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Abstract

This paper is a selective review of the regularization methods scattered in statistics
literature. We introduce a general conceptual approach to regularization and fit
most existing methods into it. We have tried to focus on the importance of regular-
ization when dealing with today’s high-dimensional objects: data and models. A
wide range of examples are discussed, including nonparametric regression, boosting,
covariance matrix estimation, principal component estimation, subsampling.
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1 Introduction

The concept of regularization was first introduced in the context of solving
integral equation numerically by Tikhonov (1943). As is well known if
f ∈ L2(R) and K(x, y) is a smooth kernel, the range of the operator A,
R(A), A : L2(R) 7→ L2(R) with (Af)(y) ≡

∫
K(x, y)f(x)dx is dense in

L2(R) but not onto. Thus, the inverse A−1 is ill-posed. The solution to the
equation

Af = g (1.1)

is hard to determine since approximations to g easily lie outside R(A).
Tikhonov’s solution was to replace (1.1) by the minimization of ‖Af −
g‖2+γW (f), where the Tikhonov factor γ > 0 is a regularization parameter
and W (f) is a smoothness penalty such as

∫
[f ′(x)]2dx. Numerical (finite
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dimensional) approximations to this problem are much stabler. Note that
unless γ = 0, the solution will not satisfy (1.1).

There has been an enormous amount of work in statistics dealing with
regularization in a wide spectrum of problems. An exhaustive survey is
beyond our scope. We want to present a unifying view encompassing more
recent developments. The main features of most current data are both size
and complexity. The size may permit us to nonparametrically estimate
quantities which are “unstable” and “discontinuous” functions of the un-
derlying distribution of the data, with the density being a typical example.
Complexity of the data, which usually corresponds to high dimensional-
ity of observations, makes us attempt more and more complex models to
fit the data. The fitting of models with a large number of parameters is
also inherently unstable (Breiman, 1996). Both of these features, as we
shall see in our examples, force us to regularize in order to get sensible
procedures. For recent discussions of these issues from different points of
view, see Donoho (2000) and Fan and Li (2006). We will consider only the
asymptotics of regularization and only in the simplest context, i.i.d samples
of size n of p dimensional vectors. The main issues are already quite clear
in this context.

We will define regularization formally in Section 2. But, as we shall see,
loosely, regularization is the class of methods needed to modify maximum
likelihood to give reasonable answers in unstable situations. There are also
a number of generic issues that will arise such as the reasons for choosing
particular forms of regularization, how to determine the analogue of the
Tikhonov factor γ which, as we shall see, is somewhat driven by our par-
ticular statistical goals, and last but not least, computational issues which
are also critical nowadays. We shall discuss these questions in connection
with examples as we proceed in this and Section 3, Section 4 and Section 5.

Variable selection and prediction. In statistics, the first instance of
this type of problem arose in the context of multiple linear regression with
continuous predictor variables, when the number of predictor variables is
larger than the sample size. Suppose we observe an i.i.d sample (Zi, Yi), i =

1, · · · , n, where Zi = (Z
(1)
i , · · · , Z(p)

i ). We model

Yi = ZTi β + εi (1.2)

where εi, i = 1, · · · , n are i.i.d N(0, σ2). In the case of p > n, the usual least
squares equations “overfit”. All observations are predicted perfectly, but
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there are many solutions to the coefficients of the fit and new observations
become not uniquely predictable. The classical solution to this problem was
to try to reduce the number of variables by processes such as forward and
backward regression with reduction in variables determined by hypothesis
tests, see Draper and Smith (1998), for example. An alternative strategy
that emerged (Hoerl and Kennard, 1970) was ridge regression, adding to
the residual sum of squares

∑n
i=1(Yi − ZTi β)2 a penalty, λ

∑p
j=1 β

2
j , which

now yields a unique solution.

These methods, often actually have two aims,

(I) To construct a good predictor. The values of coefficients in the re-
gression are then irrelevant.

(II) To give causal interpretations of the factors and determine which
variables are “important”.

Regularization is important for both aims. But, as well shall see, the ap-
propriate magnitude of the regularization parameter may be governed by
which aim is more important.

Goal (I) is the one which is primary in machine learning theory. The
model postulated is nonparametric,

Y = m(Z) + ε (1.3)

where E(ε|Z) = 0 and m is essentially unknown. A fundamental ap-
proach is to consider a family of basis functions gj(Z), j = 1, 2, · · · , such
that m is arbitrarily well approximated in, for instance, the L2 sense,
infβE(m(Z)−∑p

j=1 βjgj(Z))2 → 0 as p→ ∞, where β = (β1, · · · , βp)T . A

parametric model postulation with gj(Z) = Z(j), j = 1, · · · , p, corresponds
to the linear model specification. Then, since, as we have seen, minimizing∑n

i=1(Yi−
∑p

j=1 βjgj(Zi))
2 is unreasonable for p >> n, it is consistent with

the penalty point of view to minimize

n∑

i=1

(Yi −
p∑

j=1

βjgj(Zi))
2 + γPen(β) (1.4)

The ridge regression choice of Pen(β) =
∑p

j=1 β
2
j is not nowadays the one

attracting the greatest attention theoretically, but the “lasso”, Pen(β) =
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∑p
j=1 |βj | (Tibshirani, 1996) is being studied extensively. This stems from

the idea that, at least to a high degree of approximation, most |βj | in the
best representation of m(Z) as a linear combination of p basis elements
gj(Z) in the L2 sense are 0. That is, the representation is “sparse” in the
sense of Donoho and Johnstone (1998). Then the “natural” penalty is

Pen(β) =

p∑

j=1

1(|βj | > 0) (1.5)

an unpleasant function of β. Evidently,
∑p

j=1 |βj | is the closest convex
member of the family of penalties

∑p
j=1 |βj |α, α > 0 to (1.5).

We shall discuss this approach, the critical choice of γ, and point to
recent results as n and p tends to infinity in Section 3.

Minimizing subject to penalty (1.5) may also be seen as selecting a
model including the variables with βj 6= 0, following aim (II). This approach
and its generalization to generalized linear and other models as well as
related penalties has been developed by Fan and coworkers and others, see
Fan and Li (2001), Fan and Peng (2004), Fan and Li (2006) and Zou and
Hastie (2005). Note that, at least implicitly, this point of view implies that
we believe a meaningful (sparse) representation in basis functions gj .

m(Z) =

p∗∑

j=1

βjgj(Z) (1.6)

is true for some p∗ << p.

Penalization is far from the only form of regularization that has arisen
in statistics. In the context of density estimation, binning in histograms
is the oldest method, and kernel methods were proposed by Rosenblatt
(1956) and Parzen (1962). In turn these methods led to Nadaraya-Watson
estimation (Nadaraya, 1964; Watson, 1964) in nonparametric regression.

There are also methods which have appeared outside nonparametric
regression contexts, where formulations such as semiparametric or gener-
alized linear models do not capture the necessary structure. Here is the
first.

Covariance and eigen structure estimation. Suppose P is the prob-
ability distribution of (X1,X2, · · · ), a Gaussian process with mean 0 and
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covariance matrix Σp for (X1, · · · ,Xp). Suppose that Σp has distinct eigen-
values given by λp = (λ1p, · · · , λpp), corresponding to orthonormal eigen-
vectors, ν1, · · · , νp. We can think of Σp(P ) as a parameter, and the vectors

λp(Σp) as functions of the main parameter. Then Σ̂p, λ̂p, ν̂p, the empirical
versions of these are consistent for fixed p. If p → ∞, pn → c > 0, this is
no longer true. Suppose Σp = Jp, the identity matrix which doesn’t fall

under our assumptions, but for which still, if p is fixed, λ̂jp
P→ 1 = λjp, for

1 ≤ j ≤ p. Then it is well known (Wachter, 1978; Wigner, 1955) that the

maximum eigenvalue λ̂pp
P→ λmax > 1. Recently, Johnstone and Lu (2006)

showed that if p
n → c > 0 and Σp = Jp + Kp, where Kp is a degenerate

matrix, all of whose eigenvalues except the top t are 0, then

limsup
(
E < ν̂p, νp >

)
< 1 (1.7)

where E < ν̂p, νp > is the expected inner product between the empirical
and true eigenvectors corresponding to λpp. Regularization is needed and
Johnstone and Lu (2006) suggest a method which yields consistency under
their assumption. Bickel and Levina (2004) effectively show that in this
case banding the matrix, replacing Σp by Σkp(P ), the matrix obtained by
setting all entries with indices (i, j) such that |i− j| > k equal to 0, yields
consistency under much weaker conditions.

Subsampling and m out of n bootstrap. A final example where irreg-
ularity can occur in important situations is Efron’s nonparametric boot-
strap. Here we resample samples of size n from the empirical distribution
(the sample) and then act as if these were samples from the unknown pop-
ulation. Breakdowns of this method have been noted by many authors,
see Mammen (1992) and a more recent discussion in Bickel et al. (1997).
We discuss a regularization method that has been proposed in this regard
briefly.

In this paper, we propose to define what we mean by “regularization”,
a concept which encompasses all these situations. We proceed as follows.
In Section 2, we introduce our general mathematical framework and define
regularization in general, linking it to the examples we have cited, and pose
what we view as the basic questions to be faced. In Section 3, we discuss
nonparametric regression and classification in detail. In Section 4, we dis-
cuss estimation of high dimensional covariance matrices, their inverses and
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eigenstructures and in Section 5, subsampling and the m out of n boot-
strap. The discussion we give will be in terms of behavior asymptotic in
the sample size, and sometimes dimension, though we will at least refer to
confirmatory simulations. Thus when we talk of statistical procedures, we
think of sequences of such procedures with the n−th one depending on the
n observations available. This does not mean that conclusions only hold
for n = p = ∞, rather, that we hope that, as seems to be the case in
practice, the approximations are good for samples and dimensions of the
size we expect.

2 What is regularization

Throughout we limit ourselves to the case where our observations X1,
· · · ,Xn are i.i.d, taking values in a space X , typically Rp. We assume
that their common distribution P ∈ P, our model, which through most of
our discussion, we assume is nonparametric, effectively all P , although we
can and shall impose smoothness or other general properties on the mem-
bers of P. We let Pn denote the empirical distribution, placing mass n−1

at each observation.

For our treatment of covariance estimation it may be convenient to think
of X = (X1,X2, · · · ,Xp, · · · )T , as a stochastic process for which we have
data of size n on the first p coordinates, and of the unknown P as living
on R∞. However, we will only be interested in estimating the covariance
matrix of these first p coordinates.

Most statistical activities center around estimation or testing hypothe-
ses or putting confidence regions on parameters, which we define as func-
tions θ(P ), mapping P into Θ. Θ is not necessarily just R or a Euclidean
space. We shall limit ourselves almost exclusively to function valued pa-
rameters. For instance, suppose P ∈ P are characterized as having den-
sities f(·), which are continuous. Then θ(P ) = f(·) is a parameter. If P
is the joint distribution of (Z, Y ), then θ(P ) = E(Y |Z = ·), the regres-
sion function is a parameter. It will also be convenient for both Section 4
and Section 5 to think of parameters which themselves vary with n and
p, θ(n,p)(P ). Thus, the covariance matrix Σ of (X1, · · · ,Xp)

T , which we
are interested in studying is θ(p)(P ) if we think of our observation as be-
ing (X1,X2, · · · )T . Similarly, the extreme percentile of the distribution
of X ∈ R, F−1(1) where F is the empirical distribution function of X,
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typically equals ∞ and cannot be estimated, but F−1(1 − 1
n), the quan-

tile corresponding to the maximum of X1, · · · ,Xn can. We will usually
suppress such dependence on p and n.

Any estimate θ̂(X1, · · · ,Xn) of θ(P ) may, by sufficiency of the Pn, be
thought of as a function θn(Pn), where the domain of θn is at least the
possible empirical distributions and typically includes at least all finite
discrete distributions on X . The least we can require of an estimate (really
a sequence of estimates) is consistency:

ρ(θ̂, θ(P ))
P→ 0 (2.1)

where ρ is Euclidean distance if Θ is Euclidean and ρ is a suitably defined
metric, e.g., the L2 distance, if Θ is a function space.

If P contains all discrete distribution, then the natural thing to use
as an estimate of θ(P ) is the “plug-in” estimate θ(Pn). For instance, if
X = R, and θ(P ) is the mean, which we represent as θ(P ) =

∫
xdP (x),

then θ(Pn) =
∫
xdPn = X̄ , the sample mean. If θ(P ) = F (·), where

F (x) = P (X ≤ x), the cdf of X, then θ(Pn) is the empirical cdf, θ(Pn) =
1
n

∑n
i=1 1(Xi ≤ x). Consistency for plug-in estimates follows if

(a) θ is continuous in %, for a given metric % on P.

(b) Pn is consistent with respect to %. That is, %(Pn, P )
P→ 0 if P is true.

In the usual situations, where Θ is Euclidean, θ 7→ p(·, θ) is smoothly
invertible, and θ(Pn) makes sense, consistency holds. But, consider the
situation we have discussed, θ(P ) = f(·). Now the density. θ(Pn) doesn’t
make sense, since the discrete distributions do not belong to P. What is
done, in this case, and implicitly in all such situations we know about is
regularization. We summarize a generic regularization process as,

(1) A sequence of approximations.

(i) We construct a sequence θk defined on P and the discrete dis-
tributions, say on M such that ρ(θk(P ), θ(P )) → 0, that is,
θk(P ) → θ(P ), or more generally %(θk(P ), θ(n,p)(P )) → 0 as
k, n, p→ ∞, for each P ∈ P.

(ii) θk(Pn)
P→ θk(P ) for all k.
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(2) Selection of approximations. We select a data determined value
k̂n(X1, · · · ,Xn) and use as estimate, θk̂n

(Pn).

That is, we approximate θ(P ) by a “nice”, call it regular, parameter θk
which can be estimated by plug-in and then determine how fine an ap-
proximation we will use. Of course, k need not be an integer, but could
be a continuous parameter such as the bandwidth. It is often useful to
decompose the difference

θk(Pn) − θ(P ) = [θk(Pn) − θk(P )] + [θk(P ) − θ(P )] (2.2)

The first term is naturally identified with variance, the second with bias,
and the choice of k is the choice of best balance between the two. In
this review, we necessarily mention only a small subset of the many ways
the approximations have been chosen, but do stress the importance of the
choice of k in many instances.

