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Abstract. We consider the problem of detecting periodicity in the rate func-
tion of a point process or a marked point process, motivated by the problem
of detecting γ-ray pulsars. The detection problem poses both theoretical and
computational challenges. On the theoretical side, there are no compelling opti-
mality results that dictate the choice of a detection algorithm and the properties
of detection procedures can be quite difficult to analyze. On the computational
side, searching over a range of frequency and frequency drift can be a daunting
task, even for a record consisting of only a thousand or so events. We discuss
a class of detection procedures, weighted quadratic test statistics arising from
likelihood expressions, whose properties we can understand and which do not
impose excessive computational burdens. We show how knowledge of the point
spread function associated with photon arrivals can be incorporated to improve
power. We show that if a search over frequencies is conducted by discretizing
a frequency band, the discretization must be very fine and we discuss the use
of integration over frequency bands as an alternative. We also discuss the use
of extreme value theory in conjunction with simulation in assessing statistical
significance for such a search.

1. Introduction

Much of astronomical data analysis involves the attempt to detect and charac-
terize a variable, possibly periodic, signal in the presence of a relatively intense
background or with sparse measurements. Periodic sources are known with peri-
ods ranging from milliseconds for pulsars (rotating magnetized neutron stars) to
months or longer for eclipsing binary star systems. This paper is concerned with
the problem of detecting source periodicity from a sequence of arrival times.

Thus, consider an idealized detection problem: photon arrival times 0 <
t1 < · · · < tn < T are recorded. The underlying process is Poisson with rate
function λ(t) and we wish to test whether λ(t) is periodic or constant. Let us
even assume initially that the period P << T is known; as will be shown below,
the detection problem is then essentially equivalent to detecting deviations from
uniformity of the phased arrival times ui = ti mod P . It can be thus viewed as
testing goodness of fit of the model that the ui are i.i.d. uniform on the interval
[0, 1] versus the alternative that they come from some other distribution, and
we will assume that λ(t) is not specified, so the alternative distribution is not
specified.

This seems like an ancient and tightly specified problem, and it is natural
to ask if there is an optimal detection procedure. The short answer is that
there is not: a detection algorithm optimal for one function λ(t) will not be

1



2 Bickel, Kleijn, and Rice

optimal for another function. No matter how clever you are, no matter how
rich the dictionary from which you adaptively compose a detection statistic,
no matter how multilayered your hierarchical prior, your procedure will not
be globally optimal. The long answer is interesting and subtle; for a good
account see Chapter 14 of Lehmann and Romano (2005), which includes a precise
statement and discussion of the following result (Janssen 2000): alternative
probability densities have components in an infinite number of directions (as in
a Fourier expansion) and any test can achieve high asymptotic power against
local alternatives for at most a finite number of directions. In other words,
associated with any particular test is a finite dimensional collection of targets
and it is only for such targets that it is highly sensitive. Fortunately, the number
of such directions grows with the strength of the signal and we expect that for
directions highly correlated with ones at which the test is aimed there will be
substantial power. Bickel et al. (2006) discuss the construction of tests designed
to concentrate power in a number of orthogonal directions. As Jannsen’s result
suggests, these tests have low power in directions orthogonal to the ones chosen.

In the case of γ-ray pulsars the actual situation is substantially more com-
plicated than this idealization, because of a variety of factors:

• The frequency may be unknown and be anywhere in the range of about 1
to 40 Hz.

• The frequency of a rotation-powered pulsar decreases because the pulsar
spins down as it loses energy.

• The frequency may jump discontinuously, due presumably to stellar quakes.

• As mentioned above, the pulsars are seen against a bright celestial fore-
ground and the angular resolution of the γ-ray telescope is relatively poor.
The point spread function is energy dependent.

• The arrival times of the photons must be corrected for the location of the
satellite and of the earth in its orbit about the sun, and for the delay due
to the gravitational potential. These corrections depend on the location
of the source, which may not be precisely known.

• Photons from a source are not recorded at all times, but only during certain
viewing periods. EGRET viewing periods were typically one to two weeks
in duration and during a viewing period, detections from any particular
point source were modulated by occulations by the Earth. Also, photons
may not be recorded because of “dead times”—for a short time after the
detection of a photon, the detector is dead, so there is a minimum interval
between detected events.

