Ãm) .

Combining these two bounds, we obtain

E(Z) =
∫

Ãm

ZdP +
∫

Ã\Ãm

ZdP < ε .

Since ε > 0 was arbitrary, E(Z) = 0 follows.

8.1 Codes with sublinear redundancy growth

While by Theorem 8.1 the redundancy of a Q-code relative to a
process P typically goes to infinity, the next theorem gives a sufficient
condition for a sublinear growth of this redundancy, that is, for the per
letter redundancy to go to zero.
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For this, we need the concept of divergence rate, defined for pro-
cesses P and Q by

D(P‖Q) = lim
n→∞

1
n

D(Pn‖Qn),

provided that the limit exists. The following lemma gives a sufficient
condition for the existence of divergence rate, and a divergence analogue
of the entropy theorem. For ergodicity, and other concepts used below,
see the Appendix.

Lemma 8.1. Let P be an ergodic process and Q a Markov chain of
order m with D(Pm+1‖Qm+1) < +∞. Then

1
n

log
P (xn

1 )
Q(xn

1 )
→ D(P‖Q)

= −H(P ) −∑xm+1
1 ∈Am+1 P (xm+1

1 ) log Q(xm+1 | xm
1 ),

both P -almost surely and in L1(P ), with Q(xm+1 | xm
1 ) denoting the

transition probabilities of the Markov chain Q.

Proof: Since Q is Markov of order m,

log
P (xn

1 )
Q(xn

1 )
= log P (xn

1 )−log Q(xm
1 )−

n−m∑
i=1

log Q(xm+i | xm+i−1
i ), n ≥ m;

here log Q(xm
1 ) is finite with P -probability 1, and so is log Q(xm+1 |

xm
1 ), since D(Pm+1‖Qm+1) < +∞.

By the entropy theorem, and the ergodic theorem applied to
f(x∞

1 ) = log Q(xm+1 | xm
1 ), we have

1
n log P (xn

1 ) → −H(P )
1
n log

∑n−m
i=1 log Q(xm+i | xm+i−1

i ) → EP (log Q(xm+1 | xm
1 )),

both P -almost surely and in L1(P ). The lemma follows.

Theorem 8.2. Let P be an ergodic process, and let Q =
∫

Uϑν(dϑ)
be a mixture of processes {Uϑ, ϑ ∈ Θ} such that for every ε > 0 there
exist an m and a set Θ′ ⊆ Θ of positive ν-measure with

Uϑ Markov of order m and D(P‖Uϑ) < ε , if ϑ ∈ Θ′.
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Then for the process P , both the pointwise redundancy per symbol
and the expected redundancy per symbol of the Q-code go to zero as
n → ∞, the former with probability 1.

Remark 8.1. Here Q need not be the mixture of a parametric class
of processes, that is, unlike in Section 7, the index set Θ need not be
a subset of an Euclidean space. It may be any set, endowed with a
σ-algebra Σ such that Uϑ(an

1 ) is a measurable function of ϑ for each
an

1 ∈ An, n = 1, 2, . . ., and ν is any probability measure on (Θ,Σ). All
subsets of Θ we consider are supposed to belong to Σ.

Proof of Theorem 8.2. We first prove for the pointwise redundancy per
symbol that

1
n

R(xn
1 ) =

1
n

log
P (xn

1 )
Q(xn

1 )
→ 0 , P -a.s. (8.1)

To establish this, on account of Theorem 6.1, it suffices to show that
for every ε > 0

lim sup
n→∞

1
n

R(xn
1 ) ≤ ε, P -a.s..

This will be established by showing that

2εnQ(xn
1 )

P (xn
1 )

→ +∞, P -a.s.

Since
Q(xn

1 ) =
∫
Θ

Uϑ(xn
1 )ν(dϑ) ≥

∫
Θ′

Uϑ(xn
1 )ν(dϑ), (8.2)

we have

2εnQ(xn
1 )

P (xn
1 )

≥
∫
Θ′

2εnUϑ(xn
1 )

P (xn
1 )

ν(dϑ) =
∫
Θ′

2
n(ε− 1

n
log

P (xn
1 )

Uϑ(xn
1

)
)
ν(dϑ).