3 Nonparametric regression and classification (supervised
learning)

3.1 Regression

Sequence Approximation. We return to model (1.3), which could equally
well be written that we observe (Z, Y ) with a completely unknown joint
distribution (subject possibly to moment and smoothness conditions). Our
goal is estimation in the L2(P ) sense of the function valued parameter
θ(P ) = m(·) = E(Y |Z = ·). This goal makes sense if we wish, knowing P ,
to predict a new Y given a new Z. If we use the predictor δ(Z), our loss is

`(P, δ(Z)) =

∫
(y − δ(z))2dP (z, y) (3.1)

The best choice of δ(Z) if, of course, m(Z). Since we don’t know P , we must
use our “training sample” (X1, · · · ,Xn) to construct δ̂(Z;X1, · · · ,Xn).
Since m(Z) cannot be estimated by plug-in if Z is continuous, we need
to apply regularization.

The first step is to select a sequence of approximation θk(P ) which are
meaningful if P = Pn. As we mentioned, there are many ways of selecting
the sequence {θk(P ) = mk(·)}, penalization as in (1.4), see, for instance,
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Zhang et al. (2004), or in a more structured way, sometimes referred to as
the method of sieves, which we now explain.

We consider the models Pk = {P : m(Z) =
∑k

j=1 βjgj(Z) for some β},
and define an estimate appropriate to the parametric model Pk. Least
squares is the natural choice here: compute β̂k, the least squares estimate
and m̂k(z) = β̂Tk g(Z), where g(Z) = (g1(Z), · · · , gk(Z))T . The correspond-

ing population mk(·) is just
∑k

j=1 βjgj(z), where β = (β1, · · · , βk)T =

argminβ{
∫

(y −∑k
j=1 βjgj(z))

2dP (z, y)}.

Choice of regularization parameter in regression. We want to select
k̂ = k(Pn), which is “optimal” in terms of our loss function,

R(P, δ) = EP (Y − δ(Z;X1, · · · ,Xn))2 (3.2)

the expected squared error integrated out with respect to Z and (X1,
· · · ,Xn). And so our first goal is consistency, R(P, m̂k̂(·)) → R(P,m(·)).
It is easy to see that, by orthogonality, this is equivalent to

∫
(m̂k̂(z) −

m(z))2dP (z)
P→ 0. This is equivalent to choose ρ to be L2(P ) distance in

the range of θ(P )(·), which we identify as all square integrable functions of
Z. Consistency corresponds to what we have called Goal (I).

As a concrete example, suppose that we believe that Pk is correct for
some k, and our goal is to find the correct model or smallest correct model
if the Pk are nested, as in our case, and then estimate β. The type (I)
goal formulation leads, after construction of an unbiased estimator of the
MSEk = E(m̂k(Z)−m(Z))2, where m(·) is the true population parameter,
to a solution due to Akaike (1970), Mallows (1973) and others, “choose
k̂ to minimize

∑n
i=1(Yi − m̂k(Zi))

2 + 2k”. This choice comes from the
representation

E(Y 0
i − m̂k(Zi))

2 = E(Yi − m̂k(Zi))
2 + 2Cov(m̂k(Zi), Yi) (3.3)

where Y 0
i = m(Zi) + ε0i is a new independent observation, and

2
∑n

i=1 Cov(m̂k(Zi), Yi) = k under the normality assumption on ε, see
Efron (2004) for more details. On the other hand, pursuit of the type
(II) goal puts great importance on identifying k0(P ) = min{k : P ∈ Pk},
the smallest model containing P first and then estimating β for purposes of
interpretation. A Bayesian argument (Schwarz, 1978) to choose k by max-
imizing the posterior probability of Pk leads to the penalty k log n which
evidently leads to much lower values of k̂. The Akaike/Mallows criterion
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does choose a model which is “correct” but not of smallest size. Readers are
referred to Shao (1997) for more discussion on this issue. When p is allowed
to increase with n, Bunea et al. (2006) show that consistent variable selec-
tion can also be achieved via multiple testing. Much more general choices
of k involving types of cross validation are given later in this section.

Boosting and stagewise regression. There is another approach which
does not specify the sieve in advance. In this case, we identify θk with
the kth step of an algorithm, move from Pk to Pk+1 on each step. Reg-
ularization here still means stopping the algorithm, i.e., choosing k in a
data determined way. In stagewise regression, we fit one variable at a time,
choosing one variable at step k + 1 according to an optimization criterion
based on the residuals of stage k. We discuss this type of method further in
the section on classification. That regularization is necessary, can be seen
by noting that the classical boosting method, recognized by Breiman as
the Gauss-Southwell algorithm in numerical analysis, converges to the full
regression on p variables in the context of the linear model. So, overfitting
is still the main problem, see Hastie et al. (2001) for an excellent discussion
of this.

Optimality. The penalized methods as (1.4) have been studied extensively
by Birgé and Massart (2001) and many others, see Györfi et al. (2002) for an
extensive overview. The criteria used in their analyses are worst case ones.
They try to construct sieves and penalties which may be data determined
so that, as we noted above,

a) θk̂(Pn)
P→ θ(P ) as n → ∞, P fixed, consistency in a more abstract

formulation.

b) Further, for smoothness classes P, the maximum regret, defined as
the maximum difference between the risk of m̂(n) = θ̂k̂(Pn) and that
of m ≡ θ(P ), the Bayes risk, converges to 0 at a rate which cannot
be improved by any competitors for the given P, that is

supP{R(P, m̂(n)) −R(P,m)} � infδ̂supP{R(P, δ̂) −R(P,m)} (3.4)

where δ̂ depends on X1, · · · ,Xn only but not P . These rates are
always of the form n−2s/(2s+p)Ω(n), where Ω(n) is a slowly varying
function, and p is the dimensionality of the data, s is a measure of
the assumed smoothness of the members of P.
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Another approach to optimality which applies to both types of Goals (I)
and (II) and is particularly favored by the machine learning community,
following the work of Vapnik (1998), is to, from the beginning, restrict
consideration to a fixed regularization class of possible procedures, as we
do in our formulation, but then define k(P ) = k∗ as the minimizer of
ρ(θk(Pn), θ(P )), assuming P is known. This is the “oracle”’s choice. The
goal then is to match the oracle for any P , i.e., choose k̂ so that

ρ(θk̂(Pn), θ(P ))

ρ(θk∗(Pn), θ(P ))

P→ 1 (3.5)

To ensure uniformity over large classes, results are stated in terms of oracle
inequalities of the form,

P [ρ(θk̂(Pn), θ(P )) ≤ Cρ(θk∗(Pn), θ(P )) + g(n, γ)] ≥ 1 − f(P, n, γ) (3.6)

for all n and P , where C ≥ 1 is a constant, g goes to 0 as γ → 0 and
f(P, n, γ) → 0 as n → ∞ for fixed γ. Oracle inequalities can be used to
prove possibly weaker results than (3.5), but suggest the construction of so
called adaptive procedures (Donoho and Johnstone, 1998; Lugosi and Nobel,
1999) m̂k̂ which get the correct rate over a whole scale of P of specified
smoothness, 0 < s <∞.

3.2 Classification

The classification problem and boosting as an example. Boosting
was first applied to the classification problem where Y ∈ {1, · · · , N}. A
classifier δ(Z) ∈ {1, · · · , N} and the natural choice of loss is `(P, δ) = 1(δ 6=
Y ). Arguing as before, if P is known, the δ minimizing

∫
`(P, δ(z))dP (z) is

θ(P ) ≡ δP (z) = j if P [Y = j|Z = z] = max{P [Y = s|Z = z] : 1 ≤ s ≤ N}.
Approximating θ(P ) here can be done by estimating mj(Z) ≡ P [Y = j|Z]

for j = 1, · · · , N , where mN (Z) = 1−∑N−1
j=1 mj(Z). If we treat each mj(Z)

as a regression to be estimated, we are back in the regression formulation.
This is what has implicitly been done in many current classification meth-
ods, with the exception of neural nets and perhaps support vector machines
and the theoretically important methods of Mammen and Tsybakov (1999).
We can think of the problem of classification into N categories as the same
as the

(N
2

)
problems of classifying into pairs of categories i and j — though
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this is not necessarily the best approach. Therefore, without loss of gener-
ality, we continue with the case N = 2. In this case, we relabel our 2 cate-
gories as −1 and 1 and we need only consider m(Z) ≡ m1(Z) = P [Y = 1|Z]
since P [Y = −1|Z] = 1 −m(Z). The Bayes rule is just

δ(Z) = sgn(2m(Z) − 1) (3.7)

For this situation, a large number of classes of procedures, such as neural
nets, support vector machines, boosting have been studied, see Hastie et al.
(2001) for an extensive coverage.

We will mainly discuss boosting, which, in this context, constructs es-
timates of a function F̂ (Z), which estimates q(2m(Z)− 1), where q is non-
decreasing and sgn(q(t)) = sgn(t). The classifier sgn(F̂ (Z)) is then an esti-
mate of sgn(2m(Z)−1), the Bayes rule. If q is strictly increasing, we obtain
an estimate q−1(F̂ (Z)) of 2m(Z)−1. The type of estimates F̂ (Z) proposed
by boosting are of the additive type. Given a base space of classifiers (or
more generally functions taking values in [−1, 1]), F̂ (Z) =

∑k
j=1 cjhj(Z),

where hj ∈ H, a predetermined base space of functions such that the linear
span of H can approximate any r(Z) ∈ L2(P ). Earlier approaches such
as the sieves we have discussed were of this type also, but the structure
of boosting is distinguished by constructing the sequence θk(Pn) as con-
secutive outputs of an algorithm with θk(Pn) ∈ Pk. Boosting iteratively
builds an additive model as follows. For suitable convex functions W (·),
Fk+1 = Fk + γ̂ĥ is the argmin of

1

n

n∑

i=1

W
(
Yi(Fk(Zi) + γh(Zi))

)
(3.8)

over h ∈ H and γ, where H is a large (or infinite) dictionary of functions
of Z, (originally specified as “weak learners”, classifiers themselves), for
instance, candidate covariates or decision trees. In particular, W (t) = e−αt

leads us to AdaBoost. We can think of each iteration as representing a
θk(Pn). Indeed, Fk(Z), the kth population iterate converges to F (Z) =
q(2m(Z) − 1), as discussed. In particular for W (t) = e−t, q(v) = log

(
1+v
1−v
)

and F∞(Z) = log
( m(Z)

1−m(Z)

)
. Thus if F̂k̂(Z) is an estimate of F∞(Z),

m̂k ≡ exp
(
F̂k̂(Z)

)
/
(
1 + exp

(
F̂k̂(Z)

))
estimates mk ≡ exp

(
Fk(Z)

)
/
(
1 +

exp
(
Fk(Z)

))
.

Choice of regularization parameter in boosting. However, the θk(Pn)
do not converge, since, for suitable H, infF∈HEPnW (Y F (Z)) = 0 and is
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not achieved. The choice of k plays a critical role. Zhang and Yu (2005)
suggested an early stopping rule to pick k in terms of the `1-norm of the
boosting aggregation coefficients. Specifically, a sequence of suitably de-
caying tuning bounds (bk : k = 1, 2, · · · ) are chosen beforehand. Stopping
occurs (k̂ = k∗) as soon as the `1-norm of the coefficients (corresponding to
the sparsest representation in the library H), say, ‖β(k∗)‖1, exceeds the pre-
determined bound bk∗ . Choosing (bk : k = 1, 2 · · · ) is evidently a problem
and optimality in any sense is unclear. A simple way based on the “lasso”,
the Lagrange multiplier form of using the `1 penalty can be analyzed as
follows. If γ is fixed , define θk(P ) as the kth step, Fk in the population
version of the algorithm for minimizing





∫
W (yF (z))dP (z, y) + γ

k′∑

j=1

|βj | :

Fk = Fk−1 +

k′∑

j=1

βjhj sparsely represented for some k′



 (3.9)

and let θγ(P ) be the minimizer which, in general, doesn’t agree with θ0(P ),
the true parameter. Then θk(P ) do not converge to θ(P ) defining the
Bayes rule in general, but rather to θγ(P ). But if γ → 0, as we move from
k to k + 1, it is not hard to show that they do, provided that we have
convergence if γ = 0. It is interesting to note that the phenomenon of
failure to convergence of the algorithm described (or other algorithms for
minimizing convex functions) for the sample and original objective function
does not hold in the penalized case for any fixed γ > 0, since the objective
function plus the convex penalty has a positive and achieved minimums.
Thus, for the empirical version, the θk(Pn) do converge in probability to
θγ(P ) for γ fixed and, under suitable conditions on H, to θ(P ), if γn → 0.

Various other ways of stopping based on versions of the classical model
selection criteria, Bühlmann and Yu (2006) and Bühlmann (2006) have
been recently proposed and their properties studied. Bickel et al. (2006)
proposed yet another methods of early stopping which can achieve the
appropriate rate bounds for Sobolev spaces. Their methods, save for the
construction of a sieve of lower dimensional models to pass through, is the
one primarily used in practice, V fold cross validation that we discuss later.
Another approach to avoid early stopping is to regularize on each boosting
step, as done in Lugosi and Vayatis (2004), in which minimization (3.8) is
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constrained to the convex hull of H. In order to select an optimal tuning
parameter, their regularization scheme entails many `1-norm constrained
optimizations, and is computationally problematic.

Optimality. Optimality for classification is more subtle than for squared
error. If one uses as measure 0− 1 loss in the two classes case as above and
δ(Z;X1, · · · ,Xn) ∈ {−1, 1} is a rule, then, the Bayes regret is

R(P, δ) −R(P, δB) = EP |rP (Zn+1)|1(δδB < 0) (3.10)

Here rP (Z) = 2P (Y = 1|Z) − 1, and δB = sgn(rP ) is the Bayes rule,
see Devroye et al. (1996) for instance. This expression reveals that the
distribution of rP (Z) in a neighborhood of {z : rP (z) = 0} is as important
as the estimation of rP (Z) by F̂ (Z) if δ = sgn(F̂ (Z)). Bayes regret can
take very different values, in particular, it can be dramatically small if,
for instance, {z : −ε ≤ rP (z) ≤ ε} = ∅ for some ε. This is related by
Tsybakov and others to the empirical margin between the sets {Zi : Yi =
1} and {Zi : Yi = 0}. This quantity is defined through the hyperplane
which, in the most balanced way, separates the sets committing at most
εn errors. On the other hand, it is reflected in the population margin
conditions of Tsybakov (2004). This empirical margin plays a major role
in the oracle inequalities produced in the machine learning literature with
minimax optimality counterparts in the work of Tsybakov (2004).

