OBSTACLES TO HIGH-DIMENSIONAL PARTICLE FILTERING

Chris Snyder

National Center for Atmospheric ReseatcBoulder, CO

Thomas Bengtsson

Bell Labs, Murray Hill, NJ

Peter Bickel

Department of Statistics, University of California-Beldye

Berkeley, CA

Jeff Anderson

National Center for Atmospheric Research, Boulder, CO

Submitted taMon. Wea. Rey.2 January 2008

* The National Center for Atmospheric Research is sponsordéiaddNational Science Foundation.

Corresponding author addressC. Snyder, NCAR, P.O. Box 3000, Boulder, CO 80307-3000;

chriss@ucar.edu



ABSTRACT

Particle filters are ensemble-based assimilation schemagsunlike the ensemble Kalman
filter, employ a fully nonlinear and non-Gaussian analysp $o compute the probability distri-
bution function (pdf) of a system’s state conditioned ontao$@bservations. Evidence is pro-
vided that the ensemble size required for a successfutpgfiiter scales exponentially with the
problem size. For the simple example in which each compoofathie state vector is indepen-
dent, Gaussian and of unit variance, and the observatiensfaach state component separately
with independent, Gaussian errors, simulations indidaaethe required ensemble size scales
exponentially with the state dimension. In this example,ghrticle filter requires at least 0
members when applied to a 200-dimensional state. Asynep®dults, following the work of
Bengtsson, Bickel and collaborators, are provided for tages: one in which each prior state
component is independent and identically distributed,@melin which both the prior pdf and
the observation errors are Gaussian. The asymptotic thiewegals that, in both cases, the re-
guired ensemble size scales exponentially with the vagiafithe observation log-likelihood,

rather than with the state dimension per se.



1. INTRODUCTION

Ensemble methods for data assimilation are presently godey rapid development. The
ensemble Kalman filter (EnKF), in various forms, has beeresgfully applied to a wide range
of geophysical systems including atmospheric flows fronbgldo convective scales (Whitaker
et al. 2004, Snyder and Zhang 2003), oceanography from liolasin scales (Keppenne et al.
2005), and the land surface (Reichle et al. 2002). Partitérdiare another class of ensemble-
based assimilation methods of interest in geophysicaleamns. [See Gordon et al. (1993) or

Doucet et al. (2001) for an introduction.]

In their simplest form, particle filters calculate postereights for each ensemble member
based on the likelihood of the observations given that menibke the EnKF, particle filters
are simple to implement and largely independent of the fisemodel, but they have the added
attraction that they are, in principle, fully general implentations of Bayes rule and applicable
to highly non-Gaussian probability distributions. Unlitkee EnKF, however, particle filters have
so far mostly been applied to low-dimensional systems. pajger examines obstacles to apply-

ing particle filters in high-dimensional systems.

Both patrticle filters and the EnKF are Monte-Carlo technggu¢éhey work with samples
(i.e., ensembles) rather than directly with the underlyngpbability density function (pdf). Naively,
one would expect such techniques to require ensemble siggs dompared to the dimension
of the state vector. Experience has shown, however, trateéuirement does not hold for the
EnKF if localization of the sample covariance matrix is eayeld (Houtekamer and Mitchell

1998, 2001; Hamill et al. 2001). The feasibility of the EnKRkwensemble sizes much smaller
3



than the state dimension also has theoretical justificatt@mrer and Bengtsson (2007) and Bickel
and Levina (2007) examine the sample covariance structun@fsonably natural classes of co-
variance matrices and demonstrate the effectiveness alizotgy the sample covariance matrix.

There is much less experience with particle filters in highehsions. Several studies have
presented results from particle filters and smoothers for ev-dimensional systems, including
that of Lorenz (1963) and the double-well potential (Pha®@12&im et al. 2003, Moradkhani
et al. 2005, Xiong et al. 2006, Chin et al. 2007). Both van lvesu (2003) and Zhou et al.
(2006), however, apply the particle filter to higher-dimenal systems. Van Leeuwen (2003)
considers a model for the Agulhas current with dimensioroafjhly 2x 10°, while Zhou et al.
(2006) use a land-surface model of dimension 684. We wilirreto the relation of our results
to their studies in the concluding section.