The challenges are daunting; a heroic search effort (Chandler et al. 2001) did
not reveal any hitherto unknown γ-ray pulsars.

This paper is mainly concerned with a class of procedures which target
specified directions. Some of these procedures have already been proposed in
the literature, but we attempt to give a unified perspective and provide analysis
which gives insights into their properties. The remainder of the paper is orga-
nized as follows: In Section 2 we describe the construction of a score test at a
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fixed frequency, relate it to well-known classical tests, and consider its power. In
Section 3, we propose a method for integrating over frequency bands in a search
as an alternative to a discretized search and show how an eigenfunction expan-
sion can be used to computational advantage. In Section 4 we describe how the
procedures described in previous sections are naturally extended to incorporate
frequency drift. In Section 5 we discuss the possibility of using extreme value
theory to assess statistical significance in a blind search over a wide frequency
range. Section 6 consists of some concluding remarks.

2. Score test at a fixed frequency

We first consider the simple situation in which the frequency f is specified and
there is no drift. Let ν0(t) be a probability density on [0, 1], extended periodically
with Fourier expansion

ν0(t) =
∑

n

αne
2πint (1)

If ντ (t) = ν0(t+ τ)

ντ (t) =
∑

n

αne
2πint+2πinτ (2)

Here αn is the amplitude of the n-th harmonic and nτ is its phase. We consider
testing the hypothesis that the rate is constant versus an alternative target
with shape specified by ν0(t) and frequency f . Let φ(t) = ft and consider a
Poisson process of photon arrivals. Let the possibly energy dependent point-
spread function of the detector be w(z|e), where z is the spatial variable and e
denotes energy. Our model for the rate function of the Poisson process is

λ(t|θ, τ, µ, f) = µ[(1 − θ) + θντ (φ(t))], 0 ≤ θ ≤ 1 (3)

a mixture of background and periodic source. This can be directly modified
to reflect periods of time during which the detector was not active (due to
occultations for example) by setting λ(t) = 0 during those time intervals.

The likelihood given (tj , ej , zj), the arrival times, energies, and locations of
the photons is

L(µ, θ, f, τ) = µn
∏

j

[(1 − θ) + θwjντ (φ(tj))] exp[−

∫ T

0
λ(t|θ, τ, µ, f)dt] (4)

where wj = w(zj |ej). A classical generalized likelihood ratio test would entail
fitting the light curve under the null and alternative models. A score test, or Rao
test, (Lehmann and Romano 2005), has the advantage of not requiring the latter
step and has essentially the same asymptotic properties as does the likelihood
ratio test. To construct a score test, differentiate the log likelihood with respect
to θ and evaluate at θ = 0. This gives

`′(µ, f, τ) =

∫ T

0
[ντ (φ(t)) − 1]dW (t) − µ

∫ T

0
[ντ (φ(t)) − 1]dt (5)

where W (t) places weight wj at tj. We will neglect the second term on the
grounds that T is very large compared to 1/f . (If it were not ignored, we would
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estimate µ under the null by N(T )/T . This would be important to do if T was
not large compared to 1/f . ) The statistic then only depends on (f, τ) through

S(f, τ) =

∫ T

0
ντ (φ(t))dW (t) (6)

=

∫ T

0

∑

n

αne
2πinft+2πinτdW (t) (7)

=
∑

n

αnAne
2πinτ (8)

where

An =

∫ T

0
e2πinftdW (t) (9)

=
∑

j

wje
2πinftj (10)

To construct an invariant test, we square S(f, τ) and integrate from 0 to 1 with
respect to τ . Observe that the Fourier coefficients of S(f, τ) as a function of τ
are αnAn, so that by Parseval’s theorem

∫ 1

0
|S(f, τ)|2dτ =

∑

n

|αnAn|
2 (11)

=
∑

n

|αn|
2|An|

2 (12)

Let Q(f) =
∑

n |αn|
2|An(f)|2. It is noteworthy that this test statistic only

depends upon the amplitudes of the Fourier coefficients, but not their phases.
One advantage of this construction is that it incorporates recorded energies

and directions of photon arrivals in a principled and natural way, avoiding the
necessity of making hard cuts. In empirical tests, we have found a resulting
increase in power.

