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ABSTRACT

Particle filters are ensemble-based assimilation schemes that, unlike the ensemble Kalman

filter, employ a fully nonlinear and non-Gaussian analysis step to compute the probability distri-

bution function (pdf) of a system’s state conditioned on a set of observations. Evidence is pro-

vided that the ensemble size required for a successful particle filter scales exponentially with the

problem size. For the simple example in which each componentof the state vector is indepen-

dent, Gaussian and of unit variance, and the observations are of each state component separately

with independent, Gaussian errors, simulations indicate that the required ensemble size scales

exponentially with the state dimension. In this example, the particle filter requires at least 1011

members when applied to a 200-dimensional state. Asymptotic results, following the work of

Bengtsson, Bickel and collaborators, are provided for two cases: one in which each prior state

component is independent and identically distributed, andone in which both the prior pdf and

the observation errors are Gaussian. The asymptotic theoryreveals that, in both cases, the re-

quired ensemble size scales exponentially with the variance of the observation log-likelihood,

rather than with the state dimension per se.
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1. INTRODUCTION

Ensemble methods for data assimilation are presently undergoing rapid development. The

ensemble Kalman filter (EnKF), in various forms, has been successfully applied to a wide range

of geophysical systems including atmospheric flows from global to convective scales (Whitaker

et al. 2004, Snyder and Zhang 2003), oceanography from global to basin scales (Keppenne et al.

2005), and the land surface (Reichle et al. 2002). Particle filters are another class of ensemble-

based assimilation methods of interest in geophysical applications. [See Gordon et al. (1993) or

Doucet et al. (2001) for an introduction.]

In their simplest form, particle filters calculate posterior weights for each ensemble member

based on the likelihood of the observations given that member. Like the EnKF, particle filters

are simple to implement and largely independent of the forecast model, but they have the added

attraction that they are, in principle, fully general implementations of Bayes rule and applicable

to highly non-Gaussian probability distributions. Unlikethe EnKF, however, particle filters have

so far mostly been applied to low-dimensional systems. Thispaper examines obstacles to apply-

ing particle filters in high-dimensional systems.

Both particle filters and the EnKF are Monte-Carlo techniques—they work with samples

(i.e., ensembles) rather than directly with the underlyingprobability density function (pdf). Naively,

one would expect such techniques to require ensemble sizes large compared to the dimension

of the state vector. Experience has shown, however, that this requirement does not hold for the

EnKF if localization of the sample covariance matrix is employed (Houtekamer and Mitchell

1998, 2001; Hamill et al. 2001). The feasibility of the EnKF with ensemble sizes much smaller
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than the state dimension also has theoretical justification. Furrer and Bengtsson (2007) and Bickel

and Levina (2007) examine the sample covariance structure for reasonably natural classes of co-

variance matrices and demonstrate the effectiveness of localizing the sample covariance matrix.

There is much less experience with particle filters in high dimensions. Several studies have

presented results from particle filters and smoothers for very low-dimensional systems, including

that of Lorenz (1963) and the double-well potential (Pham 2001, Kim et al. 2003, Moradkhani

et al. 2005, Xiong et al. 2006, Chin et al. 2007). Both van Leeuwen (2003) and Zhou et al.

(2006), however, apply the particle filter to higher-dimensional systems. Van Leeuwen (2003)

considers a model for the Agulhas current with dimension of roughly 2× 105, while Zhou et al.

(2006) use a land-surface model of dimension 684. We will return to the relation of our results

to their studies in the concluding section.

We argue here that high-dimensional particle filters face fundamental difficulties. Specif-

ically, we explore the result from Bengtsson et al. (2007) and Bickel et al. (2007) that, unless

the ensemble size is exponentially large in a quantityτ2, the particle-filter update suffers from a

“collapse” in which with high probability a single member isassigned a posterior weight close

to one while all other members have vanishingly small weights . The quantityτ2 is the variance

of the observation log-likelihood, which depends not only on the state dimension but also on the

prior distribution and the number and character of observations. As will be discussed later,τ2

may be considered an effective dimension as it is proportional to the dimension of the state vec-

tor in some simple examples.

The tendency for collapse of weights has been remarked on previously in the geophyscial

literature (Anderson and Anderson 1999, Bengtsson et al. 2003, van Leeuwen 2003) and is also
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well known in the particle-filtering literature, where it isoften referred to as “degeneracy,” “im-

poverishment” or “sample attrition.” Unlike previous studies, however, we emphasize the col-

lapse of weights as a fundamental obstacle to particle filtering in high-dimensional systems, in

that very large ensembles are required to avoid collapse even for system dimensions of a few

tens or hundreds.1

Because of the tendency for collapse, particle filters invariably employ some form of re-

sampling or selection step after the updated weights are calculated (e.g. Liu 2001), in order to

remove members with very small weights and replenish the ensemble. We do not analyze re-

sampling algorithms in this paper but rather contend that, whatever their efficacy for systems of

small dimension and reasonably large ensemble sizes, they are unlikely to overcome the need for

exponentially large ensembles asτ2 grows. Resampling proceeds from the approximate poste-

rior distribution computed by the particle filter; it does not improve the quality of that approxi-

mate posterior.

