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Large-scale statistical analysis of data sets associated with genome
sequences plays an important role in modern biology. A key compo-
nent of such statistical analyses is the computation of p-values and
confidence bounds for statistics defined on the genome. Currently
such computation is commonly achieved through ad hoc simulation
measures. The method of randomization, which is at the heart of
these simulation procedures, can significantly affect the resulting sta-
tistical conclusions. Most simulation schemes introduce a variety of
hidden assumptions regarding the nature of the randomness in the
data, resulting in a failure to capture biologically meaningful relation-
ships. To address the need for a method of assessing the significance
of observations within large scale genomic studies, where there of-
ten exists a complex dependency structure between observations, we
propose a unified solution built upon a data subsampling approach.
We propose a piecewise stationary model for genome sequences and
show that the subsampling approach gives correct answers under this
model. We illustrate the method on three simulation studies and two
real data examples.

1. Introduction.

1.1. Background. This paper grew out of a number of examples arising
in data coming from the ENCODE Pilot Project (Birney et al. (2007)),
which is composed of multiple, diverse experiments performed on a targeted
1% of the human genome. Computational analyses of this data are aimed
at revealing new insights about how the information coded in the DNA
blueprint is turned into functioning systems in the living cell. Variations of
some of the methods described here have been applied at various places in
that paper, as well as in Margulies et al. (2007), for assessing significance
and computing confidence bounds for statistics that operate along a genomic
sequence. The background of these methods is described in cookbook form
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in the supplements to those papers, and it is the goal of this paper to present
them rigorously and to develop some necessary refinements.

Essentially, we will argue that, in making inference about statistics com-
puted from “large” stretches of the genome, in the absence of real knowledge
about the evolutionary path which led to the genome in question, the best
we can do is to model the genome by a piecewise stationary ergodic random
process. The variables of this process can be base pair composition or some
other local features, such as various annotated functional elements.

In the purely stationary case some of the types of questions that we will
address, such as tests for independence of point processes, confidence bounds
for expectations of local functions, goodness of fit of models, have been con-
sidered extensively. However, inference for piecewise stationary models ap-
pears not to have been investigated. With the advent of enormous amounts
of genomic data all sorts of inferential questions have arisen. The proposed
model may be the only truly nonparametric approach to the genome, al-
though just as in ordinary nonparametric statistics there are many possible
ways of carrying out inference.

Our methods are based on a development of the resampling schemes of
Politis and Romano (1994), Politis, Romano, and Wolf (1999) and the block
bootstrap methods of Künsch (1989). As we shall see, in many situations,
Gaussian approximations can replace these schemes. But in these situations,
as with the ordinary bootstrap, we believe that a subsampling approach is
valuable for the following reasons:

• Letting the computer do the approximation is much easier.
• Some statistics, such as tests of the Kolmogorov Smirnov type, are

functions of stochastic processes to which a joint Gaussian approxi-
mation applies. Then, limiting distributions can only be computed by
simulation.

• The bootstrap distributions of our statistics show us whether the ap-
proximate Gaussianity we have invoked for the “true” distribution of
these statistics is in fact warranted. This visual confirmation is invalu-
able.

This paper is organized as follows. We begin with some concrete examples
from the ENCODE data as well as other types of genomic data in Section
1.2, and proceed with a motivated description of our model in Section 2. Our
methods are discussed both qualitatively and mathematically in Sections 3
and 4. Sections 5 contains results from simulation studies and real data
analysis. Finally, an appendix with proofs of theorems stated in Sections 3
and 4 completes the paper.



NON PARAMETRIC GENOMIC INFERENCE 3

The statistics and methods discussed in this paper have been imple-
mented in several computing languages and are available for download at
http://encode.dyndns.org/. Each of these implementations runs in nlog(n)
time, where n is the number of instances of the more frequent feature. On a
desktop PC (Intel Core Duo 3Ghz and 2Gb RAM) the Python version takes
over 1000 samples per second for features on the order of 104 instances.