3.3 Selection of regularization parameter via cross validation

We have touched several ways to select γ (or k) in our previous discussion.
We now address cross validation, as a most general model selection rule.
An extensive review of model selection has been given by Wang (2004).
Shao (1997) provided an interesting taxonomy of various model selection
schemes in linear regression context.

Leave-one-out cross validation. A general approach is leave one out
cross validation. Let X(−i) = {Xj : j 6= i} and consider the predictor of Yi,

m̂
(−i)
γ (Zi), trained from X(−i) by penalizing with γPen(β). Then the cross

validation estimate of error is just

CV (γ) =
1

n

n∑

i=1

(Yi − m̂(−i)
γ (Zi))

2 (3.11)
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The “optimal” γ̂ is defined as giving the smallest cross validation error.

The motivation here is reasonably clear and goes back to the work of

Stone (1974). 1
n

∑n
i=1(Yi−m̂(−i)

γ (Zi))
2 is an unbiased estimate of the actual

risk of m̂
(−i)
γ (Zi) which we expect is very close to that of m̂γ(X1, · · · ,Xn;

Zn+1) = m̂γ(Zn+1) for which we want to compute E(Yn+1 − m̂γ(Zn+1))2.

For a linear estimator
(
m̂γ(X1), · · · , m̂γ(Xn)

)T
= H(γ)(Y1, · · · , Yn)T ,

generalized cross validation minimizing

GCV (γ) =
1

n

n∑

i=1

(Yi − m̂γ(Zi))
2

(1 − tr(H(γ))/n)2
(3.12)

was proposed by Craven and Wahba (1979) for computational reasons, as
an approximation to leave-one-out cross validation, since the computation

of m̂
(−i)
γ (i = 1, · · · , n) multiplies computation time by a factor of n.

Efron (2004) showed that all the methods we have discussed in this
section so far correspond to the estimation of the expected optimism,

E(Y 0
i − m̂γ(Zi))

2 − E(Yi − m̂γ(Zi))
2 (3.13)

in an approximately unbiased fashion. Using a Rao-Blackwell type argu-
ment, he further showed that the model-based penalty methods (Cp, AIC,
SURE) outperformed the nonparametric methods such as leave 1 out CV,
assuming the model is believable. He also gave similar connections between
parametric and nonparametric bootstrapping methods.

The extent to which the use of CV and GCV yield procedures satisfying
our optimality criteria has been studied (Li, 1985, 1986, 1987). Birgé and
Massart (1997) showed that leave one out cross validation is equivalent to
Mallows Cp in regression,making it optimal for nested models but selecting
too large a model if all 2p submodels are considered.

V-fold cross validation. In fact, few of these methods for selecting γ
have been used in machine learning practice. The standard approach is
to choose V dividing n, divide the sample into V disjoint parts of size
m = n/V , say, Ψ(1), · · · ,Ψ(V ), and then use the n − m observations in
V − 1 of the parts to calculate m̂γ(Ψ(−t)) = m̂γ,t and evaluate

Qt(γ) =
1

m

∑

j∈Ψ(t)

(m̂γ,t(Zj) − Yj)
2 (3.14)
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an unbiased estimate of the risk of the prediction based on n − m obser-
vations. Then, although looking at more than a single partition is not
necessary for theory, form Q(γ) = 1

V

∑V
t=1Qt(γ), and choose γ̂ by mini-

mizing Q(γ). Leave 1 out CV is also of this form with V = n. However,
taking, say, V = n

Ω(n) , where Ω(n) is slowly varying, can be shown to work
very generally to establish both oracle and minimax results, see Györfi
et al. (2002), Bickel et al. (2006). Some further discussion is in Dudoit and
van der Laan (2005). A great advantage of both leave 1 out CV and V-fold
CV is that they immediately generalize to any prediction question, such
as generalized linear model prediction as in Fan and Li (2006), or more
general model selection. V-fold cross validation is closely related to the m
out of n bootstrap and subsampling we shall discuss in Section 5.

This discussion of the choice of γ in classification has been entirely in
the context of Goal (I). When we turn to Goal (II), in which we assume
there is a true model Pk, the situation is different. If we choose γ via BIC,
or in more complex situations, the closely related Bayesian, MDL criterion
of Rissanen (1984), we can obtain the true k with probability tending to
1 and thus safely act as if k̂ gave us the true model. On the other hand,
as we have noted previously, AIC and the Goal (I) oriented criteria end up
picking models that are larger than necessary.

3.4 Bayes and regularization

It is asserted, with some justification, that Bayesian methods regularize
automatically. To see why this is so consider ridge regression with a large
number of variables or the lasso in the same situation. If we assume as a
priori that βj are i.i.d N(0, σ

2

γ ) and Yi given Zi are N(ZTi β, σ
2), then the

posterior density of β is proportional to

exp{−1

2

[ 1

σ2

n∑

i=1

(Yi − ZTi β)2 + γ

p∑

j=1

β2
j

]
} (3.15)

Thus ridge regression can be thought of as finding the posterior mode of
β and then plugging in to m̂γ(Z). The lasso can be thought of similarly
but with i.i.d double exponential βj with density f(βj) = γ

2 exp[−γ|βj |].
Of course, we are still left with the choice of γ. We can, in principle, put
a fixed prior on γ also or alternatively use an empirical Bayes approach
and estimate γ by maximum likelihood from (Zi, Yi), i = 1, · · · , n, viewed
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as having the marginal distribution obtained by integrating β out. The
Gaussian prior and the empirical Bayes approach lead to the celebrated
James-Stein Estimator (James and Stein, 1961).

Whether one thinks of the first stage regularization, putting prior dis-
tribution on β, as Bayesian or not seems immaterial. The second, however,
is more problematic since the effect of integrating out β to get an estimate
of γ requires caution. More significantly, making inference as in Goal (II)
about β using the posterior leaves one asking questions about sensitivity
to the choice of prior. The success of empirical Bayes methods used in
the context of the Gaussian white noise model Johnstone and Silverman
(2005) suggests that the frequentist behavior of Bayesian procedures in a
prediction context, including using other posterior features such as the pos-
terior mean rather than mode, should be studied further. This has become
particularly attractive since MCMC (see Robert and Casella, 2004, for an
introduction) makes the generation of approximate samples from the pos-
terior, and hence of means rather than modes, computationally relatively
easy.

General Bayesian model selection is mainly based on the Bayes factor
(Kass and Raftery, 1995)

B(γ1, γ2) =
P (Mγ2 |X)

P (Mγ1 |X)
÷ P (Mγ1)

P (Mγ2)
=
P (X|Mγ1)

P (X|Mγ2)
(3.16)

where Mγ1 and Mγ2 correspond to models with parameter γ1 and γ2 re-
spectively. Kass and Wasserman (1995) showed that BIC can be refined by
a more careful analysis of the asymptotics of the Bayes factor than that of
Schwarz (1978).

3.5 Large n, large p

There has been relatively little work in this context for the model suggested
by the introduction to our paper Y = m(Z1, · · · , Zp, · · · ) + ε, where essen-
tially we think of (Z1, · · · , Zp, · · · ) is as being infinitely dimensional with
the variable Z1, · · · , Zp being all that is observed or more satisfactorily have
p→ ∞, with n in our analysis. The major work in the context of Goal (I)
has been the work of Greenshtein and Ritov (2004), Greenshtein (2006),
Meinshausen (2005), and to some extent in Bickel and Levina (2004). In
the context of Goal (II), Fan and coworkers (Fan and Li, 2006, and refer-
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ences therein) have also looked at many generalizations of the regression
model we have focussed on in the large n, p context.

3.6 Computational issues

It is important to note the computational savings of the Lasso and the usual
forward stagewise algorithm. A major insight is in the work of Efron et al.
(2004), in which it is shown that a modification of their fast Least Angle
Regression (LAR) gives the complete path of the Lasso problem with vary-
ing penalty parameter. On the other hand, Hunter and Li (2005) proposed
to use minorization-maximization (MM) algorithms for optimization in-
volving nonconcave penalties and justified their convergence. Whether the
latter algorithms will be computationally effective when there are many
local minima remains to be seen.

3.7 Discussion

We have left out of our discussion many important methods such as lo-
cal fitting of nonparametric methods (Fan and Gijbels, 1996) and tensor
spline fitting (Stone et al., 1997), and, of course, neural nets, which in-
volve nonlinear methods of estimation. We’ve also neglected other topics
such as selecting γ, if interest focusses on other parameters which can be
estimated at the n−1/2 rate with curves, usually derivatives of regression
function, and density functions viewed as nuisance parameters, estimated
in some regularized way. For a discussion of difficulties which can arise
if one is not careful, see Chen (1988) and the discussion in Bickel et al.
(1998). Perhaps the outstanding issue in this area is the reconciliation of
the theoretical optimality results with the exponential increase of methods
proposed in practice and the production of a consistent overview. We have
only scratched the surface.

4 Estimating large covariance matrices

Estimation of large covariance matrices, sometimes accompanied by the
assumption that the data is p−variate Gaussian Np(µ,Σ), plays an impor-
tant role in various parts of statistics. The principal components (leading
eigenvectors) of the empirical matrix have been used for data visualization
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and reduction, by using only the principal components corresponding to the
first few eigenvalues in order of absolute magnitude. In other directions,
inverses of covariance matrices are important for determining important
conditional relationships and for the construction of Kalman filters. The
goal in all of these directions is of type (II), inference. But type (I) also
appears, see Bickel and Levina (2004). The common feature of such anal-
yses is, not surprisingly, that p and n are of the same order and frequently,
as in microarrays, p is much larger than n, see, for instance, Dudoit et al.
(2002), Kosorok and Ma (2006). As we mentioned earlier not only does
the empirical covariance matrix become singular for p > n, but as pointed
by Wigner (1955), Wachter (1978), Johnstone (2001), Johnstone and Lu
(2006), Paul (2005), Bair et al. (2006), Bickel and Levina (2004) and oth-
ers, if p

n → c, 0 < c ≤ ∞, the empirical eigenvectors and eigenvalues are
grossly inconsistent in terms of estimating the corresponding population
quantities.

If we think of X as an infinite sequence such that Σ, the variance-
covariance matrix of the process (X1,X2, · · · ) is a well conditioned oper-
ator on `2, see Böttcher and Silbermann (1999), and Σp is the variance-
covariance matrix of the first p coordinates, then

‖Σpy − Σy‖ → 0 (4.1)

for all y ∈ `2 as p → ∞. Or equivalently if y ∈ (y1, y2, · · · ),
∑∞

j=1 y
2
j = 1,

then Var(Σ∞j=p+1Xjyj) → 0. On the other hand, Σ̂py does not converge
if p

n → ∞. So we are led to regularization. Various methods have re-
cently been proposed, Daniels and Pourahmadi (2002), Wu and Pourah-
madi (2003), Huang et al. (2006), Ledoit and Wolf (2004), Furrer and
Bengtsson (2006). Wu and Pourahmadi (2003) and Huang et al. (2006) use
the remark of Pourahmadi (1999), Pourahmadi (2000) that fitting Σ by
maximum likelihood fitting can be thought of as consecutively fitting inho-
mogeneous autoregressions of order 1, 2, · · · , n−1 to the data, and viewing
the estimates of the autoregression parameters as estimates of the entries of
the unique lower triangular matrix of the Cholesky decomposition of Σ−1.
If p > n, then Σ−1 is only defined in the Moore-Penrose senses. Both sets
of authors assume p < n, and follow the Fan and Li (2001) prescription of
penalizing the log likelihood viewed as fitting autoregressions. In one case,
Wu and Pourahmadi (2003) do so, by selecting the maximum order of the
autoregression fitted as t < p, using the Akaike model selection criteria,
which can be viewed as a generalization of the Mallows criterion we dis-
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cussed earlier. Huang et al. (2006) use the Lasso of Tibshirani (1996) as
an L1 penalty on the coefficients of the autoregression. Furrer and Bengts-
son (2006) attack the problem differently using linear filters which preserve
positive definiteness of the empirical covariance matrix. These filters have
the effect of diminishing the absolute values of entries σ̂ij of Σ̂, according
to their distance, from the diagonal.

All asymptotics, other than those of Furrer and Bengtsson (2006) and
Johnstone and Lu (2006), were as p, n → ∞, but p

n → 0, and were essen-
tially statements about the rate of convergence of individual regularized
σ̃ij − σij to 0, where Σ = ‖σij‖. Furrer and Bengtsson (2006) showed the
much more useful convergence of the regularized matrices in the Frobenius

norm
∑

i,j(σ̃ij −σij)2, but obtain results only if p2

n → 0. Johnstone and Lu
(2006) devised a method for regularizing principal components for special
types of Σ, where the number of large eigenvalues is bounded for all p,
which gave convergence even if p

n → c > 0.

In Bickel and Levina (2004), followed by Bickel and Levina (2006) (in
preparation), one of the authors and E. Levina showed that by the crude
method of regularization called banding, replacing Σ̂p = ‖σ̂ij‖ by B(Σ̂) =
‖σ̂ij1(|i− j| ≤ k)‖, consistent estimation in the operator norm was possible

as long as log p
n → 0. Note that the Frobenius norm is much larger than

the operator norm if p is large. It implies convergence of eigenstructures
since the operator norm does, but requires p

n → 0. We view log p
n → 0 as

remarkable since it covers situations such as microarrays where n << p. On
the other hand, in microarrays, there is no one metric which corresponds to
closeness to the diagonal. The methods we have developed so far however do
permit application to situations, such as climate forecasting, with a similar
imbalance between n, the ensemble size and p, positions of measurements in
the atmosphere, where we can think of i, j corresponding to spatial points
and it is reasonable to assume that covariances diminish in absolute value
as the distance between points increases. We are in the process of deriving
the analogue of methods based on Wu and Pourahmadi (2003)’s approach
to fitting Σ−1 as well as to situations where we can apply the lasso, that
is, Σ−1 is assumed to be sparse but the structure of the 0’s has to be
determined. Note that Σp can remain very well conditioned no matter
what the relationship between p and n is. Essentially if one thinks of Σ as
an operator from `2 to `2 as we have suggested, then we require that Σ is
a bounded operator and invertible and that Σ−1 also be bounded. This is
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satisfied by all stationary ergodic ARMA processes. We conclude by stating
a result essentially from Bickel and Levina (2006) giving the flavor of our
results.