2.1. Relationship to some classical tests

In the case that the weights wj are all equal to 1, various choices of |αn| lead
to different goodness of fit tests against uniformity for arrival times which have
been folded onto the circle (observe that (6) only depends on the arrival times
tj through sj = φ(tj) mod 1 since ν(·) is periodic). The statistic Q(f) was
proposed in (Beran 1969) and shown to be locally most powerful invariant in
the direction ν() at the frequency f . Truncating the expansion after n = 1
gives Rayleigh’s test. Setting |αn|

2 = πn−2 gives Watson’s test (an invariant
version of Cramer-von Mises). If |αn| = 1, n ≤ m and 0 otherwise, the Z2

m test
(Buccheri et al. 1983) results. The classic text, Mardia (1972), describes many
of these tests and others as well; see also Chapter 14 of Lehmann and Romano
(2005), where they are referred to as weighted quadratic test statistics.
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2.2. Relationship to tests based on density estimation

Consider the un-weighted case. Then S(f, τ) =
∑

j ν0(τ + sj). Since ν0(t) is a
probability density, this can be viewed as a kernel density estimate, m̂(τ), say.
A goodness of fit test against the uniform on [0, 1] is

∫ 1

0
[m̂(τ) − 1]2dτ =

∫ 1

0
m̂2(τ)dτ − 1 (13)

and
∫ 1
0 m̂

2(τ)dτ = Q(f). Using a rectangular kernel with support on [0, h]
would amount to a continuous version of a chi-square goodness-of-fit test with
h−1 bins. A convenient way to construct kernels and their Fourier series is to
view the kernels as spectral densities and the Fourier series as the corresponding
autocorrelation functions. For example, for an AR(1) process

ν0(t) =
1 − β2

1 + β2 − 2β cos(2πt)
(14)

αn = |β|n (15)

Kernel density estimation involves a choice of bandwidth, which tends to 0 as
the sample size increases. For the AR(1), as β → 1, the bandwidth tends to 0,
the kernel becomes more peaked around 0, and its spectrum spreads out into
higher frequencies. For the uniform kernel, the bandwidth is h. The choice of a
small bandwidth, appropriate for density estimation, would amount to targeting
the test in the direction of a sharply spiked ν0(·) with substantial high frequency
content, which would not be appropriate for detection of low frequency objects
(see remarks on power below). In DeJager et al. (1989) bandwidth selection
methods were used to adaptively choose a truncation point for a trigonmetric
expansion; it is difficult to analyze the properties of this modification and to
see what price is paid for adaptation, but the analysis in the next section does
indicate that an effective density estimate may not be especially effective for the
purpose of detection.

2.3. Null distribution and power

Since the n = 0 term contains no information about harmonic content in the sig-
nal, we consider the test statistic QT = T−1 ∑

n6=0 |αn|
2|An|

2 in the unweighted
case with an hypothesized frequency f0. To derive expressions related to power,
we need to calculate

E|An|
2 = E

∣

∣

∣

∣

∣

∫ T

0
e2πinf0tdN(t)

∣

∣

∣

∣

∣

2

(16)

= E

∫ T

0

∫ T

0
e2πinf0(t−s)dN(t)dN(s) (17)

using
E[dN(t)dN(s)] = λ(t)λ(s)dsdt+ λ(t)δ(s− t)dsdt (18)

Under the null, λ(t) = µ. Here and later we will use the identity
∫ T

0
eiωtdt = TeiωT/2 sin(ωT/2)

ωT/2
(19)

= IT (ω) (20)
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The first term of (18) then gives

µ2

∣

∣

∣

∣

∣

∫ T

0
e2πinf0tdt

∣

∣

∣

∣

∣

2

= µ2 sin2(πnf0T )

(πnf0)2
(21)

and the second term gives µT . Thus, under the null,

E(QT ) ≈ µ
∑

n6=0

|αn|
2 (22)