1.2. Motivating Examples. We start with several fundamental questions
that arise in genomic studies.

• Association of functional elements in genomes. In genomic anal-
yses, a natural problem of interest is the association among the dif-
ferent functional sites/features annotated along the DNA sequence.
Its biological motivation comes from the common belief that signif-
icant physical overlapping of functional sites in the genome suggests
biological constraints or relationships. In the ENCODE project, to un-
derstand the possible functional roles of the evolutionarily constrained
sequences that are conserved across multiple species, overlap between
the constrained sequences and several experimental annotations, such
as the 5’UTR, RxFrags, pseudogenes and coding sequences (CDSs),
have been evaluated using the method discussed in this paper. It was
found that the overlap of most experimental annotations with the con-
strained sequences are significantly different from random (Birney et
al., 2007). An illustrative example from The ENCODE Project (Birney
et al., 2007) is detailed in Section 5.1.

• Cooperativity between transcription factor binding sites. In
some situations, it is interesting to study the associations between
neighboring functional sites that do not necessarily overlap. For in-
stance, it is known that transcription factors often work cooperatively
and their binding sites (TFBS) tend to occur in clusters. Consequently,
an effective method to identify interacting transcription factors has
been to evaluate the significance of co-occurrences of their binding
sites in a local genomic region (Kang et al. (2009); Yu et al. (2004)).
This study has the same formulation as the above ENCODE examples
given a functional site defined as follows: for a TFBS of length l at
position i, we define the region (i−m, i + l + m) as a functional site.
Then two overlapping functional sites is equivalent to two neighboring
TFBSs with interdistance less than 2m, and the methods discussed in
this paper for evaluating the significance of overlapping functional fea-
tures can be applied, though we leave this application which involves
considering statistics of the K-S type to a later paper.
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• Correlating DNA copy number with genomic content. Recent
technology has made it possible to assay DNA copy number variation
at a very fine scale alone the genome (For review, see Carter (2007)).
Many studies, e.g. Redon et al. (2006), have shown that such variation
in DNA copy number is a common type of polymorphism in the hu-
man genome. To what extent do these regions of copy number changes
overlap with known genomic features, such as coding sequences? Re-
don et al. performed such an analysis and argued that copy number
variant regions have a significant paucity for coding regions. The p-
values supporting this claim were based on random permutations of
the start locations of the variant segments. This assumes uniformity
and stationarity of the copy number variants. The methods discussed
in this paper for evaluating the significance of overlapping features,
which assumes neither uniformity nor stationarity, can again be ap-
plied to this problem. Actually, the results from our method suggest a
different conclusion on this problem (see section 5.5).

As we have seen in these examples, a common question asked in many
applications is the following: Given the position vectors of two features in
the genome, e.g. “conservation between species” and “transcription start
sites”, and a measure of relatedness between features, e.g. base or region
percentage overlap; how significant is the observed value of the measure?
How does it compare with that which might be observed “at random”?

The essential challenge in the statistical formulation of this problem is
the appropriate modeling of randomness of the genome, since we observe
only one of the multitudes of possible genomes that evolution might have
produced for our and other species.

How have such questions been answered previously? Existing methods
employ varied ways to simulate the locations of features within genomes, but
all center around the uniformity assumption of the features’ start positions:
The features must occur homogeneously in the studied genome region, e.g.
Blakesley et al (2004) and Redon et al. (2006). This assumption ignores
the natural clumping of features as well as the non-stationarity of genome
sequences. Clumping of features is quite common along the genome due to
either the feature’s own characteristic, e.g. transcription factor binding sites
(TFBSs) tend to occur in clusters, or the genome’s evolutionary constraints,
e.g. conserved elements are often found in dense conservation neighborhoods.
Ignoring these natural properties could result in misleading conclusions.

In this paper, we suggest a piecewise stationary model for the genome
(see section 2), and based on it, propose a method to infer the relationships
between features which we view as “nonparametric” as possible (see sections
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4.2 and 4.4). The model is based on assumptions which we demonstrate in
real data examples in Section 1.2 to be plausible.

2. The Piecewise Stationary Model.

2.1. Genomic motivation. We postulate the following for the observed
genomes or genomic regions:

• They can be thought of as a concatenation of a number of regions,
each of which is homogenous in a way we describe below.

• Features that are located very far from each other on the average have
little to do with each other.

• The number of such homogeneous regions is small compared to the
total length of the observed genomes that we consider.