If ϑ ∈ Θ′, Lemma 8.1 implies

1
n

log
P (xn

1 )
Uϑ(xn

1 )
→ D(P‖Uϑ) < ε

for P -almost all x∞
1 ∈ A∞ (the exceptional set may depend on ϑ). It

follows that the set of pairs (x∞
1 , ϑ) ∈ A∞ ×Θ′ for which the last limit
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relation does not hold, has P × ν -measure 0, and consequently for
P -almost all x∞

1 ∈ A∞ the set of those ϑ ∈ Θ′ for which that limit
relation does not hold, has ν-measure 0 (both by Fubini’s theorem).

Thus, for P -almost all x∞
1 , the integrand in the above lower bound

to 2εnQ(xn
1 )/P (xn

1 ) goes to infinity for ν-almost all ϑ ∈ Θ′. Hence, by
Fatou’s lemma, the integral itself goes to +∞, completing the proof of
(8.1).

To prove that also the expected redundancy per symbol
1
nEP (R(xn

1 )) goes to zero, we have to show that

1
n

EP (log Q(xn
1 )) → −H(P ).

On account of the entropy theorem, the result (8.1) is equivalent to

1
n

log Q(xn
1 ) → −H(P ) P -a.s.,

hence it suffices to show that 1
n log Q(xn

1 ) is uniformly bounded (P -a.s.).
Since for ϑ ∈ Θ′ the Markov chains Uϑ of order m satisfy

D(P‖Uϑ) < ε, their transition probabilities Uϑ(xm+1 | xm
1 ) are

bounded below by some γ > 0 whenever P (xm+1
1 ) > 0, see the expres-

sion of D in Lemma 8.1. This implies by (8.2) that Q(xn
1 ) is bounded

below by a constant times γn, P -a.s. The proof of Theorem 8.2 is com-
plete.

Example 8.1. Let Q =
∑∞

m=0 αmQ(m), where α0, α1, . . . are positive
numbers with sum 1, and Q(m) denotes the process defined by equation
(6.14) (in particular, Q(0) and Q(1) are defined by (6.5) and (6.13)). This
Q satisfies the hypothesis of Theorem 8.2, for each ergodic process P , on
account of the mixture representation of the processes Q(m) established
in Subsection 7.2. Indeed, the divergence rate formula in Lemma 8.1
implies that D(P‖Uϑ) < ε always holds if Uϑ is a Markov chain of order
m whose transition probabilities U(xm+1 | xm

1 ) are sufficiently close to
the conditional probabilities Prob{Xm+1 = xm+1 | Xm

1 = xm
1 } for a

representation {Xn} of the process P , with m so large that H(Xm+1 |
Xm

1 ) < H(P )+ε/2, say. It follows by Theorem 8.2 that the Q-code with
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Q =
∞∑

m=0
αmQ(m) is weakly universal for the class of ergodic processes,

in the sense of (6.1), and also its pointwise redundancy per symbol goes
to zero P -a.s., for each ergodic process P .

Recall that the weak universality of this Q-code has already been
established in Subsection 6.2, even for the class of all stationary pro-
cesses.

Example 8.2. Let {Uγ : γ ∈ Γ} be a countable family of Markov
processes (of arbitrary orders), such that for each ergodic process P ,

inf
γ∈Γ

D(P‖Uγ) = 0 . (8.3)

Then for arbitrary numbers αγ > 0 with
∑

αγ = 1, the process
Q =

∑
γ∈Γ

αγUγ satisfies the conditions of Theorem 8.2, for every ergodic

process P . Hence the Q-code is weakly universal for the class of ergodic
processes. Note that the condition (8.3) is satisfied, for example, if the
family {Uγ : γ ∈ Γ} consists of all those Markov processes, of all orders,
whose transition probabilities are rational numbers.

While the last examples give various weakly universal codes for the
class of ergodic processes, the next example shows the non-existence of
strongly universal codes for this class.

Example 8.3. Associate with each am
1 ∈ Am a process P , the proba-

bility measure on A∞ that assigns weights 1/m to the infinite sequences
am

i am
1 am

1 . . . , i = 1, . . . ,m. Clearly, this P is an ergodic process. Let
P(m) denote the class of these processes for all am

1 ∈ Am. We claim
that for the class P equal to the union of the classes P(m),m = 1, 2, . . .

Rn = inf
Qn

sup
P∈P

D(Pn‖Qn),

see equation (7.1), is bounded below by n log |A| − log n.

Denote by Pam
1

the marginal on Am of the process P associated with
am

1 as above, and by νm the uniform distribution on Am. Since P(n) is
a subset of P, Theorem 7.1 implies

Rn ≥ inf
Qn

sup
P∈P(n)

D(Pn‖Qn) ≥ I(νn)
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= H

(
1

|A|n
∑

an
1∈An Pan

1

)
− 1

|A|n
∑

an
1∈An H(Pan

1
).