Theorem 4.1. Suppose log p
n → 0. Let T0 be a uniformly well conditioned

set of covariance matrices. Then ∃kn ↑ ∞ such that ∀ε > 0,

sup
Σ∈T0

P
[
‖BANDkn(Σ̂p) − Σp‖ ≥ ε

]
→ 0 (4.2)

sup
Σ∈T0

P
[
‖[BANDkn(Σ̂p)]

−1 − Σ−1
p ‖ ≥ ε

]
→ 0 (4.3)

The issue of choice of the regularization parameter k remains. Wu and
Pourahmadi (2003), in a different context, use the Akaike criterion to select
k in the method we have mentioned which is equivalent to approximating
the covariance matrix by that of a kth order autoregression. Bickel and
Levina (2006) investigate this approach further as well as the analogous
approach of estimating the order of a moving average approximation,which
banding the covariance matrix itself corresponds to.

It is interesting to note that if we are interested in a classification goal
such as implementing the Fisher linear discriminant function, then an al-
ternative approach which consider classifiers, based on linear predictors as
we discussed, without reference to an underlying distribution such as the
Gaussian, then results comparable to Bickel and Levina (2004) have been
obtained by Greenshtein and Ritov (2004) and Greenshtein (2006).

We note also that there is an extensive literature on using Bayesian
methods in estimation of Σ under parametric assumptions (Smith and
Kohn, 2002). The sense that Bayesian methods regularize is present here
also but the connection with p, n → ∞ needs to be investigated under the
very mild assumptions one can employ.

5 Subsampling and the m out of n bootstrap

Our main emphasis so far has been on the need for regularization in pre-
diction, our Goal (I), although Goal (II) arises in this context as well. For
instance,once we have a nonparametric estimate of a regression function,
we would like to have a confidence band around it as well. Inferential prob-
lems of setting confidence bounds and testing become central as soon as we
formulate semiparametric models whose parameters we interpret.
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A central tool for making inferential statements in a non and semipara-
metric context is nonparametric maximum likelihood, specifically in the
“bootstrap” form suggested by Efron (1979). Recall that this method essen-
tially extends the scope of our previous discussion about plug in estimates
to estimating a sample size dependent parameter such as the 1−α quantile
of the distribution of some complicated function of the data and P , such

as the pivot Tn(Pn, P ) =
√
n(X̄−µ(P ))
σ̂(Pn) , where µ(P ) = EPX, X̄ = 1

n

∑n
i=1Xi

and σ̂2(Pn) = 1
n

∑n
i=1(Xi − X̄)2. If we call the quantile θn(P ) then it is

defined for all P and we have the “plug-in” bootstrap estimate θn(Pn), the
1 − α quantile of Tn(P ∗n , Pn), where P ∗n is the distribution of a sample of
size n from Pn, treating Pn as known. The success of the bootstrap is, we
believe, due to the following features,

a) θn(Pn) can, in principle, be computed numerically θn(P ) = L−1
n (1 −

α,P ) where

Ln(t, P ) =
1

nn

∑

(i1,··· ,in)

1(Tn(X(i1), · · · ,X(in);P ) ≤ t) (5.1)

But this, in practice impossible. However, as Efron pointed out,
Monte Carlo simulation can yield (5.1) with arbitrarily good rate
of precision. That is, we can approximate Ln by

LnB(t) =
1

B

B∑

b=1

1
(
Tn(X∗1b, · · · ,X∗nB ;Pn) ≤ t

)
(5.2)

where (X∗1b, · · · ,X∗nb), b = 1, · · · , B is an i.i.d sample from Pn. This
is the bootstrap as practiced.

b) The resulting estimates tend to be consistent and have nice higher
order properties — Hall (1992). They share the general feature of
maximum likelihood procedures that no choice of tuning constant is
required.

Evidently, Efron’s bootstrap can only be applied where it makes sense
to talk of θn(Pn) so that the situations we have discussed previously do
not arise. In fact it has made sense in situations where θn(P ) → θ(P )
with θn(P ) defined for all P but θ(P ) was not defined for all P . A
prime example (Efron, 1979) is the suitably normalized variance of the
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sample median, which converges only if the density of P , f , exists and
is positive. That is θn(P ) ≡ nVarP (X(n

2
)) → 1

4f2(µ(P )) ≡ θ(P ), where

µ(P ) is the population median. Efron showed that, even in this case

θn(Pn)
P→ θ(P ). Yet, suppose that P corresponds to a bounded random

variable with upper bound ν(P ) = F−1(1) and f(ν(P )−) > 0. Then, while
Ln(n(ν(P )−X(n))) ⇒ Exponential(f(ν(P )−)), the bootstrap distribution
of n(X(n) −X∗(n)) does not converge to any fixed distribution.

A solution advocated early on, in cases such as this one, was to use the
bootstrap distribution of m(X(n) −X∗(m,m)) as our estimate, where X∗(m,m)

is the maximum of a sample of size m < n, and m→ ∞, but m/n→ 0. The
rationale is that the joint distribution of (X∗1 , · · · ,X∗m) from Pn, Lm(Pn) is
a much more stable estimate of Lm(P ) which is close to L(P ) and in turn
to Ln(P ). A better approximation may be to use L̃m(Pn), where L̃m is
the distribution of the function of interest when P is replaced by Pn and
the sample of size m is drawn without replacement. One reason is that the
empirical distribution of a sample of m observations without replacement
exhibits no ties unless there are points of mass in the support of P , while
a bootstrap sample does with high probability, and, in that way, can be a
poor approximation to an underlying P which is continuous.

Thinking carefully about this situation we see that we are again dealing
with regularization. We assume that θn(P ) → θ(P ) on P in a suitable

sense. We know that θm(Pn)
P→ θm(P ) for all fixed m. Thus we are essen-

tially proposing that θm̂(Pn) be used where m̂ → ∞, m̂/n
P→ 0. The key

choice here is that of m̂ since θm(P ) are given by the problem. The gener-
ality of this approach is brought out by a remarkable theorem discovered
independently by Politis and Romano (1994) and Götze (1993).

Theorem 5.1. Suppose Tn(Pn, P ) = Tn(Pn) only, an ordinary statistic,
and suppose that if Ln(P ) is the distribution of Tn(Pn, P ), then

Ln(P ) → L(P ) on P (5.3)

(Convergence here is in the weak of some other suitable sense.) Define
Ln(P ) itself as θn(P ). Let L̃m(Pn) be the distribution of Tm(X̃1, · · · , X̃m;
Pn), the distribution of Tm where (X̃1, · · · , X̃m) are a sample without re-
placement from X1, · · · ,Xn. Then if m→ ∞,m/n→ 0,

L̃m(Pn) → L(P ) (5.4)

without any further conditions.
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In fact, under very weak conditions, the same is true of Lm(Pn). The
subsampling approach (without replacement) is pursued extensively by
Politis, Romano and workers in Politis et al. (1999). In particular, there
are important and extensive generalization to simulation for statistics of
stationary processes, following up the block bootstrap of Künsch (1989).
We give some results on the choice of m in regularization for the m out
of n bootstrap, rather than subsampling, because it permits us to think of
choosing m̂ to give consistency in an optimal way even when the ordinary
bootstrap is consistent, which subsampling cannot.

Götze and Račkauskas (2001) and Bickel and Sakov (2005) analyze a
general regularization method suggested in Bickel et al. (1997), which can
be shown to give the best rates of convergence of Lm̂(Pn) to L(P ), whether
the Efron bootstrap is or is not consistent. The methods rely on the fol-
lowing observations,

i) If Ln(Tn(P ∗n , Pn)) doesn’t converge to L(P ), then it normally mis-
behaves seriously. It can be viewed as a probability distribution (as
X1, · · · ,Xn vary) on the set of all probability distributions. As such
it converges weakly, not to a point mass at LP , as it should when the
Efron bootstrap is correct, but to a nondegenerate random probabil-
ity distribution on the space of all probability distributions.

ii) If we put m = nπk, for appropriately chosen 0 < π < 1, k =
1, 2, · · · , r, r fixed, Lm(Tm(P ∗m, Pn)) misbehaves in exactly the same
way as in (i), but convergence is generally to a different distribution
for each k > 0.

iii) If m is fixed
L∗m = Lm(Tm(P ∗m, Pn)) → Lm(P ) (5.5)

the limiting distribution of T (Pm, P ). Again, we expect Lm1(P ) 6=
Lm2(P ) if m1 6= m2. The common exceptional cases are where
Lm(P ) ≡ L(P ) for all m in which case any fixed choice of m will
give the same answers, so that any reasonable m̂ will do well.

These remarks prompt our rule.

(1) Choose a metric % on the space of probability distribution of T .

(2) Choose m̂ = nπk̂, where k̂ = argmink%(L∗
nπk ,L∗nπk+1).



Regularization in Statistics 295

Interestingly enough, it is shown in Götze and Račkauskas (2001) and
Bickel and Sakov (2005) that under suitable assumptions, %(L∗m̂,Lm(P ))
converges to 0, at the same rate as that given by mn = nπkn , kn =
argmink{%(L∗m,L(P ) : m = nπk, k = 0, 1, · · · }. This is evidently the best
that an oracle could do. A major application is given in Bickel and Sakov
(2005), to setting confidence bounds on extreme percentiles, F−1(1 − 1

n),
where F is the cdf of P . Simulations suggest that the method which is not
very sensitive to the choice of π, works as well as others where more knowl-
edge of the tails of F is assumed, e.g., Breiman et al. (1990). A substantial
difficulty of the approach is that we need the exact scale of Tn(Pn, P ), for
instance, that n is right for (ν(P )−X(n)), where ν(P ) is the upper endpoint
of the distribution of X1, since we need to know how to rescale when we
form Tm(P ∗m, Pn). Incorrect rescaling will lead to our estimate converging
to point mass at 0 or ±∞. There are, however, various ways to estimate
the correct scale by interpolating, between different values of m. For more
and further references, see Bickel and Sakov (2005).

An important question is to how to apply more traditional models of
regularization. In those cases where θm(P )−θ(P ) could genuinely be viewed
as bias this has been done (see Hall et al. (1995) and Datta and McCormick
(1995)). Otherwise it is unclear how to proceed.
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DISCUSSION

Alexandre B. Tsybakov
Laboratoire de Probabilités et Modèles Aléatoires

Université Paris VI, France

In their paper, Peter Bickel and Bo Li give an interesting unified view
of regularization methods in statistics. The literature on this subject is
immense, so they outline a general conceptual approach, and then focus on
some selected problems where regularization is used, such as regression and
classification, or more generally, prediction. In this context, they discuss
in detail a number of recently emerging techniques, in particular, boosting,
estimation of large covariance matrices, estimation in the models where the
dimension is larger than the sample size.

It is difficult to overestimate the importance of regularization in statis-
tics, especially in nonparametrics. Most of nonparametric estimation prob-
lems are ill-posed, and common estimators (kernel, histogram, spline, or-
thogonal series etc.) are nothing but regularized methods of solving them.
The corresponding regularization parameters are just smoothing parame-
ters of the estimators.



304 A. B. Tsybakov

The main ideas of statistical regularization can be very transparently
explained for prediction problems. Assume that X1, . . . ,Xn are i.i.d. ob-
servations taking values in a space X , and assume that the unknown under-
lying function f? that we want to estimate belongs to a space F . Consider
a loss function Q : X × F → R and the associated prediction risk

R(f) = EQ(X, f)

where X has the same distribution as Xi. Assume that f? is a minimizer of
the risk R(f) over F . Then a classical, but not always reasonable, estimator
of f? is a minimizer over f ∈ F of the corresponding empirical risk

Rn(f) =
1

n

n∑

i=1

Q(Xi, f).

Clearly, if F is too large, this can lead to overfitting and the minimizers can
be nonsense. On the other extreme, if F is chosen to be too small, we cannot
be sure that the true function f? belongs to F . So, continuing in the logic
of empirical risk minimization, we need to know rather precisely a class F
(the smaller, the better) where f? lies. This, of course, is not very realistic
in practice, but minimizing Rn over a suitable restricted class F yields
us a first way of statistical regularization. For example, we can minimize
Rn over the class of twice differentiable functions such that

∫
(f ′′)2 ≤ L

where L is a given constant. Closely related is the second way of statistical
regularization where a “roughness” penalty pen(f) is added to Rn(f), for
example, pen(f) = λ

∫
(f ′′)2 where λ > 0 is a smoothing parameter, and

the estimator of f? is defined as a minimizer of Rn(f) + pen(f).

These examples illustrate a construction of estimators for a given (fixed)
smoothness of the underlying function. To get adaptation to unknown
smoothness or other types of adaptation, we need one more stage of reg-
ularization, typically realized as penalization but this time over the com-
plexity (smoothing) parameter appearing at the first stage. For instance,
the famous Mallows – Akaike or cross-validation type schemes can be used.

Such a two-stage procedure works well in many cases. However, it has
been recently realized that often it does not take advantage of the sparseness
property. On the other hand, sparseness is believed to be an inalienable
feature of many modern problems of signal processing and classification
where “p is larger than n”, in the terminology of Peter Bickel and Bo Li.
A remedy can be then suggested in the form of alternatative regularization
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procedures, with one stage only, which turn out to have optimal properties
both in “classical” and “sparse” cases. One of the main ideas is to use an `1
penalization of the empirical risk or, on a closely related note, minimization
of the empirical risk under an `1 constraint. In its earliest and simplest
form, this idea appears in soft thresholding of Donoho and Johnstone for
the gaussian sequence model. For other models, e.g., in regression and
classification, it is realized in more recent procedures, such as Lasso, various
versions of boosting or mirror averaging.

Let us focus here on boosting and mirror averaging. Consider a dic-
tionary H of functions on X . Assume without loss of generality that the
dictionary is finite: H = {h1, . . . , hM}, but M can be very large, for exam-
ple, much larger than the sample size n. We believe that the underlying
function f? is well approximated either by the linear span L(H) of H or
by its convex hull C(H). The aim is then to find an estimator f̃n such
that its risk R(f̃n) would be close to the oracle risks inff∈L(H)R(f) or

inff∈C(H)R(f). To get such an estimator f̃n, we can implement `1 regu-
larization, in particular, some versions of boosting. We can also use the
method of mirror averaging.