These assumptions, which form the underpinning of our block stationary
model for genomic features, are motivated by earlier studies of DNA se-
quences, which show that there are global shifts in base composition, but
that certain sequence characteristics are locally un-changing. One such char-
acteristic is the GC content. Bernardi et al. (1985) coined the term “iso-
chore” to denote large segments (of length greater than 300 Kb) that have
fairly homogeneous base composition, and especially, constant GC compo-
sition. Even earlier, evidence of segmental DNA structure can be found
in chromosomal banding in polytene chromosomes in drosophila, visible
through the microscope, that result from underlying physical and chemi-
cal structure. These banding patterns are stable enough to be used for the
identification of chromosomes and for genetic mapping, and are physical
evidence for a block stationarity model for the GC content of the genome.

The experimental evidence for segmental genome structure and the in-
creasing availability of DNA sequence data have inspired attempts to com-
putationally segment DNA into statistically homogeneous regions. The pa-
per by Braun and Müller (1998) offers a review of statistical methods de-
veloped for detecting and modeling the inhomogeneity in DNA sequences.
There have been many attempts to segment DNA sequences by both base
composition (Fu and Curnow (1990), Churchill (1989,1992), Li et al (2002))
and chemical characteristics (Li et al. (1998)). Most of these computational
studies concluded that a model that assumes block-wise stationarity gives a
significantly better fit to the data than stationary models (see, for example,
the conclusions of two very different studies by Fickett, Torney, and Wolf
(1992) and Li et al. (1998)).

A subtle issue in the definition of “homogeneity” is the scale at which
the genome is being analyzed. Inhomogeneity at the kilobase resolution, for
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example, might be “smoothed out” in an analysis at the megabase level.
The level of resolution is a modeling issue that must be considered carefully
with the goal of the analysis in mind.

Implicit in our formulation is an “ergodic” hypothesis. We want proba-
bilities to refer to the population of potential genomes. We assume that the
statistics of the genome we have mimic those of the population of genomes.
This is entirely analogous to the ergodic hypothesis that long term time
averages agree with space averages for trajectories of dynamic systems.

2.2. Mathematical formulation. In mathematical terms, the block sta-
tionarity model assumes that we observe a sequence of random variables
{X1, . . . , Xn} positioned linearly along the genomic region of interest. Xk, k =
1, ..., n, may be base composition, or some other measurable feature. We as-
sume that there exist integers τ = τ (n) = (τ0, . . . , τU ), where 0 = τ0 < τ1 <
· · · < τU = n, such that the collections of variables, {Xτi , . . . , Xτi+1} are
separately stationary for each i = 0, . . . , U − 1. We let ni = τi − τi−1 be
the length of the i-th region, and let there be U such regions in total. For
convenience, we introduce the mapping

π : {1, . . . , n} → {(i, j) : 1 ≤ i ≤ U, 1 ≤ j ≤ ni}

which relates the relabeled sequence, {Xij : 1 ≤ i ≤ U, 1 ≤ j ≤ ni} to the
original sequence {X1, . . . , Xn}. We write π = (π1, π2) with π(k) = (i, j) if
and only if k = τi +j. We will use the notations Xij and Xk interchangeably
throughout this paper.

For any k1, k2, let Fk2
k1

be the σ-field generated by Xk1 , . . . , Xk2 . Define
m(k) to be the standard Rosenblatt mixing number (Dedecker et al, 2007),

m(k) = sup{|P(AB)− P(A)P(B)| : A ∈ F l
1, B ∈ Fn

l+k, 1 ≤ l ≤ n− k}.

Then, assumptions 1-3 stated at the beginning of this section translate to
the following:

A1. The sequence {X1, ..., Xn} is piecewise stationary. That is, {Xij : 1 ≤
j ≤ ni} is a stationary sequence for i = 1, . . . , U .

A2. There exists constants c and β > 0 such that m(k) ≤ ck−β for all k.
A3. U/n → 0.

An immediate and important consequence of A1-A3 is that for any fixed
small k, if we define W1 = (X1, . . . , Xk),W2 = (Xk+1, . . . , X2k), . . . ,Wm =
(Xn−k+1, . . . , Xn), where m = n/k, then {W1, . . . , Wm} also obey A1-A3.
This is useful, for example, in the region overlap example considered in the
next section.
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The remarkable feature of these assumptions, which are more general to
our knowledge than any made heretofore in this context, is that they still
allow us to conduct most of the statistical inference of interest. Not surpris-
ingly, these assumptions lead to more conservative estimates of significance
than any of the previous methods.