As Pan
1

is concentrated on the cyclic shifts of an
1 , implying H(Pan

1
) ≤

log n, and the “output distribution” |A|−n∑
an
1∈An Pan

1
equals the uni-

form distribution on An, this establishes our claim. In particular, no
strongly universal codes exist for the class P, let alone for the larger
class of all ergodic processes.

Next we consider a simple construction of a new code from a
given (finite or) countable family of codes {Cγ , γ ∈ Γ}, where Cγ =
{Cγ

n :An 
→ B∗, n = 1, 2, . . .}, B = {0, 1}. Let the new code assign
to each xn

1 ∈ An one of the codewords Cγ
n(xn

1 ), with γ ∈ Γ chosen de-
pending on xn

1 , preambled by a code C(γ) of the chosen γ ∈ Γ. Here
C: Γ 
→ B∗ can be any prefix code; the preamble C(γ) is needed to
make the new code decodable. We assume that γ above is chosen op-
timally, that is, to minimize L(γ) + Lγ(xn

1 ), where Lγ(xn
1 ) and L(γ)

denote the length functions of the codes Cγ and C. Then the new code
has length function

L(xn
1 ) = min

γ∈Γ
[L(γ) + Lγ(xn

1 )].

If the family {Cγ , γ ∈ Γ} consists of Qγ-codes for a list of processes
{Qγ , γ ∈ Γ}, the code constructed above will be referred to as generated
by that list.

Lemma 8.2. A code generated by a list of processes {Qγ , γ ∈ Γ} is
effectively as good as a Q-code for a mixture Q of these processes,
namely its length function satisfies

− log Q(1)(xn
1 ) ≤ L(xn

1 ) ≤ − log Q(2)(xn
1 ) + log c2,

where

Q(1) = c1

∑
γ∈Γ

2−L(γ)Qγ , Q(2) = c2
∑

γ∈Γ 2−2L(γ)Qγ ,

c1 =

⎛⎝∑
γ∈Γ

2−L(γ)

⎞⎠−1

, c2 =
(∑

γ∈Γ 2−2L(γ)
)−1

.
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Proof. The Qγ-code Cγ has length function Lγ(xn
1 ) = − log Qϑ(xn

1 ),
hence

L(xn
1 ) = min

γ∈L
[L(γ) − log Qγ(xn

1 )] = − log max
γ∈L

2−L(γ)Qγ(xn
1 ).

Since

Q(1)(xn
1 ) ≥

∑
γ∈Γ

2−L(γ)Qγ(xn
1 ) ≥ max

γ∈L
2−L(γ)Qγ(xn

1 )

≥
∑
γ∈Γ

2−2L(γ)Qγ(xn
1 ) =

Q(2)(xn
1 )

c2
,

where the first and third inequalities are implied by Kraft’s inequality∑
γ∈Γ 2−L(γ) ≤ 1, the assertion follows.

Recalling Examples 8.1 and 8.2, it follows by Lemma 8.2 that the
list of processes {Q(m), m = 0, 1, . . .}, with Q(m) defined by equation
(6.14), as well as any list of Markov processes {Uγ , γ ∈ Γ} with the
property (8.3), generates a code such that for every ergodic process
P , the redundancy per symbol goes to 0 P -a.s., and also the mean
redundancy per symbol goes to 0.

8.2 The minimum description length principle

The idea of the above construction of a new code from a given (finite
or countable) family of codes underlies also the minimum description
length (MDL) principle of statistical inference that we discuss next.

MDL principle. The statistical information in data is best ex-
tracted when a possibly short description of the data is found. The
statistical model best fitting to the data is the one that leads to the
shortest description, taking into account that the model itself must also
be described.

Formally, in order to select a statistical model that best fits the data
xn

1 , from a list of models indexed with elements γ of a (finite or) count-
able set Γ, one associates with each candidate model a code Cγ , with
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length function Lγ(xn
1 ), and takes a code C: Γ 
→ B∗ with length func-

tion L(γ) to describe the model. Then, according to the MDL principle,
one adopts that model for which L(γ) + Lγ(xn

1 ) is minimum.
For a simple model stipulating that the data are coming from a

specified process Qγ , the associated code Cγ is a Qγ-code with length
function Lγ(xn

1 ) = − log Qγ(xn
1 ). For a composite model stipulating

that the data are coming from a process in a certain class, the associated
code Cγ should be universal for that class, but the principle admits a
freedom in its choice. There is also a freedom in choosing the code
C: Γ 
→ B∗.