We argue here that high-dimensional particle filters facel&aimental difficulties. Specif-
ically, we explore the result from Bengtsson et al. (20071 Bickel et al. (2007) that, unless
the ensemble size is exponentially large in a quantitythe particle-filter update suffers from a
“collapse” in which with high probability a single memberassigned a posterior weight close
to one while all other members have vanishingly small weighthe quantity-2 is the variance
of the observation log-likelihood, which depends not oniytbe state dimension but also on the
prior distribution and the number and character of obs@mat As will be discussed later?
may be considered an effective dimension as it is propatitmthe dimension of the state vec-
tor in some simple examples.

The tendency for collapse of weights has been remarked mippsty in the geophyscial

literature (Anderson and Anderson 1999, Bengtsson et &3,2(an Leeuwen 2003) and is also
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well known in the particle-filtering literature, where itagten referred to as “degeneracy,” “im-
poverishment” or “sample attrition.” Unlike previous siesl, however, we emphasize the col-
lapse of weights as a fundamental obstacle to particleifijen high-dimensional systems, in
that very large ensembles are required to avoid collapse fevesystem dimensions of a few
tens or hundreds.

Because of the tendency for collapse, particle filters iabdy employ some form of re-
sampling or selection step after the updated weights acelledéd (e.g. Liu 2001), in order to
remove members with very small weights and replenish therehke. We do not analyze re-
sampling algorithms in this paper but rather contend thagtever their efficacy for systems of
small dimension and reasonably large ensemble sizes, thaynikely to overcome the need for
exponentially large ensembles &sgrows. Resampling proceeds from the approximate poste-
rior distribution computed by the particle filter; it doestmmprove the quality of that approxi-
mate posterior.

The outline of the paper is as follows. In section 2, we revieg/basics of particle filters.
Section 3 illustrates the difficulty of particle filtering wh+2 is not small through simulations
for the simplest possible example: a Gaussian prior andredtsens of each component of the
state with Gaussian errors, both of which have identity damae. In section 4, we derive (fol-

lowing Bengtsson et al. 2007) an asymptotic condition oretiemble sizes that yield collapse

1 This obstacle is equally relevant to a related class of “mit filters in which the prior
ensemble serves as the centers for a kernel density estfnie prior (Anderson and Anderson
1999, Bengtsson et al. 2003, Smith 2007). These filters algdvie the calculation of the weight

of each center given observations, and thus are subjectttasdifficulties.
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when both the prior and observation errors are indepencdhehidntically distributed in each
component of the state vector. Section 5 extends thosesdsithe more general case of Gaus-
sian priors and Gaussian observation errors. Section 8ybdiscusses the effect of a specific

heavy-tailed distribution for the observation error.

2. BACKGROUND ON PARTICLE FILTERS

Our notation will generally follow that of Ide et al. (1997 aept for the dimensions of the

state and observation vectors and our use of subscriptslicate ensemble members.

Let x of dimensionV,. be the state of the system represented in some discrete fiashs
as the values of all prognostic variables on a regular gridcesit can not be determined exactly
given imperfect observations, we consiaeno be a random variable. Our aim is then to esti-

matep(x), the pdf of the state given all available observations.

The subsequent discussion will focus on the updatg>gfgiven new observations at some
timet = to. That is, suppose that we have both a predictiptit = tp)) and a vector of obser-
vationsy® that depends oR(t = tp) and has dimensiofV, . [To be more precises(X(t = o))
is conditioned on all observations priorta= tg. Since all pdfs here pertain to= ty and will
be conditioned on all previous observations, in what foawe suppress explicit referencetto
and the previous observations.] We wish to estim#x¢y©), the pdf ofx given the observations

y°, which we will term the posterior pdf.

For simplicity, let the observations have a linear relatiothe state and be subject to addi-

tive random errorsg,

y =Hx+e (2)



More general observation models are of course possiblelbsuffices for all the points we
wish to make in this paper.

The particle filter begins with an ensemble of stafe§, i = 1,..., N.} that is assumed
to be drawn fromp(x), where the superscrigt (for “forecast”) indicates a prior quantity. The
ensemble members are also known as patrticles. The updptmatess the approximation of re-
placing the prior density(x) by a sum of delta functionsy ! Zﬁ'-’l (X — x{). Applying Bayes
rule yields

N

oy PO e
PN = o0 ax — 2 w0 XD, @

where the posterior weights are given by

p(y?|x!)
w; = — 3)
>N p(yelx])

In the posterior, each memb)ejf is weighted according to how likely the observations wowgd b
if x/ were the true state.