The outline of the paper is as follows. In section 2, we reviewthe basics of particle filters.

Section 3 illustrates the difficulty of particle filtering whenτ2 is not small through simulations

for the simplest possible example: a Gaussian prior and observations of each component of the

state with Gaussian errors, both of which have identity covariance. In section 4, we derive (fol-

lowing Bengtsson et al. 2007) an asymptotic condition on theensemble sizes that yield collapse

1 This obstacle is equally relevant to a related class of “mixture” filters in which the prior

ensemble serves as the centers for a kernel density estimateof the prior (Anderson and Anderson

1999, Bengtsson et al. 2003, Smith 2007). These filters also involve the calculation of the weight

of each center given observations, and thus are subject to similar difficulties.
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when both the prior and observation errors are independent and identically distributed in each

component of the state vector. Section 5 extends those results to the more general case of Gaus-

sian priors and Gaussian observation errors. Section 6 briefly discusses the effect of a specific

heavy-tailed distribution for the observation error.

2. BACKGROUND ON PARTICLE FILTERS

Our notation will generally follow that of Ide et al. (1997) except for the dimensions of the

state and observation vectors and our use of subscripts to indicate ensemble members.

Let x of dimensionNx be the state of the system represented in some discrete basis, such

as the values of all prognostic variables on a regular grid. Since it can not be determined exactly

given imperfect observations, we considerx to be a random variable. Our aim is then to esti-

matep(x), the pdf of the state given all available observations.

The subsequent discussion will focus on the update ofp(x) given new observations at some

time t = t0. That is, suppose that we have both a predictionp(x(t = t0)) and a vector of obser-

vationsyo that depends onx(t = t0) and has dimensionNy . [To be more precise,p(x(t = t0))

is conditioned on all observations prior tot = t0. Since all pdfs here pertain tot = t0 and will

be conditioned on all previous observations, in what follows we suppress explicit reference tot0

and the previous observations.] We wish to estimatep(x|yo), the pdf ofx given the observations

yo, which we will term the posterior pdf.

For simplicity, let the observations have a linear relationto the state and be subject to addi-

tive random errorsǫǫǫ,

y = Hx + ǫǫǫ. (1)
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More general observation models are of course possible but (1) suffices for all the points we

wish to make in this paper.

The particle filter begins with an ensemble of states{xf
i , i = 1, . . . , Ne} that is assumed

to be drawn fromp(x), where the superscriptf (for “forecast”) indicates a prior quantity. The

ensemble members are also known as particles. The update step makes the approximation of re-

placing the prior densityp(x) by a sum of delta functions,N−1
e

∑Ne

i=1 δ(x − xf
i ). Applying Bayes

rule yields

p(x|yo) =
p(yo|x)p(x)

∫

p(yo|x)p(x) dx
=

Ne
∑

i=1

wiδ(x − xf
i ), (2)

where the posterior weights are given by

wi =
p(yo|xf

i )
∑Ne

j=1p(y
o|xf

j )
. (3)

In the posterior, each memberxf
i is weighted according to how likely the observations would be

if xf
i were the true state.

If one of the likelihoodsp(yo|xf
i ) is much larger than the rest, maxiwi will be close to one

and the particle filter approximates the posterior pdf as single point mass. The particle-filter esti-

mates of posterior expectations, such as the posterior mean

E(x|yo) =
∫

xp(x|yo) dx ≈
Ne
∑

i=1

wix
f
i , (4)

may then be poor approximations. We will loosely term this situation, in which a single mem-

ber is given almost all the posterior weight, as “collapse” of the particle filter. The goal of our

study is to describe the situations in which collapse occurs, both through the rigorous asymptotic

results of Bengtsson et al. (2007) for largeNy andNe and through simulations informed by the

asymptotics.
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3. FAILURE OF THE PARTICLE FILTER IN A SIMPLE EXAMPLE

We next consider a simple example, in which the prior distributionp(x) is Gaussian with

each component ofx independent and of unit variance, and the observationsy are of each com-

ponent ofx individually with independent, Gaussian errors of unit variance. More concisely,

considerNy = Nx, H = I, x ∼ N (0, I), andǫǫǫ ∼ N (0, I), where the symbol∼ means “is dis-

tributed as” andN (µµµ,P) is the Gaussian distribution with meanµµµ and covariance matrixP.