For later use, we write the expression above as E0 =
∑

n6=0 E0n. Also, under

the null 2T−1|An|
2 is approximately distributed as a µ times a chi-squared ran-

dom variable with two degrees of freedom, so V ar(T −1|An|
2) ≈ µ2. From the

orthogonality of the complex exponentials, |An|
2 is approximately independent

of |Am|2, n 6= m. Then

V ar(QT ) ≈ µ2
∑

n6=0

|αn|
4 (23)

Now consider the behavior of the statistic under an alternative for which the
expected total number of events is the same but which also contains a periodic
component. Suppose that λ(t) = µ[(1 − θ) + θγ(t)] where γ(t) is periodic with
frequency f , with the actual light curve γ(t) not necessarily equal to the target
ν(t) and f not necessarily equal to the specified frequency f0. Let γ(t) have the
Fourier expansion

γ(t) =
∑

k

γke
2πkf0t (24)

Let f0 = f + δ/T . The second term in (18) again makes a contribution to
E(|An|

2) equal to E0. For the first term, let

ωk = 2πnf + 2πkf + 2πkδ/T (25)

Then

E|An|
2 −E0n = µ2

∣

∣

∣

∣

∣

(1 − θ)IT (2πnf) + θ
∑

k

γkIT (ωk)

∣

∣

∣

∣

∣

2

(26)

The leading contribution is that from the term in the sum for which k = −n,

E|An|
2 −E0n ≈ µ2θ2

∣

∣

∣

∣

γ−ne
−πinδT

sin(πnδ)

πnδ

∣

∣

∣

∣

2

(27)

= µ2θ2T 2|γn|
2

∣

∣

∣

∣

sin(πnδ)

πnδ

∣

∣

∣

∣

2

(28)

Thus

E(QT ) −E0 ≈ µ2θ2T
∑

n6=0

|αn|
2|γn|

2

∣

∣

∣

∣

sin(πnδ)

πnδ

∣

∣

∣

∣

2

(29)

The n-th harmonic will only contribute to the power if |γn| is substantial and
if nδ is small. Asymptotically, power will be lost unless δ = o(T −1). Another
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way to understand the necessity of oversampling is to observe that unless the
specified frequency is within o(T−1) of the true frequency, the first and last
photons will be out of phase.

Figure 1 shows Q(f) (Rayleigh statistic) in units of standard deviations
near the strong first harmonic of Geminga. If it were computed only at frequen-
cies of the form k/T , the test statistic would be about 70 standard deviations,
whereas the value at the peak is about 120 standard deviations. The signal is
so overwhelmingly strong that it would not make a practical difference in this
case, but for a weaker signal a factor of two could well be important in a blind
search, so oversampling (relative to T−1 spacing) is necessary.

The power of the test is indicated by the ratio of (29) to the standard devia-
tion under the null (23). It thus depends on the strength of the signal (µ, θ), the
duration of observation (T ), the correlation between the target shape ({|αn|

2})
and the signal shape ({|γn|

2}), and the frequency resolution δ. Inclusion of
higher harmonics in the test statistic is thus only beneficial if the signal contains
substantial power in those harmonics and if the sampling is fine. Otherwise, the
cost in variance of including them may more than offset potential gains. Viewed
from this perspective, tests based on density estimation with a small bandwidth
are not attractive unless the light curve has substantial high frequency compo-
nents and the target frequency is very close to the actual frequency.

We can tie this discussion to our comments on power in the introduction. A
direction in the alternative corresponds to a specification of shape and frequency,
f and {|γn|

2}, in relation to those at which the test is targeted, f0 and {|αn|
2}.

Our analysis shows that, as expected, we do obtain power for a shape and
frequency close to those at which we have aimed. However, the analysis also
shows that whereas convergence of {|αn|

2} to {|γn|
2} at a rate r(T ) implies that

power as measured by signal to noise ratio increases at the same rate, f − f0

must tend to 0 at rate r(T )/T to obtain a power increase of order r(T ).