To relate the MDL to other statistical principles, suppose that the
candidate models are parametric classes Pγ = {Pϑ, ϑ ∈ Θγ} of pro-
cesses, with γ ranging over a (finite or) countable set Γ. Suppose first
that the code Cγ is chosen as a Qγ-code with

Qγ =
∫
Θγ

Pϑνγ(dϑ), (8.4)

where νγ is a suitable probability measure on Θγ , see Subsection 7.2.
Then MDL inference by minimizing L(γ)+Lγ(xn

1 ) = L(γ)− log Qγ(xn
1 )

is equivalent to Bayesian inference by maximizing the posterior proba-
bility (conditional probability given the data xn

1 ) of γ, if one assigns to
each γ ∈ Γ a prior probability proportional to 2−L(γ), and regards νγ as
a prior probability distribution on Θγ . Indeed, with this choice of the
priors, the posterior probability of γ is proportional to 2−L(γ)Qγ(xn

1 ).
Suppose next that the codes Cγ associated with the models Pγ

as above are chosen to be NML codes, see Theorem 6.2, with length
functions

Lγ(xn
1 ) = − log NMLγ(xn

1 ) = − log P
(γ)
ML(xn

1 ) + log
∑

an
1∈An

P
(γ)
ML(an

1 ),

where
P

(γ)
ML(xn

1 ) = sup
ϑ∈Θγ

Pϑ(xn
1 ) .

Then the MDL principle requires minimizing

L(γ) + Lγ(xn
1 ) = − log P

(γ)
ML(xn

1 ) + Rn(γ)
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where
Rn(γ) = L(γ) + log

∑
an
1∈An

P
(γ)
ML(an

1 ) .

In statistical terminology, this is an instance of penalized maximum
likelihood methods, that utilize maximization of log P

(γ)
ML(xn

1 )−Rn(γ),
where Rn(γ) is a suitable “penalty term”.

Remark 8.2. We note without proof that, under suitable regularity
conditions, L(γ) + Lγ(xn

1 ) is asymptotically equal (as n → ∞) to
− log P

(γ)
ML(xn

1 ) + 1
2kγ log n, for both of the above choices of the codes

Cγ , where kγ is the dimension of the model Pγ (meaning that Θγ is
a subset of positive Lebesgue measure of Rkγ ). When Γ is finite, this
admits the conclusion that MDL is asymptotically equivalent to penal-
ized maximum likelihood with the so-called BIC (Bayesian information
criterion) penalty term, Rn(γ) = 1

2kγ log n. This equivalence, however,
need not hold when Γ is infinite, as we see later.

The next theorems address the consistency of MDL inference,
namely, whether the true model is always recovered, eventually almost
surely, whenever one of the candidate models is true.

Theorem 8.3. Let {Qγ , γ ∈ Γ} be a (finite or) countable list of mutu-
ally singular processes, and let L(γ) be the length function of a prefix
code C: Γ 
→ B∗. If the true process P is on the list, say P = Qγ∗ , the
unique minimizer of L(γ) − log Qγ(xn

1 ) is γ∗, eventually almost surely
as n → ∞.

Remark 8.3. The singularity hypothesis is always satisfied if the pro-
cesses Qγ , γ ∈ Γ, are (distinct and) ergodic.

Proof. Consider the mixture process

Q = c
∑

γ∈Γ\{γ∗}
2−L(γ)Qγ

where c > 1 (due to Kraft’s inequality). Then

Q(xn
1 ) ≥

∑
γ∈Γ\{γ∗}

2−L(γ)Qγ ≥ max
γ∈Γ\{γ∗}

2−L(γ)Qγ(xn
1 ) .
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The hypothesis implies that Q and Qγ∗ are mutually singular, hence
by Theorem 8.1

log Qγ∗(xn
1 ) − log Q(xn

1 ) → +∞ Qγ∗ − a.s.

This and the previous inequality complete the proof.

Theorem 8.4. Let {Pγ , γ ∈ Γ} be a (finite or) countable list of para-
metric classes Pγ = {Pϑ, ϑ ∈ Θγ} of processes, let Qγ , γ ∈ Γ, be
mixture processes as in equation (8.4), supposed to be mutually singu-
lar, and let L(γ) be the length function of a prefix code C: Γ 
→ B∗.
Then, with possible exceptional sets Nγ ⊂ Θγ of νγ-measure 0, if
the true process is a non-exceptional member of either class Pγ , say
P = Qϑ, ϑ ∈ Θγ∗ \ Nγ∗ , the unique minimizer of L(γ) − log Qγ(xn

1 ) is
γ∗, eventually almost surely as n → ∞.