Boosting. It will be convenient to distinguish between linear boosting
where the output f̃ of the procedure belongs to the linear span of H (not
restricted to its convex hull), and convex boosting where f̃ belongs to the
convex hull C(H). Convex boosting methods can be viewed as `1 penalized
procedures since the set C(H) is determined by an `1 constraint. Peter
Bickel and Bo Li describe a basic linear boosting algorithm for the problem
of classification (cf. (3.8)). Clearly, it can be also written for a general
prediction problem:

• initialize: pick F0 ∈ L(H),

• for k = 0, 1, . . . , k∗, find

(γ̂k, ĥk) = argminγ∈R,h∈HRn(Fk + γh)

and set Fk+1 = Fk + γ̂kĥk,

• output f̃n = Fk∗+1.

Here the stopping time k∗ ≤ M − 1 is a regularization parameter of the
algorithm. It can be selected by classical methods, as mentioned above,
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by adding a second stage of the procedure, i.e., a minimization of some
criterion penalizing for large values of k. This is realized for the regres-
sion problem with squared loss by Bühlmann and Yu (2006), Bickel et al.
(2006), Barron et al. (2005), and for classification with convex loss by Zhang
and Yu (2005). Peter Bickel and Bo Li suggest in (3.9) another boosting
method which is based on `1 penalization. They also provide its heuristic
motivation. Some questions remain open here: how to choose k′ in (3.9)?
Does the method require a “second stage”, i.e., a model selection step for
early stopping?

For the regression problem with squared loss and for some linear boost-
ing procedures f̃n, Barron et al. (2005), under mild assumptions on the
functions hj from the dictionary, prove oracle inequalities of the form

E{R(f̃n)} ≤ C inf
f∈C(H)

R(f) + ∆n (1)

where ∆n > 0 tends to 0, but not faster than n−1/2, and C > 1 is a
constant. This shows that, in fact, their linear boosting procedures f̃n
mimic the convex oracle.

Mannor et al. (2003), Lugosi and Vayatis (2004) and Klemelä (2006)
establish oracle inequalities similar to (1) for some convex boosting pro-
cedures. However, there is no evidence that boosting mimics well linear
oracles. For a particular linear boosting scheme, an inequality similar to
(1) but involving linear oracle risk inff∈L(H)R(f) has been obtained by
Zhang and Yu (2005), however, with a remainder term ∆n far from opti-
mality. It would be, indeed, interesting to investigate whether boosting can
achieve optimal rates of aggregation given in Tsybakov (2003). This can
be, in principle, obtained as a consequence of sparsity oracle inequalities,
i.e., inequalities of the form

E{R(f̃n)} ≤ C inf
f∈L(H)

{
R(f) +

M(f)

n
logM

}
(2)

where C ≥ 1 and M(f) is the number of non-zero coefficients in the H-
representation of f :

M(f) = min
{ M∑

j=1

II{λj 6=0} : f =

M∑

j=1

λjhj

}

An open question is whether there exist a boosting procedure f̃n satisfying
(2). Note that, in fact, (2) can be proved for other procedures: a first
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example is given in Bunea et al. (2005, 2006) where (2) is established for a
Lasso type f̃n in the regression model with squared loss.

Mirror averaging. A competitor of boosting is the mirror averaging
(MA) algorithm Juditsky et al. (2005a,b). It aims to achieve the same goal
as the boosting procedures discussed above which is to mimic the convex or
linear oracles associated to a given dictionary of functions H (or to mimic
the model selection oracle). The following two properties give evidence in
favor of MA, as compared to boosting:

• unlike boosting, MA is an on-line method: it is applicable with
streaming data. The computational cost of MA is of the same or-
der or even smaller than that of boosting;

• in the theory, at least at its actual stage, better oracle inequalities
are available for MA than for boosting.

To define the MA algorithm we introduce some notation. For any θ =
(θ(1), . . . , θ(M)) ∈ Θ ⊆ RM set fθ =

∑M
j=1 θ

(j)hj and assume that Θ is
convex and that θ 7→ Q(X, fθ) is convex for all X ∈ X , with (sub)gradient
∇θQ(X, fθ). Given a sequence of positive numbers βi, the basic MA algo-
rithm is defined as follows:

• i = 0: initialize values ζ0 ∈ RM , θ̄0 ∈ Θ, θ̃0 ∈ Θ,

• for i = 1, . . . , n, iterate:

ζi = ζi−1 + ∇θQ(Xi, fθ̄i−1
) (gradient descent)

θ̄i = G(ζi/βi) (mirroring)

θ̃i = θ̃i−1 − (θ̃i−1 − θ̄i−1)/i (averaging)

• output θ̃n and set f̃n = fθ̃n
.

Here G : RM → Θ is a specially chosen “mirroring” mapping. When Θ is

the simplex, Θ = ΛM =
{
θ = (θ(1), . . . , θ(M)) : θ(j) ≥ 0,

∑M
j=1 θ

(j) = 1
}

,

a possible choice of G is

G(z) =

(
exp

(
− z(1)

)
∑M

j=1 exp
(
− z(j)

) , . . . ,
exp

(
− z(M)

)
∑M

j=1 exp
(
− z(j)

)
)
, (3)
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where z = (z(1), . . . , z(M)). Remark that choosing Θ as a simplex ΛM can
be viewed as an `1 regularization, this point is in common with the convex
boosting procedures. Note also that the recursive averaging step of the MA
algorithm is equivalent to

θ̃n =
1

n

n∑

i=1

θ̄i−1.

Therefore, when Θ = ΛM , the vector of weights θ̃n belongs to the simplex
ΛM , so that f̃n is a convex mixture of the functions hj with data-dependent
weights.

Under the appropriate choice of βi, the MA estimator f̃n with Θ = ΛM

and with G(·) as defined in (3) satisfies the following oracle inequality
Juditsky et al. (2005a):

E{R(f̃n)} ≤ inf
f∈C(H)

R(f) + 2
√
Q?

√
logM

n
(4)

where
Q? = sup

θ∈ΛM

E‖∇θQ(Z, fθ)‖2
∞.

Here and below ‖ · ‖p stands for the `p norm in RM . Inequality (4) shows

that the MA algorithm mimics the convex oracle with optimal rate
√

logM
n .

It is sharper than the corresponding bound for boosting (1) because the
risk of the oracle inff∈C(H)R(f) in (4) appears with the minimal possible
constant C = 1. Furthermore, (1) is only proved for the regression model
with squared loss, while (4) is valid for any prediction model with convex
loss.

In general, MA applies to any convex loss function whereas boosting is
usually operational with the squared loss or with some special loss functions
[an exception seems to be the gradient boosting of Mason et al. (2000) but
not much is known about its theoretical properties].

There are also some computational advantages of MA as compared to
boosting. The computational cost of boosting with finite dictionary of
cardinality M is of the order nM2: the cost of each iteration is of the
order nM since we have to compare M different values of Rn, and this
is multiplied by M since we need to run M iterations in order to select
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the stopping time k∗ by comparing their outputs. For some versions of
boosting the cost is of the order nMk∗ where the random stopping time
k∗ ≤ M − 1 cannot be evaluated in advance. The computational cost of
MA is just O(nM), i.e., n iterations with vectors of dimension M . If M
is very large, for example, M � n, the difference between the two costs
becomes substantial.

For a general convex set Θ, the mirror mapping G is defined as

G(z) = argminθ∈Θ
{

(z, θ) + V (θ)
}

(5)

where (·, ·) denotes the scalar product in RM and V : Θ → RM is a convex
penalty which is strongly convex w.r.t. the `1 norm in RM . The last
requirement makes it impossible to take V as the `1 norm of θ, but a
sensible choice (Juditsky et al., 2005a) is to use a penalty based on a norm
that are quite close to the `1 norm, for example,

V (θ) =
1

2
‖θ‖2

p, p = 1 +
1

logM
. (6)

With this penalty and Θ = RM , the mirror mapping G in (5) has the form

G(z) = −




M∑

j=1

|z(j)|
p

p−1




1− 2
p (

|z(1)|
1

p−1 sign z(1) , . . . , |z(M)|
1

p−1 sign z(M)
)
.

To compare, the functionG with exponential weights defined in (3) is a solu-
tion of (5) with Θ = ΛM and the entropic penalty V (θ) =

∑M
j=1 θ

(j) log θ(j).
This penalty also satisfies the strong convexity property w.r.t. the `1 norm
(see Juditsky et al., 2005a). We see that MA with exponential weights op-
erates with two types of penalization: the first of them is an `1 penalization
due to a restriction of θ to the simplex Θ = ΛM , and the second one comes
with the entropic penalty V (θ).

It would be interesting to understand whether the sparsity oracle in-
equalities of the type (2) can be proved for the MA algorithm. Some ad-
ditional conditions on the loss function Q, such as strong convexity, might
be needed to make it possible.

Additional references

Barron, A., Cohen, A., Dahmen, W., and DeVore, R. (2005). Ap-
proximation and learning by greedy algorithms. Manuscript.
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Regularization has become a major statistical tool since computers have
made it possible to analyze large amounts of data in various ways. The au-
thors of this wonderful review paper have put regularization in its general
perspective, ranging from classical Tikhonov regularization, to analysis of
high-dimensional data and to bootstrap procedures. A trend one may ob-
serve over the last years is to apply many different algorithms to the same
data set. (In fact, most statistical software present you numerous outcomes
and statistics you never even asked for.) Regularization is crucial in the
subsequent analysis where the outcomes of the estimation or testing meth-
ods are combined. As is pointed out in the paper, one should not use up
all data in the first step, and take into account beforehand what validation
procedure is used in the second step (e.g. V -fold cross validation).

The authors present a very general description on what regularization
actually is. It formulates the concept in an asymptotic sense, with in the
first step a sequence of approximating parameters θk converging to the
target parameter ϑ, and for each k a sequence of estimators θ̂k converging
to θk. The second step is then choosing a data dependent value k̂ for k. It
is to be noted that many regularization techniques are “embedded” ones,
i.e., the first and second step are not strictly separated.

The (squared) distance between θk and ϑ may be called approximation
error (bias2) and the (squared) distance between θ̂k and θk may be called
estimation error (variance). When the approximation error and estimation
error are approximately balanced for a data dependent choice k̂, one of-
ten speaks of a so-called oracle inequality. The problem in practice is that
both types of error cannot be observed, as they depend on the underly-
ing distribution. An important aspect of regularization is the estimation
of the variance (or a more general concept of variability) of a collection
of estimators. Let us illustrate this for the special case of empirical risk
minimization. We only present the rough idea. For a good overview, see
Boucheron et al. (2005), and also, see Koltchinskii (2006) for general oracle
results.



312 S. A. van de Geer

Let the sample X1, . . . ,Xn be i.i.d. copies of a random variable X ∈ X
with unknown distribution P , and let γθ : X → R, θ ∈ Θ be a given loss
function. The theoretical risk is R(θ) := Pγθ, and the empirical risk is
Rn(θ) := Pnγθ. Our target parameter is ϑ := arg minθ∈ΘR(θ).

Consider a collection of model classes {Θk} with Θk ⊂ Θ. The empirical
risk minimizer over Θk is

θ̂k := arg min
θ∈Θk

Rn(θ).

The excess risk is E(θ) := R(θ)−R(ϑ). The best approximation of ϑ in the
model Θk is

θk := arg min
θ∈Θ

R(θ)

The approximation error is now B2
k := E(θk), and the estimation error is

Vk := R(θ̂k) −R(θk). Let us define the oracle as

k∗ := arg min
k

{
B2
k + EVk

}
.

Our aim is now to find an estimator θ̂ = θ̂k̂ which mimics the oracle, i.e.
which satisfies an oracle inequality of the form

E(θ̂) ≤ const.
(
B2
k∗ + EVk∗

)

with large probability (or in expectation).

This can be done by complexity regularization, invoking a penalty on
the empirical risk, equal to a good bound for the estimation error. Let us
briefly examine why. Consider the empirical process νn(θ) := Rn(θ)−R(θ),
θ ∈ Θ, and define Vk := −

[
νn(θ̂k)− νn(θk)

]
. It is easy to see that Vk ≥ Vk,

i.e., Vk is a bound for the estimation error Vk. Consider the penalized
empirical risk minimizer θ̂ = θ̂k̂, with

k̂ := arg min
k

{
Rn(θ̂k) + π̂(k)

}
.

Suppose that with probability 1− ε, we have for some constants A, and an,

Vk ≤ π̂(k) ≤ AEVk ∀ k,

as well as
|νn(θk) − νn(ϑ)|/σ(γθk

− γϑ) ≤ an ∀ k,
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where σ2(γ) = var
(
γ(X)

)
. Suppose moreover that

E(θ) ≥ G[σ(γθ − γϑ)] ∀ θ ∈ Θ, (1)

where G is a strictly convex function function with conjugate H. Then it
is not hard to show that with probability at least 1 − ε, for all 0 < δ < 1,

(1 − δ)E(θ̂) ≤ (1 + δ)B2
k∗ +AEVk∗ + 2δH(an/δ).

Thus, good bounds for the estimation error can result in an oracle
inequality. Recent work in this area makes use of (local) Rademacher com-
plexities (see Koltchinskii, 2006, and its references). An alternative ap-
proach is using V -fold cross validation. In general, oracle behavior through
penalization or cross validation requires knowledge of the margin behavior,
i.e. the function G in (1). Such knowledge is not required when using for
example aggregation (see Tsybakov, 2004).

The bootstrap fits in nicely in regularization theory, as method to es-
timate the variability of an estimator. Alternatively, the authors view the
distribution of a normalized estimator as θk and the bootstrap distribution
as θ̂k. For the bootstrap to “work”, the limit ϑ of θk is assumed to exist.
However, to me there is now no clear reason to balance the bias (distance
between θk and ϑ) and the

√
variance (distance between θ̂k and θk) in this

setup.

Additional references

Boucheron, S., Bousquet, O., and Lugosi, G. (2005). Theory of
classification: a survey of some recent advances. ESAIM. Probability and
Statistics, 9:323–375 (electronic).

Koltchinskii, V. (2006). 2004 IMS Medallion Lecture: Local Rademacher
complexities and oracle inequalities in risk minimization. The Annals of
Statistics, 34(6). To appear.
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First of all we would like to thank the authors for an insightful and
coherent synthesis of regularization methods in statistical inference as di-
verse as sieves, model selection, penalized regression and classificaiton, and
m out of n bootstrap. With the advent of information technology age, we
encounter high dimensional data no matter where we are. Regularization
has emerged as the key to extract meaningful information at the face of
high dimensionality.