3. Linear Statistics and Gaussian Approximation. We study the
distribution of a class of linear statistics of interest under the above piece-
wise stationary model. As an illustration, we consider the ENCODE data
examples, and suppose that we are interested in base pair overlap between
Feature A and Feature B. We can represent base pair overlap by defining

Ik = 1 if position k belongs to Feature A and 0 otherwise,
Jk = 1 if position k belongs to Feature B and 0 otherwise.

We can then define Xk = IkJk to be the indicator that position k belongs
to both Feature A and Feature B. Then, for the n = 30 Megabases of the
ENCODE regions, the mean base pair overlap is equal to

X̄ =
n∑

k=1

Xk/n.

Another biologically interesting statistic is the (asymmetric) region over-
lap, defined as follows: Suppose the consecutive feature stretches are T1, ..., TK

with lengths τ1, ..., τK , and the corresponding non-feature stretches S1, ..., Sα

with lengths ρ1, ..., ρα. We assume here that the initial and final stretches
consist of one feature and one non-feature stretch. The complementary sit-
uation, when both initial and final stretches are of the same type is dealt
with similarly. Without loss of generality, suppose the initial stretch is non-
feature. Then, S1 = 1, ..., ρ1, T1 = ρ1 + 1, ..., ρ1 + τ1, S2 = ρ1 + τ1 + 1, ..., ρ1 + τ1 + ρ2,
etc. Using Ii, Ji as indicators of feature identity, we define the (unnor-
malized) region overlap of feature A stretches with feature B stretches as
1
n

∑K
k=1 Vk where Vk = 1 − ∏ {1− Ji : i ∈ Tk}. This statistic is not linear

in terms of functions of single basepairs, but is linear in functions of blocks
Jj of basepairs. These blocks are of random sizes, but it is consistent with
our hypothesis of piecewise stationarity that, except for end effects due to
feature instances crossing segment boundaries, the Vk are also stationary. If
the lengths τ1, ..., τK are negligible compared to n, while K is of the order
of n, we can expect that the mixing hypothesis is also valid.

In general, we focus our attention on statistics that can be expressed as a
function of the mean of g(Xi), where g is some well behaved d-dimensional
vector function to be characterized in later sections. By the flexible definition
of g, this encompasses a wide class of situations.
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First, we consider vector linear statistics of the form Tn(X) = n−1 ∑n
k=1 g(Xk).

We introduce the following notation:

E[Tn] ≡ µ ≡
U∑

i=1

fiµi,

where

µi ≡ E[g(Xi1)],
fi ≡ ni/n,

and

(3.1) Σn ≡ Var(n
1
2 Tn) =

U∑

i=1

fiCi(nfi),

where

Ci(m) = Ci0 + 2
m∑

`=1

Ci`

(
1− (`− 1)

m

)

and

(3.2) Ci0 ≡ Varg(X1), Ci` ≡ Cov
(
g(Xi1), g(Xi(l+1))

)
.

In Theorem 3.1 below, we prove asymptotic Gaussianity of Tn given a few
more technical assumptions:

A4. 1
n

∑
i:ni≤l ni → 0 for all l < ∞.

A5. ∀i, |g|∞ ≤ C < ∞.
A6. 0 < ε0 ≤ ‖Σn‖ ≤ ε−1

0 , for all n, where ‖ · ‖ is a matrix norm.

In particular, A4 implies that the contribution of “small regions” to the
overall statistic must not be too large.

Theorem 3.1. Under conditions A1-A6,

(3.3) n
1
2 Σ

− 1
2

n (Tn − µ) ⇒ N (0, J)

where J is the d× d identity.
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If we have estimates τ̂ of τ which are consistent in a suitably uniform
sense, then estimates of Ci`, Ci(m) using τ̂ in place of τ are also consistent.
However, simply plugging these estimates into (3) does not yield consistent
estimates of σ2 if our approach were to compute confidence intervals by
Gaussian approximation. This is well known for the stationary case. Some
regularization is necessary. We do not pursue this direction but prefer to
approach the inference problem from a resampling point of view – see next
section.