Remark 8.4. A necessary condition for the singularity hypothesis is
the essential disjointness of the classes Pγ , γ ∈ Γ, that is, that for no
γ �= γ′ can Θγ ∩ Θγ′ be of positive measure for both νγ and νγ′ . This
condition is also sufficient if all processes Pϑ are ergodic, and processes
with different indices are different.

Proof of Theorem 8.4. By Theorem 8.3, the set of those x∞
1 ∈ A∞ for

which there exist infinitely many n with

L(γ∗) − log Qγ∗(xn
1 ) ≥ inf

γ∈Γ\{γ∗}
[L(γ) − log Qγ(xn

1 )]

has Qγ∗-measure 0, for any γ∗ ∈ Γ. By the definition of Qγ∗ , see (8.4),
this implies that the above set has Pϑ-measure 0 for all ϑ ∈ Θγ∗ except
possibly for ϑ in a set Nγ∗ of µγ∗-measure 0.

As an application of Theorem 8.4, consider the estimation of the
order of a Markov chain, with alphabet A = {1, . . . , k}. As in Ex-
ample 8.1, denote by Q(m) the coding process tailored to the class of
Markov chains of order m. According to the MDL principle, given a
sample xn

1 ∈ An from a Markov chain P of unknown order m∗, take
the minimizer m̂ = m̂(xn

1 ) of L(m) − log Q(m)(xn
1 ) as an estimate of

m∗, where L(·) is the length function of some prefix code C:N 
→ B∗.
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Recall that Q(m) equals the mixture of m’th order Markov chains with
uniform initial distribution, with respect to a probability distribution
which is mutually absolutely continuous with the Lebesgue measure on
the parameter set Θm, the subset of km(k − 1) dimensional Euclidean
space that represents all possible transition probability matrices of m-
th order Markov chains. It is not hard to see that the processes Q(m),
m = 0, 1 . . . are mutually singular, hence Theorem 8.4 implies that

m̂(xn
1 ) = m∗ eventually almost surely, (8.5)

unless the transition probability matrix of the true P corresponds to
some ϑ ∈ Nm∗ where Nm∗ ⊂ Θm∗ has Lebesgue measure 0. (Formally,
this follows for Markov chains P with uniform initial distribution, but
events of probability 1 for a Markov chain P with uniform initial distri-
bution clearly have probability 1 for all Markov chains with the same
transition probabilities as P .)

Intuitively, the exceptional sets Nm ⊂ Θm ought to contain all para-
meters that do not represent irreducible chains, or represent chains of
smaller order than m. It might appear a plausible conjecture that the
exceptional sets Nm are thereby exhausted, and the consistency asser-
tion (8.5) actually holds for every irreducible Markov chain of order
exactly m∗. Two results (stated without proof) that support this con-
jecture are that for Markov chains as above, the MDL order estimator
with a prior bound to the true order, as well as the BIC order estima-
tor with no prior order bound, are consistent. In other words, equation
(8.5) will always hold if m̂(xn

1 ) is replaced either by the minimizer of
L(m) − log Q(m)(xn

1 ) subject to m ≤ m0, where m0 is a known upper
bound to the unknown m∗, or by the minimizer of

− log P
(m)
ML (xn

1 ) +
1
2
km(k − 1) log n .

Nevertheless, the conjecture is false, and we conclude this subsection
by a counterexample. It is unknown whether other counterexamples
also exist.

Example 8.4. Let P be the i.i.d. process with uniform distribution,
that is,

P (xn
1 ) = k−n, xn

1 ∈ An, A = {1, . . . , k}.
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Then m∗ = 0, and as we will show,

L(0) − log Q(0)(xn
1 ) > inf

m>0
[L(m) − log Q(m)(xn

1 )], eventually a.s.,

(8.6)
provided that L(m) grows sublinearly with m, L(m) = o(m). This
means that (8.5) is false in this case. Actually, using the consistency
result with a prior bound to the true order, stated above, it follows
that m̂(xn

1 ) → +∞, almost surely.
To establish equation (8.6), note first that

− log Q(0)(xn
1 ) = − log P

(0)
ML(xn

1 ) +
k − 1

2
log n + O(1),

where the O(1) term is uniformly bounded for all xn
1 ∈ A∗. Here

P
(0)
ML(xn

1 ) = sup
{p1,...,pk}

k∏
i=1

pni
i =

k∏
i=1

(
ni

n

)ni

is the largest probability given to xn
1 by i.i.d. processes, with ni denoting

the number of times the symbol i occurs in xn
1 , and the stated equality

holds since P
(0)
ML(xn

1 )/Q(0)(xn
1 ) is bounded both above and below by a

constant times n
k−1
2 , see Remark 6.2, after Theorem 6.3.