3. Searching over frequencies: integration as an alternative to dis-
cretization

We have seen above that when the frequency is not known precisely, it is desirable
to search over a grid which is fine compared to the spacing of the natural Fourier
frequencies. As an alternative to discretization, we propose integrating over a
range of frequencies around the proposed frequency f0. Integration should also
be less sensitive to frequency glitches and drift. Thus consider integrating S 2(f)
using a symmetric density, g(f), centered at f0. We have to evaluate

Ān =

∫

|An(f)|2g(f)df (30)

=

∫ T

0

∫ T

0

∫

f
exp(2πinf(u− v))g(f)dfdW (u)dW (v) (31)

=

∫ T

0

∫ T

0
ĝ(2πn(u − v))dW (u)dW (v) (32)

=
∑

j

∑

k

wjwkĝ(2πn(tj − tk)) (33)
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where

ĝ(t) =

∫ ∞

−∞
eitf g(f)df (34)

The drawback of the expression (33) is that its evaluation requires a number
of operations that is proportional to the square of the number of photons, and
this may impose a huge computational burden if many such integrations are to
be carried out in a search over a very broad frequency range. This cost can be
reduced by diagonalizng the quadratic form. The density g(f) is a translation
by f0 of the density g0(f) which is centered at 0. The kernel ĝ0(2πn(u − v)),
0 ≤ u, v ≤ T can be expanded in eigenfunctions as

ĝ0(2πn(u− v)) =
∑

k

µknψkn(u)ψkn(v) (35)

Since ĝ(t) = eitf0 ĝ0(t),

ĝ(2πn(u− v)) =
∑

k

µkne
2πinuf0ψkn(u)e−2πinvf0ψkn(v) (36)

Using this representation in (33) gives

Ān =
∑

k

µkn

∣

∣

∣

∣

∣

∫ T

0
e2πintf0ψkn(t)dW (t)

∣

∣

∣

∣

∣

2

(37)

=
∑

k

µkn|Vkn|
2 (38)

where

|Vkn|
2 =

∣

∣

∣

∣

∣

∣

∑

j

wje
2πintjf0ψkn(tj)

∣

∣

∣

∣

∣

∣

2

(39)

The test statistic is thus

Q̄ =
∑

n6=0

|αn|
2Ān (40)

=
∑

n6=0

|αn|
2
∑

k

µkn|Vkn|
2 (41)

Note that the evaluations of the eigenvectors do not depend on f0.
We now consider the power of the test statistic Q̄T = T−1Q̄. Under the

null, the expectation is thus the same as in the fixed frequency case above.
Under the alternative, since δ = δ(f) = T (f − f0), from (29), and setting
g(f) = Tg0(T (f − f0))

EQ̄T −E0 = µ2θ2T
∑

n6=0

|αn|
2|γn|

2
∫

∣

∣

∣

∣

sin(πnT (f − f0))

πnT (f − f0)

∣

∣

∣

∣

2

g(f)df (42)

= µ2θ2T
∑

n6=0

|αn|
2|γn|

2
∫

∣

∣

∣

∣

sin(nπu)

nπu

∣

∣

∣

∣

2

g0(u)du (43)
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which should be compared to (29). Examination of this expression shows that
power is still lost, especially for high frequencies. For example, if g(f) is uniform
on f0 ± kT−1 the contribution from |γn|

2 is diminished by a factor of n−1 for
large n, which can be seen using

∫ ∞

−∞

∣

∣

∣

∣

sin(πu)

πu

∣

∣

∣

∣

2

du = 1 (44)

Generally, as the support of g(f) is increased, the power decreases.

3.1. Prolate spheroidal wave functions

The eigenfunctions arising from uniform weighting over a frequency interval are
prolate spheroidal wave functions. They satisfy

∫ 1

−1

sin(c(x− y))

c(x− y)
ψS

k,c(y)dy =
π

c
αk,cψ

S
k,c(x) (45)

Suppose that g0(f) is uniform on [−a, a]. Then the characteristic function is

ĝ(t) =
sin(at)

at
(46)

and we wish to find the eigenfunctions that satisfy

∫ T

0

sin(2πna(u− v))

2πna(u− v)
ψkn(v)dv = µknψkn(u) (47)

With the change of variables, x = 2u/T − 1, y = 2v/T − 1, this becomes

∫ 1

−1

sin(πnaT (x− y))

πnaT (x− y)
ψkn(

T

2
(y + 1))dy =

2

T
µkψkn(

T

2
(x+ 1)) (48)