If one of the Iikelihood$(y0|x{) is much larger than the rest, max; will be close to one
and the particle filter approximates the posterior pdf aglsipoint mass. The particle-filter esti-

mates of posterior expectations, such as the posterior mean

N,
E(x|y°) = /Xp(X|yO) dx =~ Zwix{, 4)
=1

may then be poor approximations. We will loosely term thigagion, in which a single mem-
ber is given almost all the posterior weight, as “collapskthe particle filter. The goal of our
study is to describe the situations in which collapse ocdwth through the rigorous asymptotic
results of Bengtsson et al. (2007) for laryg and N. and through simulations informed by the

asymptotics.



3. FAILURE OF THE PARTICLE FILTER IN A SIMPLE EXAMPLE

We next consider a simple example, in which the prior digtidn p(x) is Gaussian with
each component of independent and of unit variance, and the observaiare of each com-
ponent ofx individually with independent, Gaussian errors of unitiaace. More concisely,
considerN, = N,,H =1,x ~ N(O,1), ande ~ N(O, 1), where the symbol- means “is dis-
tributed as” andV(u, P) is the Gaussian distribution with meg@rand covariance matrik.

Figure 1 shows histograms for max; from simulations of the particle-filter update us-
ing N, = 10, 30, and 100, an®/, = 1C°. In the simulationsx, e and an ensembl{y{, 7=
1,...,N.} are drawn fromN (0, I). Weightsw; are then computed from (3). The histograms are
based on 1drealizations for each value ¥,.

The maximumw; is increasingly likely to be close to one a5 and N, increase. Large
weights appear occasionally in the cagg = 10, for which maxw; > 0.5 in just over 6%
of the simulations. Onc&/, = 100, the average value of max; over the 18 simulations is
greater than 0.8 and max; > 0.5 with probability 0.9. Collapse of the weights occurs fre-
quently for N, = 100 despite the ensemble sixe = 10°.

Two comparisons illustrate the detrimental effects ofajyadle. The correct posterior mean
in this Gaussian example is given kY = (x/ +y°)/2, where the superscript(for “analysis”)
indicates a posterior quantity and the prior medr= 0 in this example. The expected squared
error ofx® is E(|x*—x|?) = [E(|x/ —x|?+E(|ly° —x|?)]/4 = N,./2, while that of the observations

[ E(ly° — x| ] is equal toN,,. The posterior mean estimated by the particle filter,



has squared error of 5.5, 25 and 127 fgr = 10, 30, 100, respectively, when averaged over the
simulations. ThusX® has error close to that of* only for N, = 10. ForN, = 100, collapse of
the weights is pronounced aid is a very poor estimator of the posterior mean—it lager
errors than either the prior or the observations.

As might be expected, the effects of collapse are also apper¢he particle-filter esti-
mate of posterior variance, which is given piji\x{ — %2|2. The correct posterior variance
[tr(covx|y®)] is N, /2, yet the particle-filter estimates (again averaged ov@sitfulations) are
4.7,10.5, 19.5 forV,, = 10, 30, 100, respectively. Except fof, = 10, the particle-filter update
significantly underestimates the posterior variance, @afhg when compared to the squared er-
ror of X*.

The natural question is how large the ensemble must be i twdeoid the complete fail-
ure of the update. This example is tractable enough thatrtbheer may be found by direct sim-
ulation: for variousN,, we simulate with\V, = 10- 2* and increasé until the average squared
error ofX* is less than that of the prior or the observations. We empbdkat this merely re-
quires that the particle-filter estimate of the state is nes@ahan simply relying on the observa-
tions or the prior alone, i.e. that the particle filter "doesharm.” TheN, required to reach this
minimal threshold is shown as a function &%, (or NV,) in Fig. 2.

The requiredV, appears to increase exponentially¥p. The limitations this increase places
on implementations of the particle filter are profound. Rgr= Vv, = 90, somewhat more than
3 x 10° ensemble members are needed. Ensemble sizes for largemsysan be estimated from
the best-fit line shown in Fig. 2. Increasing, and.V, to 100 increases the necessary ensemble

size to just under 1) while N, = N, = 200 would require 1 members.
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The exponential dependence d0 is also apparent in other aspects of the problem. Figure
3 shows the minimunV, such that maximunw; (averaged over 400 realizations) is less than a
specified value. For each of the values 0.6, 0.7 and 0.8, theresl V. increases approximately

exponentially with/V,.
4. BEHAVIOR OF WEIGHTS FOR LARGEN,,

The previous example highlights potential difficultiesiwibe particle-filter update but does
not permit more general conclusions. Results of Bengtssah €2007), outlined in this section
and the next, provide further guidance on the behavior optrécle-filter weights. Our discus-
sion will be largely heuristic; we refer the reader to Besgtset al. for more rigorous and de-