Next, since P is i.i.d. with uniform distribution, the numbers ni

above satisfy, as n → ∞,

ni =
n

k
+ O(

√
n log log n ), eventually a.s.,

by the law of iterated logarithm. This implies

− log P
(0)
ML(xn

1 ) =
k∑

i=1

ni log
(

n

ni

)
= n log k + O(log log n),

since

log
n

ni
= log k + log

(
1 +

n

kni
− 1
)

=

= log k +
(

n

kni
− 1
)

log e + O

(
n

kni
− 1
)2

.

It follows that the left hand side of equation (8.6) equals n log k +
k−1
2 log n + O(log log n), eventually almost surely as n → ∞.
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Turning to the right hand side of equation (8.6), observe that if no
m-block am

1 ∈ Am occurs in xn−1
1 more than once then Q(m)(xn

1 ) = k−n.
Indeed, then nam

1
is non-zero for exactly n−m blocks am

1 ∈ Am in the
definition (6.14) of Q(m); for these, nam

1
= 1 and there is exactly one

j ∈ A with nam
1 j nonzero, necessarily with nam

1 j = 1. Hence equation
(6.14) gives Q(m)(xn

1 ) = k−n as claimed.
The probability that there is an m-block occurring in xn−1

1 more
than once is less than n2k−m. To see this, note that for any 1 ≤ j <

� < n − m + 1, the conditional probability of xj+m−1
j = x�+m−1

� , when
x�−1

1 ∈ A�−1 is fixed, is k−m, as for exactly one of the km equiprobable
choices of x�+m−1

� ∈ Am will x�+m−1
� = xj+m−1

j hold. Hence also the
unconditional probability of this event is k−m, and the claim follows. In
particular, taking mn = 4

log k log n, the probability that some mn-block
occurs in xn−1

1 more than once is less than n−2. By Borel–Cantelli, and
the previous observation, it follows that

− log Q(mn)(xn
1 ) = n log k, eventually a.s.

This, and the assumption L(m) = o(m), imply that the right hand side
of (8.6) is ≤ n log k + o(log n), eventually almost surely, completing the
proof of equation (8.6).
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Summary of process concepts

A (stochastic) process is frequently defined as a sequence of random
variables {Xn}; unless stated otherwise, we assume that each Xn takes
values in a fixed finite set A called the alphabet. The n-fold joint dis-
tribution of the process is the distribution Pn on An defined by the
formula

Pn(xn
1 ) = Prob(Xi = xi, 1 ≤ i ≤ n), xn

1 ∈ An.

For these distributions, the consistency conditions

Pn(xn
1 ) =

∑
a∈A

Pn+1(xn
1a)

must hold. The process {Xn}, indeed, any sequence of distributions
Pn on An, n = 1, 2, . . . that satisfies the consistency conditions, deter-
mines a unique Borel probability measure P on the set A∞ of infinite
sequences drawn from A such that each cylinder set [an

1 ] = {x∞
1 : xn

1 =
an

1} has P -measure Pn(an
1 ); a Borel probability measure on A∞ is a

probability measure defined on the σ-algebra F of Borel subsets of
A∞, the smallest σ-algebra containing all cylinder sets.

The probability space on which the random variables Xn are defined
is not important, all that matters is the sequence of joint distributions
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Pn. For this reason, a process can also be defined as a sequence of dis-
tributions Pn on An, n = 1, 2, . . ., satisfying the consistency conditions,
or as a probability measure P on (A∞,F). In this tutorial we adopt the
last definition: by a process P we mean a Borel probability measure on
A∞. The probabilities Pn(an

1 ) = P ([an
1 ]) will be usually denoted briefly

by P (an
1 ).

A sequence of random variables {Xn} whose n-dimensional joint dis-
tributions equal the n-dimensional marginals Pn of P , will be referred
to as a representation of the process P . Such a representation always
exists, for example the Kolmogorov representation, with Xn defined on
the probability space (A∞,F , P ) by Xn(x∞

1 ) = xi, i = 1, 2, . . ..
A process P is stationary if P is invariant under the shift T , the

transformation on A∞ defined by the formula Tx∞
1 = x∞

2 . Thus P is
stationary if and only if P (T−1A) = P (A), A ∈ F .