In many cases, the statistics of interest are not linear. For example, in
the analysis of the ENCODE data a more informative statistic is the %bp
overlap defined as

(3.4) B ≡ X̄

D
,

where

D =
n∑

k=1

Ik

is the total base count of feature A.
More conceptually, the region overlap is

(3.5) R ≡ 1
WI

K∑

k=1

Vk,

where WI =
∑n

i=1 Ii−1(1− Ii), the number of Feature A instances.
A standard delta method computation shows that the standard error of

B can be approximated as follows: Let µ(D) and µ(X̄) be respectively the
expectation of D and X̄. Then,

X̄

D
− µ(X̄)

µ(D)
≈ X̄ − µ(X̄)

µ(D)
− µ(X̄)

(D − µ(D))
µ2(D)

,

and hence we can approximate X̄
D by a Gaussian variable with mean µ(X̄)

µ(D)
and variance

(3.6) σ2(B) ≈ σ2(X̄)
µ2(D)

+
µ2(X̄)
µ4(D)

σ2(D)− 2
µ(X̄)
µ3(D)

cov(X̄, D),

where σ2(B), σ2(X̄), σ2(D) are the corresponding variances and Cov(X̄,D)
denotes the covariance. In doing inference, we can use the approximate Gaus-
sianity of B with σ2(B) estimated using the above formula with regularized
sample moments replacing the true moments.
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We also note that goodness of fit or equality of population test statistics,
such as Kolmogorov-Smirnov and many others, can be viewed as functions
of empirical distributions, which themselves are infinite dimensional linear
statistics, and we expect, but have not proved, that the methods discussed
in this paper and the underlying theories apply to those cases as well, under
suitable assumptions.

4. Subsampling Based Methods. Here we propose a subsampling
based approach, in particular, a combined segmentation-block subsampling
method to conduct statistical inference under the piecewise stationary model,
which we call “segmented block subsampling”. In our method, the segmen-
tation parameters governing scale are chosen first and then the size of the
subsample is chosen based on stability criteria. The segmentation procedure,
as we discussed, is motivated by the heterogeneity of large-scale genomic
sequences. The insight of the block subsampling approach is to take into
account the local genomic structure, such as natural clumping of features,
when conducting statistical inference. We have explicitly demonstrated the
advantages of using segmentation and block subsampling by simulation stud-
ies in section 5.

4.1. Stationary Block Subsampling.

4.1.1. Review of Results for the Case of U = 1. For completeness, we
recall the following basic algorithm of Politis and Romano (1994) to obtain
an estimate of the distribution of the statistic Tn(X1, . . . , Xn) under the
assumption that the sequence X1, . . . , Xn is stationary (i.e., U = 1).

Algorithm 4.1. a) Given L << n choose a number N uniformly at
random from {1, . . . , n− L}.

b) Given the statistic T , as above, compute

TL(XN+1, . . . , XN+L) ≡ T ∗
L1 .

c) Repeat B times without replacement to obtain T ∗
L1, . . . , T

∗
LB.

d) Estimate the distribution of
√

n(Tn−µ) by the empirical distribution
L∗B of {√

n

L

[
T ∗

Lj − Tn(X1, . . . , Xn)
]
, 1 ≤ j ≤ B

}
.

By Theorem 4.2.1 of Politis, Romano and Wolf (1999),

(4.1) L∗B =⇒ Nd(0,Σ) .
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in probability if (3.3) holds and if L
n → 0. As usual, convergence of L∗B in

law in probability simply means that if ρ is any metric for weak convergence
on Rd then ρ(L∗B,L) P→ 0.

Since all variables we deal with are in L2 we take ρ to be the Mallows
metric,

ρ2
M (F, G) = min

{
EP (U − V )2 : P such that U ∼ F, V ∼ G

}
.

Useful properties of ρM are:

a) ρ2
M

(
ΣπiFi,ΣπiGi

) ≤ Σπiρ
2
M (Fi, Gi) for all πi ≥ 0, Σπi = 1 and

b) If F = F1∗. . .∗Fm, G = G1∗. . .∗Gm, that is F and G are distributions
of sums of m independent variables, then ρ2

M (F, G) ≤ ∑m
i=1 ρ2

M (Fi, Gi).

For convenience, when no confusion is possible we will write ρM (V,W ) for
ρM (F, G) for random variables V ∼ F , W ∼ G.