tailed proofs.
a. Approximation of the observation likelihood

Suppose that each componenbf eis i.i.d. (independent and identically distributed) with

densityf(-). Then for each memben{, the observation likelihood can be written as
Ny
p(y° ) =TT £ (v — (Hx!)) (5)
j=1
wherey? and q—|xzf ); are thejth components of’ ande{ , respectively. An elementary conse-
quence of (5) is that, giveyr, the likelihood depends only aN,, f(-) and the prior as reflected
in the observed variablddx. There is no direct dependence on the state dimension
Defining () = log (),
Ny Ny
p(y°|x]) = exp (Zw (y5 — (HxX{ )j)) = exp(— > m-j) , (6)
J=1 §=1
whereV;; = —¢ (yjo- — (Hx{)j), the log-likelihood of thejth component of the observation vec-

tor given theith ensemble member. It is convenient to center and scaleglenant of the ex-
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ponent in (6) by defining

Ny
Si=0Q_ Vij — w)/, (7a)
Jj=1
where
Ny Ny
“EZE(‘/U)’ TzEval'<ZV;j) . (7b)
=1 =1
Then (6) becomes
p(y°|x!) = expp — 755, 8)

whereS; has zero mean and unity variance. The simplest situatiom (@& example of sec-
tion 3) is when the random variablé$;, j = 1,..., N, are independent giveyt, so thatr? =
Zj‘\]:yl var(Vi;1y©).

Equation (8) together with the approximatish ~ N(0, 1) are the basis for the asymptotic
conditions for collapse derived in the next subsection.yTdllw statements about the asymp-
totic behavior of likelihood, and thus of the;, for large sample sized. and large numbers of
observationsV,, using asymptotic results for large samples from the stahadarmal distribu-
tion.

WhenV;;, j = 1,..., N,, are independent givey?, the distribution ofS; approaches the
standard Gaussian distribution for larfyg if the Lindeberg condition holds with probability
tending to 1 (see Durret 2005, section 2.4a). More genethkyapproximate normality df;
holds for any observation error densjf{:) such that/ f1=<(¢) dt is finite for somes > 0 and
when theV;; are not i.i.d. but have sufficiently similar distributionsdaare not too dependent.
[See Bengtsson et al. (2007).] We note in passing that théresgent that the/;; be not too

dependent a&/, increases means that, must become large as well and also that the compo-
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nents of the state vector are not strongly dependent. Weetilin to the role ofV,. in collapse
later.

Showing that the approximatia$y ~ N (0, 1) is adequate for our purposes is nontrivial,
since the behavior in the tails of the distribution is crutgethe derivations but convergence to
a Gaussian is also weakest there. The interested readdinditietails and proofs in Bengtsson
et al. (2007). In what follows, however, we will assume that~ N(0, 1) holds in a fashion

which makes succeeding manipulations valid.
b. Heuristic derivation of conditions for collapse

Using (8), the maximum weight ) can be expressed as

-1

N.
wnv,y = [1+>exp(—7(Sw) — Sa)) | 9)
=2

whereS(;) is theith order statistic of the sampleS;, i =1,.. ., N_}L. Defining

N.
T =Y exp(—7(Su — Sw)) ; (10)
i=2
we then have
w(v,) = 1/(1+7). (12)

Collapse of the particle-filter weights occurs whHEmpproaches zero.
In order to obtain asymptotic conditions for collapse, wgtrtkerive an expression fdr (7))
for large N. and N, by approximating(7'|S(1)) and then taking an expectation over the dis-

tribution of S(1). For an expectation conditioned ¢fy), the sum in (10) may be replaced by a

1 In other words,S(y) is the minimum of the sample,) is the next smallest element, and so

on until the maximumyy ).
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sum over an unordered ensemble with the condifipn> S(1). In that case the expectation of

each term in the sum will be identical and
E(T|S@) = (N — 1)E [exp7(5 — Sw))] . (12)

whereS is drawn from the same distribution as tBgbut with values restricted to be greater
thanS(l).
We now proceed with the calculation under the assumptiontha- N (0, 1). ThenS has

the density

_ [o(2)/®(Swy), 2> Sa,
P) = {0, z < Sqy,

wherep(-) is the density for the standard normal distribution a_lr(d:) = [7 ¢(z) dz.