Figure 1 shows histograms for maxiwi from simulations of the particle-filter update us-

ingNx = 10, 30, and 100, andNe = 103. In the simulations,x, ǫǫǫ and an ensemble{xf
i , i =

1, . . . , Ne} are drawn fromN (0, I). Weightswi are then computed from (3). The histograms are

based on 103 realizations for each value ofNx.

The maximumwi is increasingly likely to be close to one asNx andNy increase. Large

weights appear occasionally in the caseNx = 10, for which maxiwi > 0.5 in just over 6%

of the simulations. OnceNx = 100, the average value of maxiwi over the 103 simulations is

greater than 0.8 and maxiwi > 0.5 with probability 0.9. Collapse of the weights occurs fre-

quently forNx = 100 despite the ensemble sizeNe = 103.

Two comparisons illustrate the detrimental effects of collapse. The correct posterior mean

in this Gaussian example is given byxa = (xf + yo)/2, where the superscripta (for “analysis”)

indicates a posterior quantity and the prior meanxf = 0 in this example. The expected squared

error ofxa isE(|xa−x|2) = [E(|xf −x|2+E(|yo−x|2)]/4 =Nx/2, while that of the observations

[ E(|yo − x|2) ] is equal toNx. The posterior mean estimated by the particle filter,

x̂a =
Ne
∑

i=1

wix
f
i ,
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has squared error of 5.5, 25 and 127 forNx = 10, 30, 100, respectively, when averaged over the

simulations. Thus,̂xa has error close to that ofxa only forNx = 10. ForNx = 100, collapse of

the weights is pronounced andx̂a is a very poor estimator of the posterior mean—it haslarger

errors than either the prior or the observations.

As might be expected, the effects of collapse are also apparent in the particle-filter esti-

mate of posterior variance, which is given by
∑

wi|xf
i − x̂a|2. The correct posterior variance

[tr(covx|yo)] is Nx/2, yet the particle-filter estimates (again averaged over 103 simulations) are

4.7, 10.5, 19.5 forNx = 10, 30, 100, respectively. Except forNx = 10, the particle-filter update

significantly underestimates the posterior variance, especially when compared to the squared er-

ror of x̂a.

The natural question is how large the ensemble must be in order to avoid the complete fail-

ure of the update. This example is tractable enough that the answer may be found by direct sim-

ulation: for variousNx, we simulate withNe = 10 · 2k and increasek until the average squared

error of x̂a is less than that of the prior or the observations. We emphasize that this merely re-

quires that the particle-filter estimate of the state is no worse than simply relying on the observa-

tions or the prior alone, i.e. that the particle filter "does no harm." TheNe required to reach this

minimal threshold is shown as a function ofNx (orNy) in Fig. 2.

The requiredNe appears to increase exponentially inNx. The limitations this increase places

on implementations of the particle filter are profound. ForNx = Ny = 90, somewhat more than

3×105 ensemble members are needed. Ensemble sizes for larger systems can be estimated from

the best-fit line shown in Fig. 2. IncreasingNx andNy to 100 increases the necessary ensemble

size to just under 106, whileNx = Ny = 200 would require 1011 members.
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The exponential dependence onNe is also apparent in other aspects of the problem. Figure

3 shows the minimumNe such that maximumwi (averaged over 400 realizations) is less than a

specified value. For each of the values 0.6, 0.7 and 0.8, the requiredNe increases approximately

exponentially withNx.

4. BEHAVIOR OF WEIGHTS FOR LARGENy

The previous example highlights potential difficulties with the particle-filter update but does

not permit more general conclusions. Results of Bengtsson et al. (2007), outlined in this section

and the next, provide further guidance on the behavior of theparticle-filter weights. Our discus-

sion will be largely heuristic; we refer the reader to Bengtsson et al. for more rigorous and de-

tailed proofs.

a. Approximation of the observation likelihood

Suppose that each componentǫj of ǫǫǫ is i.i.d. (independent and identically distributed) with

densityf (·). Then for each memberxf
i , the observation likelihood can be written as

p(yo|xf
i ) =

Ny
∏

j=1

f
(

yo
j − (Hxf

i )j
)

, (5)

whereyo
j and (Hxf

i )j are thejth components ofyo andHxf
i , respectively. An elementary conse-

quence of (5) is that, givenyo, the likelihood depends only onNy, f (·) and the prior as reflected

in the observed variablesHx. There is no direct dependence on the state dimensionNx.