The entropy rate of a process P is defined as

H(P ) = lim
n→∞

1
n

H(X1, . . . ,Xn),

provided that the limit exists, where {Xn} is a representation of the
process P . A stationary process P has entropy rate

H(P ) = lim
n→∞H(Xn|X1, . . . ,Xn−1);

here the limit exists since stationarity implies that

H(Xn|X1, . . . ,Xn−1) = H(Xn+1|X2, . . . ,Xn) ≥ H(Xn+1|X1, . . . ,Xn),

and the claimed equality follows by the additivity of entropy,

H(X1, . . . ,Xn) = H(X1) +
n∑

i=2

H(Xi|X1, . . . ,Xi−1).

If {Pϑ ∈ Θ} is a family processes, with ϑ ranging over an arbitrary
index set Θ endowed with a σ-algebra Σ such that Pϑ(an

1 ) = Pϑ([an
1 ])

is a measurable function of ϑ for each an
1 ∈ An, n = 1, 2, . . . , the mixture

of the processes Pϑ with respect to a probability measure µ on (Θ,Σ)
is the process P =

∫
Pϑµ(dϑ) defined by the formula

P (an
1 ) =

∫
Pϑ(an

1 )µ(dϑ), an
1 ∈ An, n = 1, 2, . . . .
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A process P is called ergodic if it is stationary and, in addition, no
non-trivial shift-invariant sets exist (that is, if A ∈ F , T−1A = A,
then P (A) = 0 or 1), or equivalently, P cannot be represented as the
mixture P = αP1 + (1 − α)P2 of two stationary processes P1 �= P2

(with 0 < α < 1). Each stationary process is representable as a mixture
of ergodic processes (by the so-called ergodic decomposition theorem).
Other key facts about ergodic processes, needed in Section 8, are the
following:

Ergodic theorem. For an ergodic process P , and P -integrable func-
tion f on A∞,

1
n

n∑
i=1

f(x∞
i ) →

∫
fdP,

both P -almost surely and in L1(P ).

Entropy theorem. (Shannon–McMillan–Breiman theorem) For an
ergodic process P ,

− 1
n

log P (xn
1 ) → H(P ),

both P -almost surely and in L1(P ).

For an ergodic process P , almost all infinite sequences x∞
1 ∈ A∞

are P -typical, that is, the “empirical probabilities”

P̂ (ak
1 |xn

1 ) =
1

n − k + 1
|{i : xi+k

i+1 = ak
1 , 0 ≤ i ≤ n − k}|

of k-blocks ak
1 ∈ Ak in xn

1 approach the true probabilities P (ak
1) as

n → ∞, for each k ≥ 1 and ak
1 ∈ Ak. This follows applying the ergodic

theorem to the indicator functions of the cylinder sets [ak
1 ] in the role

of f . Finally, we note that also conversely, if P -almost all x∞
1 ∈ A∞

are P -typical then the process P is ergodic.



Historical Notes

Section 1. Information theory was created by Shannon [44]. The infor-
mation measures entropy, conditional entropy and mutual information
were introduced by him. A formula similar to Shannon’s for entropy in
the sense of statistical physics dates back to Boltzmann [4]. Informa-
tion divergence was used as a key tool but had not been given a name
in Wald [49]; it was introduced as an information measure in Kull-
back and Leibler [33]. Theorem 1.1 is essentially due to Shannon [44],
Theorem 1.2 is drawn from Rissanen [37]. Arithmetic coding, whose
origins are commonly attributed to unpublished work of P. Elias, was
developed to a powerful data compression technique primarily by Ris-
sanen, see [35], [40].

Section 2. The combinatorial approach to large deviations and
hypothesis testing originates in Sanov [42] and Hoeffding [27]. A similar
approach in statistical physics goes back to Boltzmann [4]. The method
of types emerged as a major technique of information theory in Csiszár
and Körner [15]. “Stein’s lemma” appeared in Chernoff [6], attributed
to C. Stein. The theory of sequential tests has been developed by Wald
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[49]; the error bounding idea in Remark 2.2 appears there somewhat
implicitly.