4.1.2. Performance of the block subsampling method in the piecewise sta-
tionary model when U > 1.. We turn to the analogue of Theorem 4.2.1
in Politis, Romano and Wolf (1999) for U > 1. We consider a vector linear
statistic, for which the true distribution was described in Section 3. Here, we
ask how Algorithm 4.1, which assumes stationarity, performs in this nonsta-
tionary context. We show that in general, it does not give correct confidence
bounds but is conservative, sometimes exceedingly so. The results depend
on L, the subsample size, which is a crucial parameter in Algorithm 4.1. We
sketch these issues in Theorem 4.2 below, for simplicity letting g be the one
dimensional identity function g(x) = x. Let

τ2 = U−1
U∑

i=1

(µi − µ̄)2

X̄i ≡ n−1
i

ni∑

j=1

Xij X̄ ≡ n−1
n∑

k=1

Xk =
U∑

i=1

fiX̄i

Also let

n∗i ≡ Cardinality of Si ≡
{
k : k ∈ [N, N + L], π1(k) = i

}

and
X̄∗

i = 1(n∗i 6= 0)
∑

j

{Xij : j ∈ Si}/n∗i ,

X̄∗
L =

U∑

i=1

f∗i X̄∗
i , where f∗i ≡ n∗i

L .
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We introduce one assumption that is obviously needed for any analysis of
the block or segmented resampling bootstraps

A7. L →∞
and two other assumptions which are used in different parts of Theorem 4.2
but not in the rest of the paper, and are thus given a different numbering.

B1. L
n → 0

B2. LU
n → 0

Theorem 4.2. Let Ln be the distribution which assigns mass fi to (µi−µ),
1 ≤ i ≤ U and write Ci for Ci(nfi). Suppose assumptions A1-A5, and A7
hold.

(i) If B2 holds, ρM (X̄∗
L − X̄,Ln) P−→ 0

(ii) If

(4.2)
U∑

i=1

fi(µi − µ)2 = o(L−1)

and B1 holds, then

ρM [
√

L(X̄∗
L − X̄),

U∑

i=1

fiN (0, Ci)]
P−→ 0

(iii) If (4.2) and B1 hold and

(4.3)
U∑

i=1

fi1
(|Σn − Ci| ≥ ε

) → 0

for all ε > 0, then

ρM

(√
L(X̄∗

L − X̄),N (0, Σn)
) P−→ 0.

The implications of Theorem 4.2 are as follows. If equation (4.2) doesn’t
hold then X̄∗

L − X̄ doesn’t converge in law at scale L−
1
2 so that it doesn’t

reflect the behaviour of L
1
2 (X̄L−µ) at all. This is a consequence of inhomo-

geneity of the segment means. Evidently in this case, confidence intervals of
the percentile type for µ,

[
X̄ + cn(α), X̄ + cn(1 − α)

]
where cn(α) is the α

quantile of the distribution of X̄∗
L − X̄, will have coverage probability tend-

ing to 1, since cn(α) and cn(1−α) do not converge to 0 at rate L−
1
2 as they

should by Theorem 4.2. If B2 does not hold we have to consider the possi-
bility that [N,N+L] covers KN consecutive segments, whose total length is



NON PARAMETRIC GENOMIC INFERENCE 13

o(n), such that the average over all such blocks is close to µ. However, in the
absence of a condition such as (4.2) or mutual cancellation of µ∗i the scale
of X̄∗

L will be larger than L−1/2. These issues will be clarified by the proof
of Theorem 4.2 in the appendix. We note also that (4.2) can be weakened
to requiring that the mean of blocks of consecutive segments whose total
length is small compared to n are close to µ to order o(L−1/2). But our
statement makes the issues clear. Finally, note that B2 holds automatically
if the number of segments U is bounded and if B1 holds.

If (4.2) does hold but (4.3) doesn’t, then
√

L(X̄∗
L − X̄) converges in law

to the Gaussian mixture
∑U

i=1 fiN (0, Ci). The mixture of Gaussians is more
dispersed in a rough sense than a Gaussian with the same variance, which
is,

σ2
n =

U∑

i=1

fiCi .

See Andrews and Mallows(1974). Especially note that, if W has the mixture
distribution and V is the Gaussian variable with the same variance, then

EetW =
∑

fie
− t2

2
ci ≥ e−

t2

2

∑
fiCi = EetV

by Jensen’s inequality. This suggests that the tail probabilities will also be
overestimated. The overdispersion here, which leads to conservativeness that
is not as extreme as in case (i), is due to inequality of the variances from
segment to segment. Finally, if (4.3) holds then the segments have essentially
the same mean and variance and stationary block subsampling works.