Definingψ(·) = logf (·),

p(yo|xf
i ) = exp





Ny
∑

j=1

ψ
(

yo
j − (Hxf

i )j
)



 = exp



−
Ny
∑

j=1

Vij



 , (6)

whereVij = −ψ
(

yo
j − (Hxf

i )j
)

, the log-likelihood of thejth component of the observation vec-

tor given theith ensemble member. It is convenient to center and scale the argument of the ex-
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ponent in (6) by defining

Si = (
Ny
∑

j=1

Vij − µ)/τ, (7a)

where

µ ≡
Ny
∑

j=1

E
(

Vij
)

, τ2 ≡ var





Ny
∑

j=1

Vij



 . (7b)

Then (6) becomes

p(yo|xf
i ) = exp (−µ− τSi) , (8)

whereSi has zero mean and unity variance. The simplest situation (asin the example of sec-

tion 3) is when the random variablesVij , j = 1, . . . , Ny, are independent givenyo, so thatτ2 =

∑Ny

j=1 var(Vij|yo).

Equation (8) together with the approximationSi ∼ N (0, 1) are the basis for the asymptotic

conditions for collapse derived in the next subsection. They allow statements about the asymp-

totic behavior of likelihood, and thus of thewi, for large sample sizesNe and large numbers of

observationsNy, using asymptotic results for large samples from the standard normal distribu-

tion.

WhenVij, j = 1, . . . , Ny, are independent givenyo, the distribution ofSi approaches the

standard Gaussian distribution for largeNy if the Lindeberg condition holds with probability

tending to 1 (see Durret 2005, section 2.4a). More generally, the approximate normality ofSi

holds for any observation error densityf (·) such that
∫

f1−ǫ(t) dt is finite for someǫ > 0 and

when theVij are not i.i.d. but have sufficiently similar distributions and are not too dependent.

[See Bengtsson et al. (2007).] We note in passing that the requirement that theVij be not too

dependent asNy increases means thatNx must become large as well and also that the compo-
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nents of the state vector are not strongly dependent. We willreturn to the role ofNx in collapse

later.

Showing that the approximationSi ∼ N (0, 1) is adequate for our purposes is nontrivial,

since the behavior in the tails of the distribution is crucial to the derivations but convergence to

a Gaussian is also weakest there. The interested reader willfind details and proofs in Bengtsson

et al. (2007). In what follows, however, we will assume thatSi ∼ N (0, 1) holds in a fashion

which makes succeeding manipulations valid.

b. Heuristic derivation of conditions for collapse

Using (8), the maximum weightw(Ne) can be expressed as

w(Ne) =



1 +
Ne
∑

i=2

exp
(−τ (S(i) − S(1))

)





−1

, (9)

whereS(i) is theith order statistic of the sample{Si, i = 1, . . . , Ne}1. Defining

T =
Ne
∑

i=2

exp
(−τ (S(i) − S(1))

)

, (10)

we then have

w(Ne) = 1/(1 +T ). (11)

Collapse of the particle-filter weights occurs whenT approaches zero.

In order to obtain asymptotic conditions for collapse, we next derive an expression forE(T )

for largeNe andNy by approximatingE(T |S(1)) and then taking an expectation over the dis-

tribution ofS(1). For an expectation conditioned onS(1), the sum in (10) may be replaced by a

1 In other words,S(1) is the minimum of the sample,S(2) is the next smallest element, and so

on until the maximum,S(Ne).
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sum over an unordered ensemble with the conditionSi > S(1). In that case the expectation of

each term in the sum will be identical and

E(T |S(1)) = (Ne − 1)E
[

exp(−τ (S̃ − S(1)))
]

, (12)

whereS̃ is drawn from the same distribution as theSi but with values restricted to be greater

thanS(1).

We now proceed with the calculation under the assumption that Si ∼ N (0, 1). ThenS̃ has

the density

p(z) =
{

ϕ(z)/Φ̄(S(1)), z > S(1),
0, z ≤ S(1),

whereϕ(·) is the density for the standard normal distribution andΦ̄(x) =
∫

∞

x ϕ(z) dz.

Writing the expectation explicitly with the density ofS̃ yields

E(T |S(1)) =
Ne − 1
Φ̄(S(1))

∫

∞

S(1)

exp(−τ (z − S(1)))ϕ(z) dz. (13)

Next, we replaceϕ(z) by (2π)−1/2 exp(−z2/2) in the integrand in(13), complete the square in

the exponent and use the definition ofΦ̄(x) to obtain

E(T |S(1)) =
(Ne − 1) exp

(

τS(1) + τ2/2
)

Φ̄(τ + S(1))

Φ̄(S(1))
. (14)

The behavior of Gaussain order statistics, such as the minimum of a sample, are well known

(David and Nagaraja 2003). An important result is that2 , asNe → ∞,

S(1) = −
√

2 logNe + op(1). (15)

Thus, sinceS(1) is becoming large and negative,Φ̄(S(1)) approaches one and may be ignored in

(14) when calculating the asymptotic behavior ofE(T |S(1)).