It is extremely interesting that the authors start off with the Tikhonov
paper in 1943 which gives essentially the method of penalized regression
as we might call it today in statistics. Tikhonov was concerned with solv-
ing an integral equation in a numerically stable manner. His formulation
was through a regularized Least Squares (LS) optimization. In this dis-
cussion, we would like to share some thoughts on this connection between
regularization and numerical stability.

Most statistical procedures or estimators can be derived as the solu-
tion to an optimization problem. The objective funtion is data dependent,
hence random. In the classical domain, this random objective function sta-
balizes, as the sample size increases or in asymptopia, to a deterministic
function at the courtesy of some version of the Law of Large Numbers. The
minimizer of this deterministic function is the true parameter under cer-
tain smoothness conditions, resulting in the consistency of the estimator.
In this classical setting, in asymptopia, when the data is a duplicate of the
previous string, the objetive function doesn’t change much – because both
versions are close to the deterministic function in the limit.

For high dimensional data that we encouter nowadays, we still look for
such “stability”, but the asymptopia is not as well defined or established.
That is, once the data is replicated or disturbed, we would like to ask
the solutions to the objective functions to stay more or less the same, to
a certain degree. We believe that this requirement is the most essential
for a statistical procedure to make sense because if a procedure can not
endure such a pertubation, then there is nothing like a “law” useful for
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anything because things will just keep changing like noise. It follows that a
meaningful statistical procedure has to be “stable” – this is almost the same
as numerical stability except that it is a fixed and small pertubation for
numerical stability and in our case the pertubation could be a probability
distribution.

As pointed by Breiman (1996), with a large number of parameters in
the high dimensional data situations, procedures are often unstable. When
a procedure is not stable, then “regularization” is needed. To be precise,
given data Z = (Z1, ..., Zn) with a distribution P (Z), a statistical proce-
dure θ̂(Z) is a function of this vector Z. When another data vector Z∗

comes sharing the same distribution, we get θ̂(Z∗). We would want θ̂(Z∗)
to be close to θ̂(Z) in a distributional sense and properly defined relative
to the desirable precision of the specific problem. On the other hand, the
numerical stability is defined such that Z∗ = Z + ε where ε is a small fixed
pertubation vector. More generally, the distribution of Z∗ might not be
identical to the original distribution. Instead, it could represent a situa-
tion for the statistical “law”, that we are after, to hold as well. Hence in
statistics we “perturb” by Z∗ in the form varying from bootstrap samples
(cf. m out of n bootstrap in Bickel and Li), to permutation samples, and to
cross-validation samples. Results have been obtained in statistical machine
learning (empirical risk minimization) that a properly defined “stable” algo-
rithm is proven to have good generalization performance, tying “stability”
with statistical performance at a very concrete level (cf. Bousquet and Elis-
seeff, 2002; Kutin and Niyogi, 2002, and references therein). Even though
we all agree by now that regularization is necessary for high dimensional
problems, these results from machine learning are the beginning of directly
justifying the use of stability (hence regularization) for statistical gains.
They are dervied using McDiarmid’s concentration inequality and its vari-
ants: the condition is the existence of a bound on the empirical risk when
one component of data is pertubed by an independent copy – a stability
condition. Then, the empirical risk concentrates on its expectation and
good generalization error bounds follow.

The goal in achieving numerical stability is to turn an ill-posed prob-
lem into a well-posed one. One prominent example is the Tikhonov reg-
ularization which started the Bickel and Li paper under discussion. For
statistical regularization, the well-posed problem needs to be related back
to the original ill-posed problem in the sense that 1. the solutions of the
well-posed problems with original Z and disturbed Z∗ are close; 2. when
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the regularization parameter goes to zero, the solution to the well-posed
approximation gets close to the “optimal” solution in the population case.
In essence, these two considerations generalized from numerical stability
are reflected in the definition of a “regularization process” in the paper
under discussion.

We have so far explored mainly the conceptual connection between sta-
tistical regularization and numerical stability, the latter being a numerical
optimization concept. Not only that the Tikhonov regularization corre-
sponds to penalized regression in modern statistics, the implict regulariza-
tion by early stopping as in Boosting has also a counterpart in numerical
regularization which is known as Landweber Iteration. It would be interest-
ing to investigate further the connections of statistical regularization and
numerical optimization at a computational or algorithmic level.

Additional references

Bousquet, O. and Elisseeff, A. (2002). Stability and generalization.
Journal of Machine Learning Research, 2(3):499–526.

Kutin, S. and Niyogi, P. (2002). Almost-everywhere algorithmic stability
and genearalization error. Technical Report TR-2002-03, Department of
Computer Science, University of Chicago, Chicago, IL.

Teófilo Valdés and Carlos Rivero
Department of Statistics and Operational Research

Complutense University of Madrid, Spain

A common question that researchers of any subject have to face in many
cases is: What should be done when an irregular situation arises and the
standard procedures do not work? The answer is simple: use common
sense (that is, think up a plausible rationale) to make them work. In short,
use regularization to be able to handle irregular (atypical, or unstable, or
ill-posed) situations. From this point of view, the need of regularization ap-
pears in any science and it is clearly based on pragmatism. In Statistics, for
example, this happens when fitting parametric or non-parametric models
with a great number of parameters (even more than the number of data), or
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when estimating large covariance matrices, or when estimating densities, or
when treating with missing or incomplete data, and so on. Since the basis
underlying regularization is pragmatism, its techniques depend mainly on
the particular situations that need to be tackled. That is, the regularization
techniques, like the heuristic procedures, comprise mainly of ad hoc pro-
cedures which need to be empirically assessed or validated (in most of the
cases, by simulation). Although this is true to a great extent, Bickel and Li
have made a worthy effort to analyse the conceptual insides of regulariza-
tion in statistics, the intention being to present a solid and comprehensible
unified theory (methodology is a more precise term on seeing the scope
of the paper) of it. This methodology is frame-worked by the following
two initial conditions: (1) the data available is a random sample, and (2)
the attention is centred on asymptotics when the sample size tends to ∞.
Under these circumstances, their abstraction task has been successful in
discovering and presenting the common aspects of regularization which are
corroborated by a wide range of examples. We congratulate the authors for
their efforts in unifying different regularization processes, concerning both
data and models, which were developed to treat a great variety of unstable
situations up to date considered unlinked. The interest of unifying differ-
ent theories and techniques under a common conceptual approach has been
constant throughout centuries. Several examples and tries have occurred,
with more or less success, in scientific areas such as Physics, Mathemat-
ics, Economics, Medicine, Psychology..., and, also, in Statistics. In fact,
the search of unified theories has been the motor of basic research. Under
this perspective, the paper of Bickel and Li undoubtedly deserves a special
praise, which must be added to that merited by the clear presentation and
good organization of the paper, the numerous examples discussed and the
large number of references included.

All praises having been said (and meant), we will switch to the role
of critic commenting on some remarks and suggestions that came to our
minds after reading the paper.

1. As was indicated above, the authors have made a valuable effort in
presenting a unified methodology to treat irregular cases in statistics.
With this methodology, one may be conscious of the sequence of steps
that may lead us to solve an irregular situation. However, since the
paper includes no global results from which different particular cases
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may be tackled, we think that some way additional effort needs to be
done before a unified theory of regularization is present. This task is,
in our opinion, challenging and we encourage the authors to continue
researching into this area sketched in the paper.

2. The authors maintain that a generic regularization process consists
of two different activities. The first (the second will be considered
later) is the sequence of approximations in which the objective is to
construct the sequence θk, which needs to be defined on the set of
all possible underlying distributions as well as on the set of discrete
distributions to guarantee that θk (P ) can be estimated by the natural
“plug in” estimate θk (Pn). The authors impose consistency at the
two levels:

θk (P ) − θ (P )
P→ 0, and θk (Pn) − θk (P )

P→ 0.

However, in many typical situations, mainly when Θ is a Euclidean
space, only convergence in law (to a certain known distribution) is
needed for

θk (Pn) − θ (P ) ,

thus, the convergence in probability may be weakened in one of them
(usually in the second). It is clear that the authors are mainly in-
terested in non-parametric statistical methods, in which function val-
ued parameters are present and convergence in law may be pointless.
Since regularization appears in both non-parametric statistics and
parametric statistics, to contemplate other possible types of conver-
gences may help to widen the conceptual scope of the paper.

3. The second activity is what is called in the paper the selection of
approximations in which the “plug in” estimate of the regular pa-
rameter θk is approximated from the data. In an ideal situation, it
would be desirable that

θ
k̂n(X1,...,Xn)

(Pn) − θk (Pn)
P→ 0

and a longer decomposition, similar to (2.2), should be established
and interpreted. The authors do not mention this (although some-
thing similar may be intuited from (3.5)), probably thinking that this
activity is highly dependent on the particular case under study. Fi-
nally, as a minor remark, the names given to the activities are a little
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confusing, since the word approximations appears in both without
qualification. Likely, “sequence of estimators” and “selection of ap-
proximations” would be better terms and more descriptive, although
we do not wish to argue on semantics.

4. Section 3 provides an authoritative review of non-parametric regres-
sion and classification. It constitutes an example of clear and broad
exposition, and profound analysis of the topics mentioned above. It
is also an excellent pedagogical work, since all is articulated under
the perspective of the regularization methodology described at the
end of Section 2. The sole point that we consider arguable is to con-
sider the Bayesian methods as an automatic regularization. The fact
that the ridge regression (Hoerl and Kennard, 1970) and the “lasso”
(Tibshirani, 1996) result as a particular case of posterior mode is a
weak argument, and the selection of the approximations tremendously
controversial. In spite of this, we congratulate the authors for this
pedagogical exposition which we extend to the rest of the examples
with which the paper is brought to a close.

Finally, we will like to highlight that after reading the paper we have
found out that certain problems of inference with missing or incomplete
observations fall within the scope of regularization. This happens, for ex-
ample, in the context of linear models or panel data models with general
errors, not necessarily Gaussian, and interval censored data (see Rivero and
Valdés, 2004, 2006). Although we do not use the “plug in” estimation of the
regular parameter θk (P ), it is clear that the concept of regularization may
be extended to experiments in which the data available does not constitute
a random sample.

We would like to thank the editors of TEST for having given us the
opportunity to read and discuss the insightful paper of Bickel and Li, in
which their unifying view of the asymptotics of regularization is revealed
and magnificently displayed.

Additional references

Rivero, C. and Valdés, T. (2004). Mean based iterative procedures
in linear models with general errors and grouped data. Scandinavian
Journal of Statistics, 31(3):469–486.
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I would like to wholeheartedly congratulate Bickel and Li for their
comprehensive, stimulating, and successful overview of the regularization
methods in statistics. Their attempt to integrate diversified statistical
methods from a regularization point of view is intriguing, and their pa-
per demonstrates convincingly and surprisingly how seemingly unrelated
techniques, from nonparametric function estimation, model selection, and
machine learning to Bayesian inference, covariance matrix estimation, and
bootstrap, can indeed be thought as some aspects of regularization. I ap-
preciate the opportunity to comment and expand the discussions by Bickel
and Li.

1 Regularization and sparsity

As Bickel and Li insightfully suggested, the regularization method is to
construct a more regularized sequence θk(P ) to approximate θ(P ). The
approximation error

θk(P ) − θ(P ) (1)

is usually the bias of the estimator θk(Pn), with the Pn being the em-
pirical distribution. The ways to approximate θ(P ) are far from unique.
For example, a nonparametric regression function m(x) in L2 admits an
expansion

m(x) =
∞∑

i=1

θiφi(x), (2)

where {φi(·)} is a family of basis functions in L2. In the situation of es-
timating the conditional probability in supervised learning, a known link
g should be applied before the expansion. Commonly-used basis functions
include Fourier, wavelets, and splines. Thinking of k in (1) as the number
of terms chosen from expansion (2), we hope that a basis is chosen such
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that approximation errors in (1) are as small as possible. To achieve this,
the representation in (2) should be as sparse as possible — namely, most
coefficients θi should be small.

With a sparse representation, the regularization can be effective. It
substantially reduces the dimensionality by focusing only the non-sparse
elements in the expansion. This mitigates the variance of the estimation.
For a smooth function with a Fourier basis, it is expected that the energy
at high frequencies is nearly zero and therefore the estimation focuses only
on the first k coefficients (Efromovich, 1999). For functions with discon-
tinuities or different degrees of smoothness, the Fourier expansion is not
effective; instead, wavelet representation can achieve sparsity. With the
sparse representation, the regularization basically becomes a model selec-
tion problem (Antoniadis and Fan, 2001). The hard- and soft-threshold
procedures in Donoho and Johnstone (1994) are simple and effective model
selection approaches when the design matrix is orthogonal. When a spline
basis is used, model selection techniques are frequently employed to select
non-sparse elements, as exemplified in the work by Stone and his collabo-
rators (Stone et al., 1997).

The sparsest possible representation is the one in which the basis con-
tains a function that is parallel to the unknown function m and the rest
are orthogonal complements. In this ideal basis, the representation is the
sparsest possible with only one nonzero coefficient. This means that there
does not exist an orthogonal basis that can universally sparsely represent
a family of functions. Over-complete bases have been sought to make the
sparse representation possible over a larger family of functions (Chen et al.,
1998).

2 Model selection

As Bickel and Li correctly pointed out, model selection is also a regular-
ization. I agree with their two main objectives in model selection: risk
minimization and causal inference. Model selection usually assumes that
there is a finite-dimensional (possible dependence on the sample size) cor-
rect submodel, while nonparametric function estimation does not. Hence,
the former imposes exact sparsity, with many coefficients exactly zero, while
the latter requires approximate sparsity, with many small coefficients.
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The developments of model selection and nonparametric function esti-
mation have influenced each other over the last twenty years. The model
selection community has helped the nonparametric one to develop proce-
dures that select non-sparse elements, while the nonparametric community
has helped parametricians to understand modelling biases and their conse-
quences in parametric inferences.

In achieving the first goal of risk minimization, the optimal predictors
are not necessarily the ones with non-zero coefficients. Setting some small
coefficients to zero or shrinking them toward zeros reduces the variance and
instability of the prediction. This comes at the cost of a possible increase
in the biases. The situation is very similar to that of optimal smoothing in
nonparametric function estimation.

In achieving the second goal of causal inference, a more concise relation-
ship between covariate and response variables is needed. In this case, the
usual idealization of the model is that some covariate variables contribute
to the response variables while others do not, and the statistical task is to
identify the correct submodel and to estimate their associated coefficients.
Fan and Li (2001) outline three properties that a model selection procedure
should ideally have.

Sparsity: Some coefficients are estimated as precisely zero, which reduces
the model complexity.