Writing the expectation explicitly with the density Sfyields

N, —1 o°
q)(S(l)) S exp7(z — 5(1)))90(2) dz. (13)

E(TSw) =
Next, we replacep(z) by (2r)~1/?2 exp(-22/2) in the integrand in(13), complete the square in

the exponent and use the definitioni@:) to obtain

(N. — 1) exp(TS(l) + 7_2/2) q_)(7- + S(l))
D(S(1)) '

E(T|Sw) = (14)

The behavior of Gaussain order statistics, such as the mmiof a sample, are well known

(David and Nagaraja 2003). An important result is thais N, — oo,

Sy = —y/2logN. +0,(1). (15)

Thus, sinceS(y) is becoming large and negati\xE(S(l)) approaches one and may be ignored in

(14) when calculating the asymptotic behaviorBE(fl"| S(1)).

2 Arandom variableX = o,(1) asa — oo if Pr[|X| > §] — Oforall§ >0

13



Now suppose that/,/log N, — co asN. — oo. In this limit, 7+5(1) ~ 7(1—v/2logN. /1) —
oo and so, by the standard approximation to the behavidr tifr large positive values of its ar-

gument,

o(T +5(1)

(7 + Sqpy) = P

(1 +0p(1)), (16)

which may be easily derived with integration by parts (egrtion 6.3 of Bender and Orszag
1978).

Substituting (16) in (14), we conclude after some algebaa th

o(Sw) v2 |09N6_

E'(T|S(1)) ~ (N.—-1) |S(1)| -

(17)

But, reversing the reasoning that led to (16) giy€S(1))/|S)| = P(S(1)), whered(z) = 1 —

d_J(x) is the cumulative distribution function (cdf) for the steand Gaussian. Thus,

V2Tog N,
E(T|Sq) ~ NGCD(S(l))fg. (18)
asN, — oo.
Taking the expectation of (18) ovéyy) then gives
V2Iog N,
E(T) = EQ/wgy,) — 1~ Y209 (19)

T

To see this, recall that evaluating the cdf of a random véiabthe value of the random vari-
able, as inP(S(y)), yields a random variable with a uniform distribution on1[pD This property
underlies the use of rank histograms as diagnostics of dsledorecasts (Hamill 2001 and ref-
erences therein) and is known in statistics as the “proityabitegral transform.” Thus®p(S(1))

is distributed as the minimum of a sample of si¥g from a uniform distribution and’[®(S(1))] ~

1/N.. In the next section, we will confirm (19) with direct simutats.

14



Equation (19) implies that the particle filter will sufferllapse asymptotically ifV, <<
exp@?/2). More generallyN, must increase exponentially witff in order to keepy(n.,) fixed
ast increases. This exponential dependenc&’obn 72 is consistent with the simulation re-

sults of section 3, where? o N,,.

In contrast to the most obvious intuition, the asymptotibaaor ofw(y ) given in (19)
does not depend directly on the state dimens¥gn Instead, the situation is more subtte?,
a measure of the variability of the observation priors, oaatthe maximum weight. The dimen-
sionality of the state enters only implicitly, via the apyiroation thatS; is asymptotically Gaus-
sian, which requires tha¥, be asymptotically large. One can then thinkréfas an equivalent
state dimension, in the sense thatis the dimension of the identity-prior, identity-obseivat

example (in section 3) that would have the same collapseeptiep.

5. THE GAUSSIAN-GAUSSIAN CASE

The analysis in the previous section focused on situatiomghich the log likelihoods for
the observations (considered as random functions of tlog)priere mutually independent and
identically distributed. In general, however, the obsgovalikelihoods need not be i.i.d., since
the state variables are correlated in the prior distrilbugind observations may depend on mul-
tiple state variables. In this section, we consider the cdseGaussian prior, Gaussian observa-
tion errors and linea, where analytic progress is possible even for general poeariances

and generaH.
15



Let the priorx ~ N(0, P) and the observation errer~ N (0, R). We may assume that both
x ande have mean zero since, if the observations depend lineartgestate E(y) = HE(X)
andp(y|x) is unchanged if is replaced by — E(y) andx by x — E(X).

For Gaussian observation errerghe transformatioy’ = R~/?y also leaveg(y|x) un-
changed but results in caf) = covR~/%¢) = |. Further simplification comes from diagonal-
izing covR~Y/2Hx) via an additional orthogonal transformation in the obation space. Let
y” = QTy’, whereQ is the matrix of eigenvectors of cdR( 1/2Hx) with corresponding eigen-
values?, j = 1,..., N; then covQ"R~/2Hx) = diagQf, . . ., A%, ), while €’ = Q¢ still has
identity covariance ang(y|x) is again unchanged becau3ds orthogonal. [Anderson (2001)
presents a similar transformation that diagonalizes tbblpm in terms of the state variables,

rather than the observation variables.] We therefore asswithout loss of generality, that
R=1, covHx)=HPHT =diag(\i,..., %), (20)

and drop primes in the sequel.
a. Analysis of the observation likelihood

With the assumptions (20), the observation errors are iemidgnt, sq)(y0|xzf ) can be writ-
ten in terms of a sum over the log-likelihools as in (6). In addition, the pdf for each compo-

nent of the observations is Gaussian with unit variance givenx/, meanHx/. Thus,

(7 — (HxD),) +e.