2 A random variableX = op(1) asa→ ∞ if Pr[|X | ≥ δ] → 0 for all δ ≥ 0

13



Now suppose thatτ/
√

logNe → ∞ asNe → ∞. In this limit, τ+S(1) ≈ τ (1−√
2 logNe/τ ) →

∞ and so, by the standard approximation to the behavior ofΦ̄ for large positive values of its ar-

gument,

Φ̄(τ + S(1)) =
ϕ(τ + S(1))
τ + S(1)

(1 + op(1)), (16)

which may be easily derived with integration by parts (e.g. section 6.3 of Bender and Orszag

1978).

Substituting (16) in (14), we conclude after some algebra that

E(T |S(1)) ≈ (Ne − 1)
ϕ(S(1))
|S(1)|

√
2 logNe

τ
. (17)

But, reversing the reasoning that led to (16) givesϕ(S(1))/|S(1)| ≈ Φ(S(1)), whereΦ(x) = 1 −

Φ̄(x) is the cumulative distribution function (cdf) for the standard Gaussian. Thus,

E(T |S(1)) ≈ NeΦ(S(1))

√
2 logNe

τ
. (18)

asNe → ∞.

Taking the expectation of (18) overS(1) then gives

E(T ) = E(1/w(Ne)) − 1 ≈
√

2 logNe

τ
. (19)

To see this, recall that evaluating the cdf of a random variable at the value of the random vari-

able, as inΦ(S(1)), yields a random variable with a uniform distribution on [0,1]. This property

underlies the use of rank histograms as diagnostics of ensemble forecasts (Hamill 2001 and ref-

erences therein) and is known in statistics as the “probability integral transform.” Thus,Φ(S(1))

is distributed as the minimum of a sample of sizeNe from a uniform distribution andE[Φ(S(1))] ≈

1/Ne. In the next section, we will confirm (19) with direct simulations.
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Equation (19) implies that the particle filter will suffer collapse asymptotically ifNe <<

exp(τ2/2). More generally,Ne must increase exponentially withτ2 in order to keepw(Ne) fixed

asτ increases. This exponential dependence ofNe on τ2 is consistent with the simulation re-

sults of section 3, whereτ2 ∝ Ny.

In contrast to the most obvious intuition, the asymptotic behavior ofw(Ne) given in (19)

does not depend directly on the state dimensionNx. Instead, the situation is more subtle:τ2,

a measure of the variability of the observation priors, controls the maximum weight. The dimen-

sionality of the state enters only implicitly, via the approximation thatSi is asymptotically Gaus-

sian, which requires thatNx be asymptotically large. One can then think ofτ2 as an equivalent

state dimension, in the sense thatτ2 is the dimension of the identity-prior, identity-observation

example (in section 3) that would have the same collapse properties.

5. THE GAUSSIAN-GAUSSIAN CASE

The analysis in the previous section focused on situations in which the log likelihoods for

the observations (considered as random functions of the prior) were mutually independent and

identically distributed. In general, however, the observation likelihoods need not be i.i.d., since

the state variables are correlated in the prior distribution and observations may depend on mul-

tiple state variables. In this section, we consider the caseof a Gaussian prior, Gaussian observa-

tion errors and linearH, where analytic progress is possible even for general priorcovariances

and generalH.
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Let the priorx ∼ N (0,P) and the observation errorǫǫǫ ∼ N (0,R). We may assume that both

x andǫǫǫ have mean zero since, if the observations depend linearly onthe state,E(y) = HE(x)

andp(y|x) is unchanged ify is replaced byy −E(y) andx by x −E(x).

For Gaussian observation errorsǫǫǫ, the transformationy′ = R−1/2y also leavesp(y|x) un-

changed but results in cov(ǫǫǫ′) = cov(R−1/2ǫǫǫ) = I. Further simplification comes from diagonal-

izing cov(R−1/2Hx) via an additional orthogonal transformation in the observation space. Let

y′′ = QT y′, whereQ is the matrix of eigenvectors of cov(R−1/2Hx) with corresponding eigen-

valuesλ2
j, j = 1, . . . , Ny; then cov(QT R−1/2Hx) = diag(λ2

1, . . . , λ
2
Ny

), while ǫǫǫ′′ = QT ǫǫǫ′ still has

identity covariance andp(y|x) is again unchanged becauseQ is orthogonal. [Anderson (2001)

presents a similar transformation that diagonalizes the problem in terms of the state variables,

rather than the observation variables.] We therefore assume, without loss of generality, that

R = I, cov(Hx) = HPHT = diag(λ2
1, . . . , λ

2
Ny

), (20)

and drop primes in the sequel.

a. Analysis of the observation likelihood

With the assumptions (20), the observation errors are independent, sop(yo|xf
i ) can be writ-

ten in terms of a sum over the log-likelihoodsVij as in (6). In addition, the pdf for each compo-

nent of the observations is Gaussian with unit variance and,givenxf
i , meanHxf

i . Thus,

Vij = −1
2

(

yo
j − (Hxf

i )j
)2

+ c.