Continuity: Estimated coefficients should be a continuous function of
data to avoid instability in model prediction.

Unbiasness: For coefficients that are statistically large enough, the esti-
mation procedure should not try to shrink these coefficients to avoid
unnecessary biases.

In addition, a model selection procedure should allow valid statistical in-
ferences: the stochastic errors in the model selection processes should be
accounted for in constructing confidence intervals and in other statistical in-
ferences. Fan and Li (2001) proposed a penalized likelihood using the SCAD
penalty to achieve the postulated properties. It corresponds to Bayesian
estimation with an improper prior to achieve the unbiasedness property
and with irregular ‘density’ function at the origin to achieve sparsity.
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3 High-dimensional semiparametric problems

The issue of sparsity arises naturally in microarray and proteomic applica-
tions. Among tens of thousands of genes, it is believed that there are at
most hundreds of genes differently expressed between the treatment and
control arrays. For example, in the normalization of a microarray (Fan
et al., 2005a,b), the following model

ygi = µg + fi(xgi) + εgi, g = 1, · · · , G; i = 1, · · · , n

is proposed, in which ygi represents the observed log-ratio of the expres-
sions of gene g between the treatment and control in the ith array, xgi is
the associated log-intensity, µg is the treatment effect on gene g, and fi(·)
is the intensity effect on the ith array. The normalization is to estimate the
intensity effects fi(·) and remove them from the log-ratios. Other param-
eters can be added to the model account for the block effect (Fan et al.,
2005b). Hence, for the normalization purposes, the parameters {µg} are
nuisance ones. In the microarray applications, it is helpful to think that
the total number of genes G tends to ∞. Biological sparsity means that
most of µg equals to zero. This information helps more accurately estimate
{fi(·)} and poses new methodological and theoretical challenges on how to
efficiently estimate them.

In tumor classification using microarrays (Tibshirani et al., 2002), it
is desirable to choose tens of genes to construct classification rules among
tens of thousands of genes. Using the generalized view of Bickel and Li,
this can also be regarded as a regularization problem. Efficient construction
of classification rules and statistical understanding of these rules pose new
challenges in statistics.

4 High-dimensional covariance matrix

Covariance matrices are very important in portfolio management and asset
allocation. Suppose that we have 500 stocks to be managed. The covari-
ance matrix involves 125,250 elements. Therefore, regularization is neces-
sary. Let Y1, · · · , Yp be the excessive returns of p assets over the risk-free
interest rate. Derived by Ross (1976) using the arbitrage price theory and
Chamberlain and Rothschild (1983), these excessive returns can be written
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approximately as

Yi = bi1f1 + · · · + biKfK + εi, i = 1, · · · , p, (3)

where f1, · · · , fK are the returns of the K factors that influence the returns
of the assets, bij, i = 1, · · · , p, j = 1, · · · ,K, are unknown factor loadings,
and ε1, · · · , εp are uncorrelated idiosyncratic errors. That is to say that
given the K factors, the cross-sectional market risk is captured by these K
factors. Model (3) is called a multi-factor model in financial econometrics.
Assume that the factors f1, · · · , fK are observable such as those in the
famous Fama-French three-factor or five-factor model (Fama and French,
1993). Then, there are (K + 1)p instead of p(p + 1)/2 parameters. The
number of factors K can also depend on the number of assets p. This
can also be regarded as a regularization problem, according to Bickel and
Li, as some factor loadings can be very small. Assume that we have the
data observed on n periods (e.g. days); then the covariance matrix can
be estimated using the factor structure (3). The question then arises if
the factor structure helps us better estimate the covariance matrix under
a relevant norm.

5 Inference using regularization

They are many statistical inference questions that require regularization.
For example, after fitting the linear model

Y = β1X1 + · · · + βpXp + ε, (4)

one may naturally ask if model (4) is adequate. For this kind of question,
the alternative hypothesis is usually vague. Similar problems arise in many
scientific investigations in which the null model is usually well formulated
while the alternative model is not. For example, one may ask if a stochastic
volatility model fits returns of certain assets, or if a biological model is
consistent with observed data.

A natural alternative to model (4) is the following:

Y = m(X1, · · · ,Xp) + ε, (5)

where m is unspecified. While this family of models is wide enough to
include the true regression function, consistent tests have little power due to
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the curse of dimensionality. Another possibility is to impose the alternative
model of additive structure:

Y = m1(X1) + · · · +mp(Xp) + ε. (6)

In both cases, regularization is needed for constructing an omnibus test.
The testing problem is essentially a parametric null hypothesis versus a
nonparametric alternative hypothesis.

The problem of testing nonparametric hypothesis against a larger non-
parametric hypothesis can also arise naturally. Under the additive model
(6), one may ask if the first two variables are statistically significant. The
null model becomes

Y = m3(X3) + · · · +mp(Xp) + ε.

Again, regularization is needed for this type of hypothesis. Fan et al. (2001)
introduced the generalized likelihood ratio test for handling both types of
testing problems. Detailed development for these problems in the additive
model can be found in Fan and Jiang (2005).
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Bickel and Li are to be congratuled with this review of the use of reg-
ularization methods in statistics. The treatment is insightful and broad-
minded. My remarks are focused on some aspects of regularization that I
feel deserve more emphasis.
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1 Approximation theory

Approximation theory has developed in a separate specialism within math-
ematics, applied and pure. The aim is to represent “general” functions
by simpler ones up to an approximation error. Theoretical interest is in
the maximal approximation error on a given class of functions achieved
by a scheme of given complexity. “Constructive approximation” methods
(e.g. DeVore and Lorentz, 1993) make such schemes practical. There is
a clear relation with efficient coding of functions (e.g. Cohen et al., 2001;
Kerkyacharian and Picard, 2004). Wavelets are the most recent successful
example, but older examples as polynomials, Fourier series or splines also
belong to this area.

Many examples of regularization in statistics are based on such ap-
proximation methods. A “true” parameter (regression function, density) is
replaced by a simpler one, and next the simpler one is estimated from the
data. In an unpolite manner one could say that statistics is only study-
ing the effects of adding noise on the approximation error, although bias-
variance thinking appears to yield new insight even in approximation itself.

Using an approximation scheme that is suited to the application at hand
is very important. For instance, smoothness, periodicity, locality, sparsity,
spatial distribution, etc. appear all non-statistical aspects. A modern view
of penalization methods (expressed e.g. in Barron et al. (1999), Birgé and
Massart (2001) or Birgé (2006)) is to set up a (very) large number of models
with good approximation properties and next make a data-driven choice
of these models. With the right penalties this will result in “adaptive”
estimators that work well whenever the “truth” is close to one of the models.
A remarkable finding is that (at least in theory) it is possible to use huge
numbers of models (e.g. exponential in the number of replicated data) in
these schemes. Still at least one of the approximating models must be good,
where “good” will depend on the type of application.

It will certainly be profitable for statisticians to follows the many new
schemes developed in approximation theory (cf. DeVore et al., 2006) and
engineering. At least if they are interested in aim I mentioned by Bickel and
Li: prediction. For aim II, causal inference, approximation theory appears
to be of little help.
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2 Bayesian methods

Bayesian methods for non- and semiparametric models have long been
looked upon with suspicion, based on the finding that many (or most,
depending on definition and taste) priors in these settings lead to posterior
distributions that are a very poor reflection of the distribution underly-
ing the data. For instance, the posterior distribution may not contract to
the “truth” as the number of replicated observations increases indefinitely.
Through the use MCMC-schemes Bayesian methods are nevertheless in-
creasingly implemented, also in nonparametric and inverse problems. More
recent theoretical research seem to indicate that many priors may give good
results after all (e.g. Ghosal et al. (2000) and Ghosal and van der Vaart
(2006)).

In relation to the discussion by Bickel and Li it is of interest to know
whether it is possible to regularize by purely Bayesian methods. Given
the close link between penalization and prior modelling the answer should
of course be affirmative, but there are still many open questions. A fully
Bayesian approach (as opposed to the empirical Bayes methods mentioned
in Section 3.4) would spread priors on each model in a set of models deemed
reasonable (e.g. models with different sets of regression variables, models
based on different approximation schemes, models based on approximation
schemes of different dimensionality) and combine these with prior weights
on the models. One asks under what circumstances does the Bayesian
machine yield good posteriors? First results have been obtained in Ghosal
et al. (2003), Huang (2004), Belitser and Ghosal (2003), Lember (2004),
but there are many open questions. Of special interest is to know whether
“objective” priors, not dependent on arbitrary parameters, give the desired
result. It may be noted that Bayesian methods average over regularization
values, rather than select, which potentially should be advantageous.

Bayesian methods are connected to penalization both through direct
interpretation of a penalty as a prior density and through BIC. BIC was
developed for choosing between finitely many smoothly parametric models.
Recent research appears to indicate that it cannot be used unchanged for
regularizing (many) infinite-dimensional models. Of course, BIC penalizes
more and hence leads to smaller models, but it seems unclear whether the
usual interpretations of BIC versus AIC etc. are valid in more complicated
settings. For instance, in Bayesian model selection there is interaction
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between the manner by which prior is spread over the model and the weights
given to models.

More research is needed in this area.

3 Confidence sets

Bickel and Li touch on the issue of confidence sets mainly in their discussion
of the m out of n bootstrap. Some indication of the precision of (regular-
ized) estimators is very desirable for their use in practice. Reality here
appears to be not favorable. While estimation methods may through reg-
ularization adapt to a large number of models, honest confidence regions
are typically mostly determined by the union of all models used. Thus
adaptive procedures necessarily come with wide confidence margins, unless
there is much a-priori information, no matter how smart the statisticians
who implement it. See e.g. Cai and Low (2004), Cai and Low (2005), Judit-
sky and Lambert-Lacroix (2003), Hoffmann and Lepski (2002), and Robins
and van der Vaart (2006).

As a side conclusion, one can mention that the sizes of credible regions
attached to the Bayesian procedures based on model selection mentioned
previously, appear to adapt to the underlying models, and hence such cred-
ible sets cannot be used as “honest” indications of uncertainty.

4 Cross validation

Bickel and Li discuss cross validation in Section 3.3, but appear not to
come to a clear conclusion. This may well reflect the fact that the literature
on cross validation is confusing and incomplete. Many general claims are
made, but often seem to refer to specific situations. It appears that V -fold
cross validation (with e.g. V = 10; the choice V = n/ log n mentioned by
Bickel and Li appears a theoretical choice only) is most popular in practice.
Whether it is better than e.g. leave-one-out is not altogether clear, and
probably depends on the setting.

Recent work in Keleş et al. (2004) extends cross validation to settings
that do not immediately have the form of a prediction problem.



330 A. van der Vaart

5 Aggregation

Aggregation of estimators aims at combining a given set of estimators, for
instance through a (convex) linear combination, rather than choosing a
“best one”. If applied to a set of estimators obtained under various reg-
ularity levels, then it can be viewed as another method of regularization,
which averages rather than selects. Recent and promising theoretical work
is given in Yang (2000), Juditsky et al. (2005), Yang (2004), Nemirovski
(2000), Juditsky and Nemirovski (2000), Tsybakov (2004). A striking fea-
ture of some of these methods is that they are highly constructive, giving
very simple explicit algorithms.

6 Functionals on semiparametric models

Though the general definition of regularization in Section 2 is not restricted
to this, their examples in Section 3 concern exclusively nonparametric esti-
mation problems, such as regression and classification. Regularization also
appears important for estimating certain functionals on large semiparamet-
ric models. As an example consider the semiparametric regression model
y = θx1 + f(x2) + e, where x2 may be a very high-dimensional covariate
and the interest is in the effect θ of the one-dimensional covariate x1. If
f is suitably restricted, then θ can be estimated at the rate n−1/2 if n
replicates from the model are available. For instance, if f is a smooth func-
tion on a d-dimensional domain, then smoothness larger than d/2 would
suffice. Semiparametric theory (Bickel et al., 1998; van der Vaart, 2002)
as developed in the 1990s has mostly been concerned with such “regular”
cases. However, particularly if the dimension d of x2 is large, an a-priori as-
sumption that the nonparametric part is smoother than d/2 appears prob-
lematic. This observation appears particularly relevant for the analysis of
observational data in epidemiology or econometrics, where a large number
of covariates may have to be included in the model to correct for possible
confounding (Robins, 1997; van der Laan and Robins, 2003). It is not clear
that nonsmooth cases can be easily treated through changes in the penal-
ized likelihood or Bayesian paradigms (see the discussion of Murphy and
van der Vaart (2000)), as regularization appears to require a bias-variance
trade-off that is not easy to describe directly through the likelihood itself.
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Some promising results using a new type of estimating equations have been
obtained in Li et al. (2005).
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Rejoinder by Peter J. Bickel and Bo Li

We are grateful to all the discussants for making us think more deeply
of the issues we have raised and face some issues raised by them.

1 The heuristic formulation of regularization in our sense

Tsybakov and van de Geer implicitly point out that the connection between
our framework and prediction is obscure save for L2 regression where the
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identity

E(Y − δ(Z))2 = E(δ(Z) − E(Y |Z))2 + E(Y − E(Y |Z))2

makes the problem of minimizing E(Y −δ(Z))2 equivalent to the problem of
estimating E(Y |Z) in the L2 sense, as well as possible. Indeed, the general
formulation can be extended, but only conditionally, to cover more general
prediction.

Following the notation in Section 3 and the remarks of Tsybakov and
van de Geer, the prediction problem is: given observationsXi = (Zi, Yi), i =
1, · · · , n, Z ∈ Z, Y ∈ Y,X ∈ X = Z × Y i.i.d P on X ,

1) Define an action space A (e.g. A = {1,−1} for 2 classification, A = R

for regression).

2) Define a loss function ` : X n 7→ AX , where AX is all (measurable)
function from X to A.

3) Find a rule, δ(Z : Xn), where Xn := (X1, · · · ,Xn) andXn+1 = (Z, Y )
is a new observation such that

R(P, δ) :=

∫
`(y, δ(z,Xn))dP (z, y) (1)

is “small”.

A critical role is played by the Bayes risk RB(P ) and procedure δB,P defined
by

RB(P ) = minδR(P, δ) = R(P, δB,P )

where

δB,P (z) = argmina

∫
`(y, a)dP (y|z).