Section 3. Kullback [32] suggested I-divergence minimization as
a principle of statistical inference, and proved special cases of sev-
eral results in this Section. Information projections were systemati-
cally studied in C̆encov [5] , see also Csiszár [12], Csiszár and Matús̆
[16]. In these references, distributions on general alphabets were con-
sidered; our finite alphabet assumption admits a simplified treatment.
The characterization of the closure of an exponential family mentioned
in Remark 3.1 is a consequence of a general result in [16] for expo-
nential families whose domain of parameters is the whole Rk; the last
hypothesis is trivially satisfied in the finite alphabet case.

The remarkable analogy of certain information theoretic concepts
and results to geometric ones, instrumental in this Section and later
on, has a profound background in a differential geometric structure of
probability distributions, beyond the scope of this tutorial, see C̆encov
[5], Amari [2].

Section 4. f-Divergences were introduced by Csiszár [10], [11], and
independently by Ali and Silvey [1]; see also the book Liese and Vajda
[34]. A proof that the validity of Lemma 4.2 characterizes I-divergence
within the class of f-divergences appears in Csiszár [14]. Theorem 4.2
can be regarded as a special case of general results about likelihood ratio
tests, see Cox and Hinkley, [9, Section 9.3]; this special case, however,
has admitted a simple proof. For the information theoretic approach
to the analysis of contingency tables see Kullback [32], Gokhale and
Kullback [26].

Section 5. Iterative scaling has long been used in various fields,
primarily in the two-dimensional case as an intuitive method to find
a non-negative matrix with prescribed row and column sums, “most
similar” to a previously given non-negative matrix; the first reference
known to us is Kruithof [31]. Its I-divergence minimizing feature was
pointed out in Ireland and Kullback [28], though with an incomplete
convergence proof. The proof here, via Theorem 5.1, is by Csiszár [12].
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Generalized iterative scaling is due to Darroch and Ratcliff [19]. Its geo-
metric interpretation admitting the convergence proof via Theorem 5.1
is by Csiszár [13]. Most results in Subsection 3.2 are from Csiszár and
Tusnády [18], where the basic framework is applied also to other prob-
lems such as capacity and reliability function computation for noisy
channels. The portfolio optimizing algorithm in Remark 4.3 is due to
Cover [7]. The EM algorithm has been introduced by Dempster, Laird
and Rubin [23].

Section 6. Universal coding was first addressed by Fitingof [25],
who attributed the idea to Kolmogorov. An early theoretical develop-
ment is Davisson [20]. Theorem 6.1 is by Barron [3], and Theorem 6.2
is by Shtarkov [46]. The universal code for the i.i.d class with coding
process defined by equation (6.3) appears in Krichevsky and Trofimov
[30] and in Davisson, McEliece, Pursley and Wallace [22]. Our proof
of Theorem 6.3 follows [22]. Theorem 6.6 is due to Shtarkov [46]. The
construction of “twice universal” codes via mixing (or “weighting”) as
in Remark 6.2 was suggested by Ryabko [41]. The context weighting al-
gorithm mentioned in Remark 6.2 was developed by Willems, Shtarkov
and Tjalkens [50].

Section 7. The approach here follows, though not in the details,
Davisson and Leon–Garcia [21]. Lemma 7.1 dates back to Topsœ[47].
The first assertion of Theorem 7.2 appears in [21] (crediting R. Gal-
lager for an unpublished prior proof), with a proof using the minimax
theorem; see also (for Θ finite) Csiszár and Körner [15], p.147, and the
references there. Theorem 7.4 and Corollary 7.2 are based on ideas of
Davisson, McEliece, Pursley and Wallace [22] and of Rissanen [38]. For
early asymptotic results on worst case redundancy as in Theorem 7.5,
see Krichevski [29] (i.i.d.case) and Trofimov [48] (Markov case); the
latter reference attributes the upper bound to Shtarkov.

Section 8. The main results Theorems 8.1–8.4 are due to Barron
[3]. While Examples 8.1 and 8.2 give various weakly universal codes for
the class of ergodic processes, those most frequently used in practice
(the Lempel–Ziv codes, see [51]) are not covered here. The MDL princi-
ple of statistical inference has been proposed by Rissanen, see [36], [39].
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The BIC criterion was introduced by Schwarz [43]. The consistency of
the BIC Markov order estimator was proved, assuming a known up-
per bound to the order, by Finesso [24], and without that assumption
by Csiszár and Shields [17]. The counterexample to the conjecture on
MDL consistency suggested by Theorem 8.4 is taken from [17].

Appendix. For details on the material summarized here see, for
example, the first Section of the book Shields [45].
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