The additive constantc results from the normalization of the Gaussian density and may be omit-

ted w.l.o.g. since it cancels in the calculation of the weightswi.
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We wish to approximate the observation likelihood as in (8).This requires
∑Ny

j=1Vij to be

approximately Gaussian with meanµ and varianceτ2. Leaving aside for the moment the condi-

tions under which the sum is approximately Gaussian, the mean and variance givenyo of
∑Ny

j=1Vij

can be calculated directly using (20) together with the properties of the standard normal distribu-

tion and the fact that theVij are independent asj varies [as in (7b)] . This yields

µ = E





Ny
∑

j=1

Vij



 = −1
2

Ny
∑

j=1

(

λ2
j + yo

j
2
)

, (21a)

and

τ2 = var





Ny
∑

j=1

Vij



 =
Ny
∑

j=1

λ2
j

(1
2
λ2

j + yo
j

2
)

. (21b)

Equations (21) still depend on the specific realizationyo of the observations. Proceeding

rigorously would require taking the expectation of (19) over yo. Here, we simply assume that

expectation may be approximated by replacingτ in (19) by its expectation overyo. Using the

fact thatE(yo
j

2) = λ2
j + 1, we have

E(µ) = −1
2

Ny
∑

j=1

(

2λ2
j + 1

)

, (22a)

and

E(τ2) =
Ny
∑

j=1

λ2
j

(

1 +
3
2
λ2

j

)

. (22b)

As discussed in section 3 of Bickel et al. (2007), ifλ1 ≥ λ2 ≥ . . ., the distribution ofSi =

(
∑

Vij − µ)/τ converges to a standard Gaussian asNy → ∞ if and only if

Ny
∑

j=1

λ2
j → ∞. (23)

That is,Si converges to a Gaussian when no single eigenvalue or set of eigenvalues dominate

the sum of squares: (23) implies that maxj(λj)/
∑

λj → 0 asNy → ∞. The condition (23) also

means thatτ2 → ∞, which in turn leads to collapse if logNe/τ
2 → 0.
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On the other hand, in the case that (23) is not satisfied, the unscaled log likelihood con-

verges to a quantity which doesnot have a Gaussian distribution. Collapse does not occur since

the updated ensemble empirical distribution converges to the true posterior asNe → ∞, what-

everNy may be.

b. Simulations

First, we check the asymptotic expression forE(1/w(Ne)) − 1 as a function ofNe andNy,

given in (19), for the Gaussian-Gaussian case. For simplicity, let λj = 1, j = 1, . . . , Ny (as in the

example of section 2). Then (22b) implies thatE(τ2) = 5Ny/2 and (19) becomes

E(1/w(Ne)) − 1 ≈
√

4/5
√

log(Ne)/Ny. (24)

This approximation is valid whenNe is large enough that the sample minimum follows (15)

andNy is large enough that log(Ne)/Ny is small. To capture the appropriate asymptotic regime,

we have performed simulations withNe = Nα
y , α = 0.75, 0.875, 1.0, 1.25,Ny varying over

a dozen values between 600 and 3000, andE(1/w(Ne)) approximated by averaging over 1000

realizations of the experiment. As can be seen from Fig. 4, 1−E(1/w(Ne)) has an approximately

linear relation to
√

log(Ne)/Ny, though considerable scatter is present. The best-fit line to the

simulation results has a slope of 0.96 with a 95% confidence interval of±0.087, which captures

the predicted slope of
√

4/5 ≈ 0.89.

Equation (19) also implies that asymptotic collapse of the particle filter depends only on

τ rather than the specific sequence{λj, j = 1, . . . , Ny}. To illustrate thatτ does control col-

lapse, we consider variousλ sequences by settingλ2
j = cj−θ. In this case, the simulations fix

Ny = 4 × 103 andNe = 105 while θ takes the values 0.3, 0.5 and 0.7 andc is varied such that
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substituting (22b) in (19) gives 0.01< E(1/w(Ne)) − 1 < 0.075. These values are again chosen

to capture the appropriate asymptotic regime where the normalized log-likelihoodSi is approx-

imately Gaussian. The expectationE(1/w(Ne)) is approximated by averaging over 400 realiza-

tions of the experiment.