NI =

Vij=—

The additive constant results from the normalization of the Gaussian density aay be omit-

ted w.l.o.g. since it cancels in the calculation of the wesgh.

16



We wish to approximate the observation likelihood as in [)is requireszj.\[;1 Vi; to be
approximately Gaussian with mearand variance-2. Leaving aside for the moment the condi-
tions under which the sum is approximately Gaussian, thenraad variance givey® of Z?’;’l Vij
can be calculated directly using (20) together with the proes of the standard normal distribu-

tion and the fact that th&;; are independent asvaries [as in (7b)] . This yields

N, 1 N,
u=E<Xﬁ%)=—§ZXﬁ+%ﬂ, (21a)
j=1 i=1
and
Ny Ny 1
7% = var (231‘/]) =X (52 +u%). (21)
J= J=

Equations (21) still depend on the specific realizayémof the observations. Proceeding
rigorously would require taking the expectation of (19) oye Here, we simply assume that
expectation may be approximated by replacing (19) by its expectation over®. Using the

fact thatE(y9?) = A% + 1, we have

1Y,
Ewp—ézcﬁ+g, (22a)
j=1
and
2 -2 2 3.2
E(r?) =3 22(1+2)2). 22
(%=3 ¥ (1+39) @2)

As discussed in section 3 of Bickel et al. (2007)Aif > Ao > ..., the distribution ofS; =

(> Vi; — )/ 7 converges to a standard GaussiamNgs— oo if and only if
Ny
Y A% — oo (23)
j=1

That is,.S; converges to a Gaussian when no single eigenvalue or sejerfw@lues dominate

the sum of squares: (23) implies that m@gx)/ > A, — 0 asN,, — co. The condition (23) also

means thai? — oo, which in turn leads to collapse if lay, /7% — O.

17



On the other hand, in the case that (23) is not satisfied, thealed log likelihood con-
verges to a quantity which doest have a Gaussian distribution. Collapse does not occur since
the updated ensemble empirical distribution convergekedrtie posterior ad/, — oo, what-

everN, may be.
b. Simulations

First, we check the asymptotic expression (1 /wy,)) — 1 as a function ofV, andV,,,
given in (19), for the Gaussian-Gaussian case. For simypllet \; =1,5=1,..., N, (as in the

example of section 2). Then (22b) implies thz¢r?) = 5N, /2 and (19) becomes

E(L/w,) — 1~ \/4/5\/log(Ne) /N, (24)

This approximation is valid whefV, is large enough that the sample minimum follows (15)
andN, is large enough that log{) /N, is small. To capture the appropriate asymptotic regime,
we have performed simulations with, = N;*, « = 0.75, 0.875, 1.0, 1.25),, varying over
a dozen values between 600 and 3000, B}/ w(y,)) approximated by averaging over 1000
realizations of the experiment. As can be seen from Fig.—42(1/w(y,)) has an approximately
linear relation to\/m, though considerable scatter is present. The best-fit dinleet
simulation results has a slope of 0.96 with a 95% confidentegvial of +0.087, which captures
the predicted slope qf/4/5 ~ 0.89.

Equation (19) also implies that asymptotic collapse of thdiple filter depends only on
T rather than the specific sequenice, j = 1,..., N, }. To illustrate that- does control col-
lapse, we consider varioussequences by settinﬁ = ¢j~?. In this case, the simulations fix

N, = 4 x 10*andN. = 1C° while 9 takes the values 0.3, 0.5 and 0.7 arid varied such that
18



substituting (22b) in (19) gives.01 < E(1/w(,)) — 1 < 0.075. These values are again chosen
to capture the appropriate asymptotic regime where the alared log-likelihoods; is approx-
imately Gaussian. The expectatidifl/wy,)) is approximated by averaging over 400 realiza-

tions of the experiment.