We could, at this point, define θk(P ) = R(P, δk(·,Xn)), but in that case

θk(Pn) =

∫ ∫
`(y, δk(z : x1, · · · , xn))dPn(x)Πn

i=1dPn(xi)

= E∗
(

1

n

n∑

i=1

`(Yi, δk(Zi : X∗n))

)
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the bootstrap expectation of our rule or equivalently the empirical risk of
the rule obtained by “bagging” δk. However, if we define the conditional
risk

R(P, δ,Xn) =

∫
`(y, δ(z,Xn))dP (z, y)

and let θk(P,Xn) = R(P, δk,Xn) for a suitable sequence of δk than we can
again require at a minimum,

(i) θk(P,Xn)
P→ θ∞(P ) = RB(P )

(ii) θk(Pn,Xn) − θk(P,Xn)
P→ 0

and have a conditional variance-bias decomposition,

θk(Pn,Xn) − θ∞(P ) = (θk(Pn,Xn) − θk(P,Xn)) + (θk(P,Xn) − θ∞(P )).

In fact, this point of view, conditioning on the training sample, is nat-
ural. For simplicity, we shall follow the notation of Tsybakov and write
Rn(δ) for R(Pn, δ,Xn) and R(δ) for R(P, δ,Xn).

As both Tsybakov and van de Geer point out, the δk in the machine
learning literature are usually obtained by specifying classes Dk such that
δB can be arbitrarily well approximated by suitable δk ∈ Dk, and choosing

δk(· : Xn) = argminDk
Rn(δ) (2)

The Dk sometimes correspond to the Bayes rules for P belonging to a
sieve element Pk, but empirical risk minimization is not usually maximum
likelihood.

Again, as Tsybakov and van de Geer point out, the principal machine
learning focus is on comparing R(δk), the actual posterior risk of δk with
minDk

R(δ) and the corresponding δ∗k, the rule and (posterior) risk that an
oracle knowing P as well as Xn, but still forced to choose one of the δk.

The oracle chooses k∗ so as to minimize R(δk) − RB . Imitating the
oracle means choosing k̂ so that, for moderate C depending weakly on P ,

R(δk̂) −RB ≤ C(R(δk∗) −RB) (3)

in expectation or with high probability.
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As van de Geer points out,

R(δk) −R(δ∗k) ≤ −
[
(Rn(δk) −R(δk)) − (Rn(δ∗k) −R(δ∗k))

]

each of which is a variance term. Writing

R(δk) −RB = (R(δk) −R(δ∗k)) + (R(δk∗) −RB)

we see that obtaining oracle properties:

(i) Requires control of the variance term through complexity control of
Dk needed to apply empirical process theory, and

(ii) Having P and {Dk} such that the bias term is commensurate or at lest
boundable by some known function of n and the (expected) variance
term.

Van de Geer suggests and Koltchinskii (2006) discusses in detail various
ways how to construct penalties π̂(k) such that

k̂ = argmin{Rn(δk) + π̂(k)}

achieves (3). The choices of Dk in terms of complexity and approxima-
tion properties depend on what properties, sparseness in particular rep-
resentations, smoothness, · · · , we assume about P leading to δB and the
homogeneity of P to which P is assumed to belong.

2 A particular response to Tsybakov

Tsybakov and coworkers’ remarkable inequality (2) which they have estab-
lished for some methods and the even more surprising (5) established for
mirror averaging, permit an easy choice of regularizing k if one considers
δB for which the order of the approximation by convex or linear combi-
nations of ≤ k functions from a dictionary H is known. If it is not, then
is adaptation easily achieved? Of course, the choice of H remains an act.
Mirror averaging seems a remarkable technique for on line classification or
regression, but one presumably wants M to increase with n, and it seems
plausible then to make M sequentially data-determined as well. Analyz-
ing such procedures should be of importance. Since the computationally



Regularization in Statistics 337

impossible procedure obtained by averaging mirror average estimates over
all permutations (or more realistically an average over a sample of per-
mutations) should do strictly better for convex losses. It seems to be less
compelling for a complete sample. Finally, we’d like to, correct a miscon-
ception about (3.9). k′ is a dummy index. We should have just said L(H).
Our heuristics suggest one should regularize in both k and γ.

3 A particular response to van de Geer

We address van de Geer’s last point that, since there is a limit, θ(P ), to
θk(P ) regularization is not involved in the m out of n bootstrap. We note
that there is a limit of θk(P ) in our general formulation also. The limit
is, however, not defined for discrete P . That is the case here as well. We
elaborate on an example of Section 5. Consider a 1−α bootstrap confidence
bound θ∗n(Pn) for the upper point of the support c of a distribution with
unknown density f at c (continuous from the left). The distribution of
the pivot n(c−X(n)) where X(n) is the sample maximum converges to an
E(f(c)) distribution where E(λ) is the exponential distribution with density
p(x, λ) = λe−λx. Thus the quantity that an upper 1 − α confidence bound
based on X(n) should estimate is − logα

f(c−) . But, as was already noted by

Bickel and Freedman (1981), the bootstrap distribution of n(X(n) −X∗(n))
doesn’t converge to a fixed distribution at all. It converges in law to a
random probability distribution which with positive probability has mass
at 0—see also Bickel and Sakov (2005). As one might expect, in estimating
a density one needs to regularizing, use the m out of n bootstrap with
m → ∞, mn → 0. And if one sees one goal as estimating − logα

f(c−) as well as
possible, then indeed the best choice of m reflects the appropriate balance
between “bias” and “variance” to get for instance rate n−1/3 if one assumes
|f ′(c−)| ≤ M < ∞. The same consideration applies to Efron’s famous
example θn(Pn) = nVarX(n

2
), where X(n

2
) is the median, which tends to

1
4f2(F−1( 1

2
))

. The ordinary bootstrap is consistent but does not converge at

optimal rates.

4 Response to Yu

Yu points out a very interesting new direction in the machine learning
literature in which prediction is related to “stability” of a rule in terms of
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the effect of small changes in the training sample Xn. One version due to
Devroye and Wagner (1979) can be formulated in terms of the conditional
decomposition above. They define “error stability” of δ by, in our notation,

|R(Pn, δ,Xn) −R(Pn, δ−i : Xn)| ≤ β

for i = 1, · · · , n, where

δ−i(z : Xn) := δ(z : X−in )

and X−in = (X1, · · · ,Xi−1,Xi+1, · · · ,Xn), and we assume that δ is defined
for all Xn and n.

The notion of stability of parameters θ(P ) was developed in statistics by
Hampel, following work of Huber (1964) and Hodges (1967)— see Hampel
et al. (1986). The goal was to construct procedures which would be robust
to gross errors and other data perturbations. The “influence function”
formulation is to consider for a parameter θ(P ),

Ψ(Q,P ) =
∂

∂ε
θ((1 − ε)P + εQ)|ε=0 (1)

the Gateaux derivative of θ in the “direction” Q. In analogy to the total
differential in Rp, one expects that

Ψ(Q,P ) =

∫
Ψ(x, P )dQ(x) (2)

where Ψ(x, P ) := Ψ(δx, P ), δx is the Dirac measure, and
∫

Ψ(x, P )dP (x) =
0. The influence function measures the impact of point mass at x on the
parameter. Rigorous justification of statements such as (2) (under condi-
tions) may be found in various places, including van der Vaart (1998) and
Bickel et al. (1998).

Robustness is generated by |Ψ(x, P )| ≤ M < ∞ for all x, P . For a
discussion of the implication of this assumption and its relation to non-
parametric inference, see Bickel and Ritov (2000).

The relation to stability comes by noting that if we write

V (Pn, P ) :=

∫
`(y, δ(z,Xn))dP (z, y)

when we identify X1, · · · ,Xn with Pn, i.e., assume that δ is symmetric in
Xn, then stability says that

∣∣V (Pn, Pn) − V (P−in , Pn)
∣∣ ≤ β (3)
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where P−in is the empirical distribution of X−in .

Writing Pn = (1 − 1
n)P−in + 1

nδXi , we see that if P 7→ V (P,Pn) has
influence function Ψ(·, P ) for all P (we suppress Xn) with |Ψ| ≤ M , then
(3) holds with β = M

n . This follows from the identity,

V (Q,Pn) − V (P,Pn) =

∫ 1

0
Ψ(x, (1 − λ)P + λQ)dλ (4)

Here is an application of this formulation. We consider rules δ obtained
by empirical risk minimization with penalty, δ = δγ(Pn)(·), where γ(Q)
minimizes

W (γ,Q) =

∫
`(y, δγ(z))dQ(z, y) + λK(γ) (5)

where γ ∈ Rp. Then δ is stable with β = M
n for M = [M ′]2

ε where

supz,y‖Dγ`(y, δγ(z)‖∞ ≤M ′ <∞ (6)

and
infz,y‖D2

γ`(y, δγ(z) + λD2
γK(γ)‖∞ ≥ ε > 0 (7)

We use Dγ for a total differential in γ and DP for the operator correspond-
ing to the calculation (1) of the influence function, Frechet differentiation
under our conditions.

Note that ridge regression is stable according to these conditions, but
L1 penalties are not.

Proof. Under these conditions it is easy to check that the influence function
of W (γ(P ), P ) is

Ψ(x, P ) = DPW (γ(P ), P )(δx) +DγW (γ(P ), P )DP γ(P )(δx)

and

DP γ(P )(δx) = −DγPW (γ(P ), P )

D2
γW (γ(P ), P )

(δx)

where differentiation of θ(P ) with respect to P in direction Q is given by
(1). In our case

DPW (γ(P ), P )(Q) =

∫
`(y, δγ(P )(z))d(Q− P )(z, y)
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DPγW (γ(P ), P )(Q) =

∫
Dγ`(y, δγ(P )(z))d(Q− P )(z, y)

D2
γW (γ(P ), P ) =

∫
D2
γ`(y, δγ(P )(z))dP (z, y) + λD2

γK(γ)

and the result follows.

Evidently, a Lipschitz condition,

|W (γ(P ), P ) −W (γ(Q), Q)| ≤ β‖P −Q‖

where ‖ · ‖ is variational norm suffices for stability.

Since the jackknife is known to be closely connected to numerical anal-
ysis — see Gray and Schucany (1972) on the one hand and to robustness
in statistics on the other, the connection Yu suggests should be followed
seems promising.

We would also argue that obtaining oracle inequalities in terms of sta-
bility suggests that one is concerned with P of the form (1−ε)F+εG, where
the conditional distribution of Y given Z = z are very different under F
and G, the supports of the marginal distributions of Z under F and G are
nearly disjoint, and ε is very small. That is, one is dealing with the same
sort of concerns as in the statistical literature.

5 Response to Valdés and Rivero

Valdés and Rivero bring up an important point to correct a possible im-
plication of our remark, that viewing the result of (1.4) as the mode of a
Bayes posterior distribution provides automatic regularization. In fact, as
Theorem 1.5.3 of Wahba (1990) shows, the usual smoothing spline estimate
resulting from penalized least squares with λ = c

n is, for each fixed n, an
improper Bayes estimate. Many results, for instance, of Cox (1993) and
Freedman (1999) indicate problems that can arise with Bayesian inference
in nonparametric models. The analysis of Bayesian methods, proper or
improper, in nonparametric situations requires much more research.

On the other hand, the issues they raise with types of convergence
needed in the parametric case are, we believe, mistaken. Regularization is
not needed for smooth Euclidean parameters, since they can be defined by
plug in directly.
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6 Response to Fan

Jianqing Fan’s discussion enlarging on each of our examples was a pleasure.
We heartily second his comments on the important of sparsity and also his
caution that the hardest and most subject dependent questions have to
be do with finding the sense in which the situation at hand can be well
approximated by a sparse representation. For instance, to say that high
dimensional covariates live on a very low dimensional smooth manifold and
that a regression is a smooth function of these is a sparse description. So
is saying the covariates are independent of each other and the regression is
an additive model. But sparseness in the second sense is complexity in the
first.

Although we obviously agree on the different goals of prediction and
causal inference in model selection, we don’t find the criteria of sparsity
continuity and unbiasedness equally compelling. Sparsity and continuity
resonate but not unbiasedness. It’s clear that one wants to isolate factors
that are important (large). But important has to be judged using knowledge
outside the data.

Fan’s successful application of a semiparametric model to microarrays is
impressive and an excellent illustration of the importance of regularization
even when the parameters of interest are estimable at classical rates. The
covariance estimation methods he considers are in the same spirit as ours,
though the approximations are not through banding. He proposes a sieve
more appropriate to the finance applications he considers.

The effect of unknown bias, a necessary consequence of regularization,
are more troubling in our view. One of us discussed these issues in terms
he now finds too extreme in Bickel and Ritov (2000). But concerns about
interpretation remain.

7 Response to van der Vaart

We are grateful to Aad van der Vaart for extending the discussion to several
topics untouched by us or previous discussants.

To the topics he lists under more research being needed in the Bayesian
framework we would add one he surprisingly omits, the validity of inference
at the Bernstein-von Mises level for regular functionals. Initial interesting
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work in this direction is due to Kleijn and van der Vaart (2005). We also
found of particular interest his remarks on priors putting discrete masses on
a sieve of finite dimensional models, which is just what BIC is based on. We
presume that his reference to the contrast between BIC and AIC is between
BIC’s always choosing the lowest dimensionality model if a member of the
sieve is generating the data and AIC’s doing best in terms of prediction if
no member of the sieve is entirely correct. Results on model selection for
sieves of infinite dimensional models would certainly be interesting.

We now address the point raised by van der Vaart in his indication that
we do not give a clear statement in favor of V−fold cross validation versus
leave-1-out CV. Consider selecting among all linear spaces generated by
subsets of a wavelet basis of size log 2n — see Birgé and Massart (1997,
p. 61, 62). Mallows Cp which does not yield minimax results for Sobolev
spaces (or optimizes oracle inequalities for classes of smooth functions) is
equivalent to leave-1-out cross validation, Birgé and Massart (1997), and
thus is suboptimal. However, V−fold CV corresponding to, say, a training
set of size n− log n and a test set of size log n, does yield minimax results
in the Birgé and Massart situation. Apply Theorem 6 of Bickel et al.
(2006), for instance, to see this. This theorem and similar results for the
white noise model indicate V−fold cross validation with a test sample size
which is growing, but slowly with n, works extremely generally. The only
example where leave-1-out is better we believe is estimation in smooth
parametric models where regularization is not needed. Most of the other
points touched on by van der Vaart, such as cautions on inference in non and
semiparametric models, also appeared in the other discussions including
ours, though we are intrigued to hear of potential solutions such as Li et al.
(2005).

In conclusion, we again thank all the discussants for their very stimu-
lating comments.
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