Figure 5 shows results as a function of
√

2 logNe/τ . As predicted by (19),E(1/w(Ne)) de-

pends mainly onτ rather than on the specificλ sequence . The simulations thus confirm the va-

lidity of (19) and, in particular, the control of the maximumweight byτ . Nevertheless, some

limited scatter around the theoretical prediction remains, which arises from weak dependence of

E(1/w(Ne)) on theλ sequence for finiteτ . We defer to a subsequent study a more detailed ex-

amination of the behavior of the maximum weight for finiteτ andNe and the limits of validity

of (19).

6. MULTIVARIATE CAUCHY OBSERVATION-ERROR DISTRIBUTION

Van Leeuwen (2003) proposes the use of a multivariate Cauchydistribution for the observa-

tion error to avoid collapse and gives some numerical results supporting his claim. It is argued

in Bengtsson et al. (2007) that collapse still occurs but more slowly with such an observation-

error distribution. Specifically, they show collapse is formally governed by

logNe

Ny
log

∣

∣

∣

∣

∣

logNe

Ny

∣

∣

∣

∣

∣

→ ∞. (25)

This condition is of course equivalent to logNe/Ny → 0, sincete−t → 0 if t → ∞, but it

suggests slow collapse.
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Intiutively, what happens is that ifǫǫǫ has a multivariate Cauchy distribution, thenǫǫǫ can be

written as

ǫǫǫ = |zNy+1|−1(z1, . . . , zNy),

wherez1, . . . , zNy are i.i.d.N (0, 1). For givenzNy+1 close to 0, the errors have very large scale

Gaussian tails. This makes collapse harder because the trueposterior resembles the prior, imply-

ing that the observations have relatively little information.

7. CONCLUSIONS

Particle filters have a well-known tendency for the particleweights to collapse, with one

member receiving a posterior weight close to unity. We have illustrated this tendency through

simulations of the particle-filter update for the simplest example, in which the priors for each of

Nx state variables are i.i.d. and Gaussian, and the observations are of each state variable with

independent, Gaussian errors. In this case, avoiding collapse and its detrimental effects can re-

quire very large ensemble sizes even for moderateNx. The simulations indicate that the ensem-

ble sizeNe must increase exponentially withNx in order for the posterior mean from the parti-

cle filter to have expected error smaller than either the prior or the observations. ForNx = 100,

the posterior mean will typically be worse than either the prior or the observations unlessNe >

106.

Asymptotic analysis, following Bengtsson et al. (2007) andBickel et al. (2007), provides

precise conditions for collapse either in the case of i.i.d.observation likelihoods or when both

the prior and the observation errors are Gaussian and the observation operator is linear. The

asymptotic result holds whenNe is large andτ2, the variance of the observation log-likelihood
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defined in (7b), becomes large and has an approximately Gaussian distribution. Then, in the

limit that τ−1√Ne → 0, the maximum weightw(Ne) satisfiesE(1/w(Ne)) ≈ 1 + τ−1√2 logNe.

The maximum weight therefore approaches one (and collapse occurs) asτ increases unless the

ensemble sizeNe grows exponentially withτ .

It is thus not the state dimension per se that matters for collapse, but ratherτ , which de-

pends on both the variability of the prior and the characteristics of the observations. Still, one

may think ofτ2 as an effective dimension, as it gives the dimension of the identity-prior, identity-

observation Gaussian system (as in section 3) that would have the same collapse properties. This

analogy is only useful, however, when the normalized observation log-likelihoodSi defined in

(7a) has an approximately Gaussian distribution, which requires thatNx be large.

Our results thus point to a fundamental obstacle to the application of particle filters in high-

dimensional systems. Nevertheless, some limitations of this study will need to be addressed be-

fore the potential of particle filtering in high dimensions is completely clear.

First, the simulations and asymptotic theory presented here have not dealt with the most

general situation, namely, when the prior and observationsare non-Gaussian and have non-trivial

dependencies among their components. There is no obvious reason to expect that the general

case should have less stringent requirements onNe and we speculate that the Gaussian-Gaussian

results of section 5 will still be informative even for non-Gaussian systems.

Second, the asymptotic theory pertains to the behavior of the maximum weight but says

nothing about how the tendency for collapse might degrade the quality of the particle-filter up-

date. Indeed, the update may be poor long before the maximum weight approaches unity, as il-

lustrated by Figs. 2 and 3. What is needed is practical guidance on ensemble size for a given
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problem with finiteNx, Ny andτ . Though rigorous asymptotic analysis will be difficult, we an-

ticipate that simulations may provide useful empirical rules to guide the choice of ensemble size.