Figure 5 shows results as a function\@2log NV, /7. As predicted by (19)E(1/wx.)) de-
pends mainly orr rather than on the specificsequence . The simulations thus confirm the va-
lidity of (19) and, in particular, the control of the maximuseight byr. Nevertheless, some
limited scatter around the theoretical prediction remaitsich arises from weak dependence of
E(1/w.)) on theX sequence for finite. We defer to a subsequent study a more detailed ex-
amination of the behavior of the maximum weight for finitand NV, and the limits of validity

of (19).
6. MULTIVARIATE CAUCHY OBSERVATION-ERROR DISTRIBUTION

Van Leeuwen (2003) proposes the use of a multivariate Cadisitbution for the observa-
tion error to avoid collapse and gives some numerical resulpporting his claim. It is argued
in Bengtsson et al. (2007) that collapse still occurs buterebowly with such an observation-

error distribution. Specifically, they show collapse ishally governed by

log N,

log N,
— 0
‘2 Y

Ny

log (25)

This condition is of course equivalent to 183 /N, — 0, sincete™* — 0if t — oo, but it

suggests slow collapse.
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Intiutively, what happens is that éfhas a multivariate Cauchy distribution, thecan be

written as

€= |ZNy+l|_1(Z17 KR ZNy)7

wherezy, ..., zyy are i.i.d. N(0, 1). For givenzy +1 close to O, the errors have very large scale
Gaussian tails. This makes collapse harder because thpdsterior resembles the prior, imply-

ing that the observations have relatively little infornoati
7. CONCLUSIONS

Particle filters have a well-known tendency for the partigkgghts to collapse, with one
member receiving a posterior weight close to unity. We h#ustrated this tendency through
simulations of the particle-filter update for the simplesaraple, in which the priors for each of
N, state variables are i.i.d. and Gaussian, and the obsamsadie of each state variable with
independent, Gaussian errors. In this case, avoidingps@land its detrimental effects can re-
quire very large ensemble sizes even for modeMNgte The simulations indicate that the ensem-
ble sizeN. must increase exponentially witki, in order for the posterior mean from the parti-
cle filter to have expected error smaller than either thergnidhe observations. Fa¥, = 100,

the posterior mean will typically be worse than either themor the observations unlesé. >

106.

Asymptotic analysis, following Bengtsson et al. (2007) &ickel et al. (2007), provides
precise conditions for collapse either in the case of idloservation likelihoods or when both
the prior and the observation errors are Gaussian and tleai®n operator is linear. The

asymptotic result holds wheN, is large andr-?, the variance of the observation log-likelihood
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defined in (7b), becomes large and has an approximately Gaudistribution. Then, in the
limit that 7—1/N, — 0, the maximum weighty(y. satisfiesE(1/wy.)) ~ 1 +7-1/2TogN.
The maximum weight therefore approaches one (and collapse$) as increases unless the
ensemble sizév, grows exponentially withr.

It is thus not the state dimension per se that matters foapsd, but rather, which de-
pends on both the variability of the prior and the charasties of the observations. Still, one
may think of72 as an effective dimension, as it gives the dimension of thatity-prior, identity-
observation Gaussian system (as in section 3) that woule tievsame collapse properties. This
analogy is only useful, however, when the normalized olaem log-likelihoodsS; defined in
(7a) has an approximately Gaussian distribution, whicliireg thatV,. be large.

Our results thus point to a fundamental obstacle to the egujbin of particle filters in high-
dimensional systems. Nevertheless, some limitationsisfstiudy will need to be addressed be-
fore the potential of particle filtering in high dimensiosscompletely clear.

First, the simulations and asymptotic theory presented have not dealt with the most
general situation, namely, when the prior and observatimason-Gaussian and have non-trivial
dependencies among their components. There is no obviassndo expect that the general
case should have less stringent requirement®&’poand we speculate that the Gaussian-Gaussian
results of section 5 will still be informative even for nora@sian systems.

Second, the asymptotic theory pertains to the behavioreofrthximum weight but says
nothing about how the tendency for collapse might degradetiality of the particle-filter up-
date. Indeed, the update may be poor long before the maximeightvapproaches unity, as il-

lustrated by Figs. 2 and 3. What is needed is practical geelan ensemble size for a given
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problem with finiteV,,, N, andr. Though rigorous asymptotic analysis will be difficult, we-a
ticipate that simulations may provide useful empiricabsuto guide the choice of ensemble size.

Third, we have not addressed the possible effects of seqilgmtycling the particle filter
given observations at multiple instants in time. Overajltling must increase the tendency for
collapse of the particle filter. The quantitative effectwewer, will depend on the resampling
strategy, which again makes analytic progress unlikely.