Let c = πnaT . Then we can relate to the spheroidal wave functions by observing
that the equation above is satisfied if

ψkn(
T

2
(y + 1)) = ψS

k,c(y) (49)

µkn =
π

c
αk,c (50)

That is, the desired eigenfunctions are

ψkn(v) = ψS
k,c(

2v

T
− 1) (51)

We are particularly interested in choices of the form a = k/T , c = πnk. For
example, k = 1 results if we choose to integrate over a range of width 2/T . Table
1 lists the eigenvalues for small values of k. They decay quite rapidly, so the
quadratic form can be approximated well by only a few terms.
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Table 1. Eigenvalues
k = 4 k = 2 k = 1
0.2487 0.4883 0.7817
0.2482 0.3750 0.2065
0.2391 0.1234 0.0116
0.1815 0.0127 0.0002
0.0703 0.0006 0.0000
0.0112 0.0000 0.0000
0.0009 0.0000 0.0000
0.0000 0.0000 0.0000

4. Incorporating frequency drift

Suppose that φ(t) = ft + 1
2 ḟ t

2. Modifying the notation above, we have the
analogue of (12)

Q(f, ḟ) =
∑

n6=0

|αn|
2|An(f, ḟ)|2 (52)

where

An(f, ḟ) =

∫ T

0
e2πinft+πinḟ t2dW (t) (53)

Consider integrating with respect to densities g and h centered at f0 and ḟ0

Q̄n =

∫

f

∫

ḟ
|An(f, ḟ)|2g(f)h(ḟ )dfdḟ

=

∫ T

0

∫ T

0

∫

f

∫

ḟ
e2πinf(u−v)eπinḟ(u2−v2)g(f)h(ḟ )dfdḟdW (u)dW (v)

=

∫ T

0

∫ T

0
ĝ(2πn(u− v))ĥ(πn(u2 − v2))dW (u)dW (v) (54)

We diagonalize the two kernels as before:

ĝ(2πn(u− v)) =
∑

k

µkne
2πinf0ue−2πinf0vψkn(u)ψkn(v) (55)

ĥ(πn(u2 − v2)) =
∑

`

η`ne
πinḟ0u2

e−πinḟ0v2

ϕ`n(u)ϕ`n(v) (56)

Note that in the second equation, the eigenvalues and eigenfunctions are those
of the operator whose kernel is K(u, v) = ĥ0(πn(u2 − v2)), 0 ≤ u, v ≤ T . Using
these representations (54) becomes

Ān =
∑

k

∑

`

µknη`n

∣

∣

∣

∣

∣

∫ T

0
e2πinf0t+πinḟ0t2ψkn(t)ϕ`n(t)dW (t)

∣

∣

∣

∣

∣

2

(57)
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The test statistic is thus

Q̄ =
∑

n6=0

|αn|
2Ān (58)

=
∑

k,`,n

µknη`n|Vkln|
2 (59)

where

Vk`n =
∑

j

wje
2πinf0tjeπinḟ0t2

jψkn(tj)ϕ`n(tj) (60)

In a search over a broad range one would tile the (f, ḟ) plane and calculate
these statistics for each tile element, producing something akin to a two dimen-
sional power spectrum. We illustrate the idea with data from the Vela pulsar for
a single EGRET viewing period. We used all photons with energy greater than
25 MeV and within a conesize of 2 standard deviations. This resulted in 7208
events, which were weighted by an approximate energy dependent Gaussian psf.
The pulse profile of Vela is very sharp, containing two peaks. One should be
able to find it in a drunken blind search. The frequency is about 11.2 Hz and
the drift is about −1.57 × 10−11 Hz/s. We tiled the f × ḟ plane in a narrow
band around the known frequency , with the tiles being of size df = 10−5Hz
and dḟ = 2.5 × 10−12Hz/s. In each bin we calculated a test statistic which was
the equally weighted sum of the contribution from the main frequency and the
first harmonic, integrated using a uniform weight function. Results are displayed
in Figure 2 below. The figure displays the values of the test statistic in units
of standard deviations at locations for which the values were more than four
standard deviations. The structure is interesting. At the true frequency, which
is in the center of the frequency range, the test statistic is maximal near the
true drift, as we would expect. But observe how the smaller values of the test
statistic fan out into higher frequencies for large drift, apparently reflecting some
kind of correlation structure among the statistics. The ridge corresponding to
the true frequency is flanked by parallel ridges; consideration of the frequency
offset reveals that these are caused by gaps in the records due to occultations
by the Earth.