Third, we have not addressed the possible effects of sequentially cycling the particle filter

given observations at multiple instants in time. Overall, cycling must increase the tendency for

collapse of the particle filter. The quantitative effect, however, will depend on the resampling

strategy, which again makes analytic progress unlikely.

Finally, we have not considered resampling algorithms, which are frequently employed to

counteract the particle filter’s tendency for collapse of the ensemble. We emphasize that resam-

pling strategies that do not alter the update step are unlikely to overcome the need for very large

Ne, since they do not improve the estimate of the posterior distribution but merely avoid carry-

ing members with very small weights further in the algorithm. It is conceivable that the required

Ne might be reduced by splitting a large set of observations valid at a single time into several

batches, and then assimilating the batches serially with resampling after each update step. Al-

ternatively, one might identify states in the past that willevolve under the system dynamics to

become consistent with present observations, thereby reducing the need for large ensembles of

present states when updating given present observations. Gordon et al. (1993) term this process

“editing,” and a similar idea is employed by Pitt and Shephard (1999). Such a scheme, however,

would likely demand very large ensembles of past states.

As noted in the introduction, both van Leeuwen (2003) and Zhou et al. (2006) have applied

particle filters to systems of dimension significantly larger than 100. In Zhou et al., however,

each update is based on only a single observation (and only 28observations total are assimi-

lated); assuming that the prior uncertainty is comparable to the observation variance,τ2 < 28
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in their case and their ensemble sizes ofO(1000) would be adequate based on Fig. 3. Based on

the characteristics of the sea-surface height observations assimilated by van Leeuwen, we esti-

mate that the particle-filter update usesO(100) observations at each (daily) analysis. Allowing

for the possibility that nearby observations are significantly correlated owing to the relatively

large scales emphasized by sea-surface height, then van Leeuwen’s use of 500–1000 ensemble

members would seem to be at the edge of where our results wouldindicate collapse to occur.

Consistent with this, van Leeuwen notes a strong tendency for collapse.

Fundamentally, the particle filter suffers collapse in high-dimensional problems because the

prior and posterior distributions are nearly mutually singular, so that any sample from the prior

distribution has exceptionally small probability under the posterior distribution. For example, in

the Gaussian, i.i.d. case, the prior and posterior distributions have almost all their mass confined

to the neighborhood of hyper-spheres with different radii and different centers.

Another way of looking at the cause of collapse is that the weights of different members

for any chosen state variable are influenced byall observations, even if those observations are

nearly independent of the particular state variable. The particle filter thus inherently overesti-

mates the information available in the observations and underestimates the uncertainty of the

posterior distribution. Similar problems occur for the EnKF and, for spatially distributed sys-

tems with finite correlation lengths (such as most geophysical systems), can be reduced by ex-

plicitly restricting any observation’s influence to some spatially local neighborhod. This moti-

vates the development of nonlinear, non-Gaussian ensembleassimilation schemes that perform

spatially local updates, as in Bengtsson et al. (2003) or Harlim and Hunt (2007).
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Figure 1. Histograms of maxwi for Nx = 10, 30, 100 andNe = 103 from the particle-filter

simulations described in text [Ne = 103, x ∼ N (0, I), Ny = Nx, H = I andǫǫǫ ∼ N (0, I)].
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Figure 2. The ensemble sizeNe as a function ofNx (orNy) required if the posterior mean es-

timated by the particle filter is to have average squared error less than the prior or observa-

tions, in the simple example considered in the text. Asterisks show the simulation results,

averaged over 400 realizations. The best fit line is given by log10Ne = 0.05Nx + 0.78.
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Figure 3. The ensemble sizeNe as a function ofNx (orNy) such that maxwi averaged over

400 realizations is less than 0.6 (plus signs), 0.7 (circles) and 0.8 (asterisks) in the simple

example considered in the text.
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Figure 4. Evaluation of (19) against simulations in the caseλ2
j = 1, j = 1, . . . , Ny. For each of

60 (Ny, Ne) pairs as detailed in the text,E(1/w(Ne)) was estimated from an average of 1000

realizations of the particle-filter update. The best-fit line to the data, given byE(1/w(Ne)) −

1 = −0.006 + 0.964
√

log(Ne)/Ny, is indicated by the solid line, while the prediction (24) is

shown by a dashed line.
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Figure 5. Evaluation of (19) against simulations in the caseλ2
j = cjθ, j = 1, . . . , Ny. The pa-

rametersθ andc are varied as described in the text, whileNy = 4 × 103 andNe = 105

are fixed. The expectationE(1/w(Ne)) was estimated by averaging over 400 realizations of

the particle-filter update. The best-fit line to the data, given byE(1/w(Ne)) − 1 = 0.006 +

1.008
√

2 logNe/τ is indicated by the solid line, while the prediction (19) is shown by a

dashed line.
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