Finally, we have not considered resampling algorithmsgctiaire frequently employed to
counteract the particle filter's tendency for collapse &f #msemble. We emphasize that resam-
pling strategies that do not alter the update step are uplikeovercome the need for very large
N., since they do not improve the estimate of the posterioridigion but merely avoid carry-
ing members with very small weights further in the algorithitnis conceivable that the required
N, might be reduced by splitting a large set of observationis\ala single time into several
batches, and then assimilating the batches serially wiamgling after each update step. Al-
ternatively, one might identify states in the past that @¥blve under the system dynamics to
become consistent with present observations, therebyirggithe need for large ensembles of
present states when updating given present observatiarsioG et al. (1993) term this process
“editing,” and a similar idea is employed by Pitt and Sheph@d©99). Such a scheme, however,
would likely demand very large ensembles of past states.

As noted in the introduction, both van Leeuwen (2003) anduZéical. (2006) have applied
particle filters to systems of dimension significantly largen 100. In Zhou et al., however,
each update is based on only a single observation (and ordp&&vations total are assimi-

lated): assuming that the prior uncertainty is comparabléé observation variance? < 28
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in their case and their ensemble size£)§1000) would be adequate based on Fig. 3. Based on
the characteristics of the sea-surface height obsengtissimilated by van Leeuwen, we esti-
mate that the particle-filter update use€L00) observations at each (daily) analysis. Allowing
for the possibility that nearby observations are signifiiyacorrelated owing to the relatively

large scales emphasized by sea-surface height, then vamveais use of 500-1000 ensemble
members would seem to be at the edge of where our results waliéte collapse to occur.

Consistent with this, van Leeuwen notes a strong tendenayoltapse.

Fundamentally, the particle filter suffers collapse in haliilnensional problems because the
prior and posterior distributions are nearly mutually silag, so that any sample from the prior
distribution has exceptionally small probability undee fhosterior distribution. For example, in
the Gaussian, i.i.d. case, the prior and posterior didiabe have almost all their mass confined

to the neighborhood of hyper-spheres with different radd different centers.

Another way of looking at the cause of collapse is that theghisi of different members
for any chosen state variable are influencedlbybservations, even if those observations are
nearly independent of the particular state variable. Thegbafilter thus inherently overesti-
mates the information available in the observations aneresiimates the uncertainty of the
posterior distribution. Similar problems occur for the BnKnd, for spatially distributed sys-
tems with finite correlation lengths (such as most geoplysigstems), can be reduced by ex-
plicitly restricting any observation’s influence to somatglly local neighborhod. This moti-
vates the development of nonlinear, non-Gaussian enseasbimilation schemes that perform

spatially local updates, as in Bengtsson et al. (2003) olirdand Hunt (2007).
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Figure 1. Histograms of max; for N, = 10, 30, 100 andV, = 10° from the particle-filter

simulations described in texiV, = 10%, x ~ N(0,1), N, = N, H =1 ande ~ N(0,1)].
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Figure 2. The ensemble si2é. as a function ofV,, (or V) required if the posterior mean es-
timated by the particle filter is to have average squared &ss than the prior or observa-
tions, in the simple example considered in the text. Agtershow the simulation results,

averaged over 400 realizations. The best fit line is giveroy,|N. = 0.05N,, + 0.78.
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Figure 3. The ensemble si2¢. as a function ofV,, (or IV,) such that max; averaged over
400 realizations is less than 0.6 (plus signs), 0.7 (ciyadesl 0.8 (asterisks) in the simple

example considered in the text.
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Figure 4. Evaluation of (19) against simulations in the ck‘gse: 1,;=1,...,N,. For each of
60 (IVy, IV.) pairs as detailed in the text(1/w(y,)) was estimated from an average of 1000
realizations of the particle-filter update. The best-fielto the data, given by(1/ww,)) —

1 = —0.006 + 0964, /log(N.)/N,, is indicated by the solid line, while the prediction (24) is

shown by a dashed line.
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Figure 5. Evaluation of (19) against simulations in the ck‘gse: cj’, i =1,...,N,. The pa-
rameterg) andc are varied as described in the text, wiNg = 4 x 10° andN, = 10°
are fixed. The expectatiofi(1/w(y,)) was estimated by averaging over 400 realizations of
the particle-filter update. The best-fit line to the dataggiby F(1/wy.)) — 1 = 0.006 +
1.008,/2log N, /7 is indicated by the solid line, while the prediction (19) o®n by a

dashed line.
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