5. Assessing significance

If a search is made over only a narrow frequency band, statistical significance
can be addressed in a straightforward way by simulation. Suppose that the
observation period is composed of segments during which the detector is active
(gaps between these segments can be due to instrumentation protocols and oc-
cultations by the Earth). Suppose that in the j-th segment which is of duration
Tj , there are nj arrivals. The null distribution of the test statistic can then be
simulated by distributing events uniformly over the respective intervals (we are
thus simulating the null distribution conditional on the number of arrivals in
each segment). This can be done many times and the actual observed value of
the test statistic can be compared to the empirical distribution of simulations
under the null.
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Such a simulation is however impractical if the search is over a broad fre-
quency range and drift is allowed as well, since calculating the test statistic
just once might take several days. Thus, some analytical approximation must
be used, perhaps in conjunction with moderate simulation. For example, a
standard approach is to approximate the distribution of the periodogram at
frequency of the the form kT−1 by a chi-square distribution and to bound the
maximum by the Bonferroni inequality—the result would be declared signifi-
cant at level α if the p-value of the maximum were less than α/M , where M
is the total number of frequencies. The potential weakness of this approach is
that the limiting chi-square approximation may well be better in the center of
the distribution than in the extreme tails where it is being used. In the case
of the integrated statistic, the situation is even more complicated—the limiting
distribution can be shown to be that of a weighted sum of chi-square random
variables. Although an analytical expression can derived for the characteristic
function, the resulting approximation may still be dubious in the extreme tails.
It is thus worthwhile to consider alternative approximations. We have made
some preliminary investigations of the use of classical extreme value theory in
conjunction with affordable simulation and initial results are promising.

Consider Mn = max{T1, T2, . . . , Tn} where the Ti are iid random variables.
Classical theory gives that if Mn has a limiting distribution it is of one of three
types. In the case of weighted sums of chi-square random variables, the limit-
ing distribution will be of Gumbel type. If F is the cdf of T , then there is a
normalizing sequence (an, bn) such that

F n(ant+ bn) → exp[− exp(−x)] (61)

The Gumbel limit depends on the tail behavior of F . The existence of a limiting
distribution implies that in a region of the tail around the expected maximum

log[− log F (t)] ∼ −λt+ β (62)

For large t, F (t) is close to 1 and the approximation log[F (t)] ≈ 1−F (t) is good.
Using this in (62) gives

P (T > t+ s|T > t) ≈ e−λs (63)

This again holds in a region around the expected maximum. The conditional
distribution is thus approximately exponential with mean α = 1/λ. See Pickands
(1975) for more detailed discussion.

We thus approximate tail probabilities by

P (T > t+ s) ≈ Pn(T > t)e−s/αn (64)

where Pn is the empirical measure based on simulation and αn is the mean
of the corresponding empirical conditional distribution. A related procedure is
reported in Breiman et al. (1988).

To explore the feasibility of such a procedure and in particular to examine
the sensitivity to the choice of t, we performed a modest empirical experiment
using data from a single EGRET viewing period of the Geminga pulsar, for
which the drift is so small that it does not need to be taken into account.
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The test statistic was an equally weighted sum of the main and first harmonic
integrated with a uniform weight over frequency bins of width 8T −1 = 6.6×10−6

Hz spanning the range 1 to 40 Hz. There were thus about 5.7 × 106 values of
the test statistic (i.e that many frequency bins). The test statistic was almost
50 standard deviations, leaving no room for reasonable doubt. The calculation
took about one day on a single processor. The data were then scrambled once
and the null distribution simulated as described above.

Figure 3 shows the empirical result: log[− logFn(t)] versus t for the simu-
lated null distribution. Qualitatively, the simulated distribution was stable out
to around six standard deviations, and the linear approximation looks reason-
able. Table 2 shows results from the approximation (64) for varying cutoffs t.
The results are reasonably consistent. We feel they would provide a plausible
guide for assessing significance. For example, a short calculation shows that in
order for a Bonferroni-corrected p-value to be less than .01, a test statistic of
about 11 standard deviations or more would be required.

Table 2. Conditional means and tail probability approximations for various
cuttoff values t.

t α P (T > 10) P (T > 15)
3 .4852 3.0 × 10−9 9.9 × 10−14

4 .4548 1.3 × 10−9 2.1 × 10−14

5 .4438 9.4 × 10−10 1.2 × 10−14

6. Concluding remarks

In summary, we have investigated the theoretical properties of a class of detection
tests that includes several commonly known special cases. We have shown that
discretization of frequency finer than T−1 is necessary to attain good power,
especially when the signal has substantial high frequency content. We have
proposed integration over frequency bands as an alternative to fine discretization
and have shown how this can be accomplished with a number of operations
proportional to the number of events, via eigenfunction expansions. We have
tentatively explored the use of extreme value theory in assessing significance of
a search over a broad frequency range.

We have not yet fully implemented these results. One area that remains to
be explored is that of developing a search strategy for covering a broad (f, ḟ)
range. To speed computation, such a search might be implemented by first
constructing a relatively coarse tiling of the (f, ḟ) plane and integrating over
each tile. This coarsening would cause a loss of power, so the tiling would
next be refined in regions for which the values of the test statistics were large.
Alternatively, the observation period could be segmented in blocks with test
statistics combined (incoherently) from the blocks. Coherent searches could
then be carried out in neighborhoods of large test statistics.

We have not touched on Bayesian detection methods (Gregory and Loredo
1992). The natural Bayesian construction in the context above would be to
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place a prior distribution on shape via a prior on the Fourier coefficients of
ν0(t). For example, the coefficients could be modeled as independent mean zero
Gaussians, with decaying variances. See Verdinelli and Wasserman (1998) for
such a construction and discussion of the computation of the Bayes factor, and
for an early proposal on Bayesian density estimation see Brunk (1978). The
computations needed for a broad-band search are formidable indeed.

In nonparametric, or high dimensional problems, the choice of prior has im-
portant consequences, unlike in low dimensional parametric problems in which
the prior can be taken to be uninformative and is typically overwhelmed by
the likelihood. There is an evolving literature on frequentist robustness of non-
parametric Bayes procedures, for example Ghosh and Ramamoorthi (2003), and
many issues are not well understood. In nonparametric problems the prior is
informative and performs crucial smoothing. Bayes factors are particularly sen-
sitive to the choice of priors. The prior is a useful device, but in an infinite
dimensional setting it does not represent prior opinion or a state of knowledge
in the same sense in which it would for coin tossing, making interpretation dif-
ficult. To understand the performance of a Bayesian detection method, and
to compare the effectiveness of different priors and frequentist detection proce-
dures, such as the score tests we have presented, some frequentist calibration
would be informative. For example, suppose we wished to compare the perfor-
mance of two priors and two frequentist procedures. One way to do this would
be to evaluate the probabilities that the Bayes factors were less than unity both
in the presence and the absence of a signal and to relate these to the type I and
type II error probabilities of the frequentist procedures. We are not aware of
any such studies, either theoretical or empirical.

Both the score test and a Bayesian procedure involve choosing a target, via
the choice of the Fourier coefficients, αn, of the score test or in the choice of the
variances of those coefficients for the Bayesian procedure. These choices should
indeed be informed by prior knowledge about the possible range of light curve
shapes. Even though the light curves of only a small number of γ-ray pulsars
are known, using them to shape the target is presumably worthwhile.

Especially in light of the fact that theory alone can not make unequivo-
cal conclusions about the comparative power of detection procedures, empirical
experimentation is crucial. We understand that GLAST plans to make blind
comparisons of a variety of procedures on synthetic signals. The results should
be extremely interesting.
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Figure 1. Test statistics for Geminga
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Figure 2. Test statistics (in units of standard deviations) for the Vela pulsar

as a function of f and ḟ . Only those statistics greater than four standard
deviations are plotted.
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Figure 3. Comparison to extreme value theory: log[− logF (t)] versus t,
where t is in units of standard deviations.