A mark of either (4.2) or (4.3) failing is a lack of Gaussianity in the
distribution of X̄∗

L − X̄. This was in fact observed at some scales in the
ENCODE project, which led us to crudely segment on biological grounds
with reasonable success. However, the correct solution, which we now present
in this paper, is to estimate the segmentation and appropriately adjust the
subsampling procedure.

4.2. A Segmentation Based Block Subsampling Method. We saw in the
previous section that the näıve block subsampling method that was designed
for the stationary case breaks down when the sequence follows a piecewise
stationary model. We propose a stratified block subsampling strategy, which
stratifies the subsample based on a “good” segmentation of the sequence
which is estimated from the data. We first state the block subsampling
method, and then in Section 4.2.3 give minimal conditions on the estimated
segmentation for its consistency. In Section 4.3 we discuss possible segmen-
tation methods.
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4.2.1. Description of Algorithm. Assume that we are given a segmenta-
tion t = (0 = t0, t1, . . . , tm+1 = n), where m is the number of regions in t.
Assume that the total size L of the subsample is pre-chosen. We define a
stratified block subsampling scheme as follows.

Algorithm 4.3. For i = 1, . . . , m, let λi = λi(t) = d(ti− ti−1)L/ne. We use
the notation Xi;l to denote the block of length l starting at i:

Xi;l = (Xi, . . . , Xi+l−1).

Then, for each subsample,

Draw integers N = {N1, . . . , Nm}, with Ni chosen uniformly
from {(ti−1 + 1, . . . , ti − λi(t) + 1}, and let

X∗ = (X∗
1 , . . . , X∗

m) = (XN1;λ1(t), . . . , XNm;λm(t)).

Repeat the above B times to obtain B subsamples: X∗,1, . . . , X∗,B.

To obtain a confidence interval for µ, we assume that the statistic Tn

has approximately a N(µ, Σn/n) distribution as in the previous section. For
each subsample drawn as described in Algorithm 4.3, compute the statistic
T ∗,b

L = T ∗,b
L (t) = TL(X∗,b). Form the sampling estimate of variance,

(4.4) Σ̂n ≡ L

B

B∑

b=1

(T ∗,b
L − T̄ ∗

L)′(T ∗,b
L − T̄ ∗

L),

where T̄ ∗
L ≡

∑B
b=1 T ∗,b

L /B. We can now proceed to estimate the confidence
interval for Tn in a sequence of standard ways. For example, in the univariate
case where σ2

n ≡ Σn is a scalar:

a). Use X̄ ± z1−α/2
σ̂n√

n
, where zβ is the βth quantile of N(0, 1), for a 1− β

confidence interval.
b). Efron’s percentile method: Let X̄∗

(1) < ... < X̄∗
(B) be the ordered X̄∗,b,

then use [X̄∗
([Bα/2]), X̄

∗
([B(1−α/2)]), ] as a 1− α confidence interval.

c). Use a studentized interval (Efron (1981)) or Efron’s (1987) BCA method,
see Hall (1992) for an extensive discussion.

Although the theory for (c) giving the best coverage approximation has
not been written down, as it has been for the ordinary bootstrap, we expect
it to continue to hold. Evidently, these approaches can be applied not only to
vector linear statistics like Tn but also to smooth functions of vector linear
statistics.
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This algorithm assumes a given segmentation t, which should be set to
some good estimate τ̂ (n) = {0 = t̂0, t̂1, ..., t̂m = n} of the true change points
τ (n). In order for the algorithm to perform well, a good segmentation is
critical unless the sequence is already reasonably homogeneous. In Section
4.2.2 below we state the result that the algorithm is consistent if the given
segmentation equals the true changepoints. Then, in Section 4.2.3, we state
a few assumptions on the data determined segmentation τ̂ (n) which would
enable us to act as if the segmentation were known and state Theorem 4.5
to that effect.

4.2.2. Consistency with True Segmentation. Under the hypothetical sit-
uation where the segmentation t assumed in Algorithm 4.3 is the true seg-
mentation, then the algorithm can be easily shown to be consistent. Here
we state the result, which will be proved in Appendix.

First, we state a stronger version of the assumption B1, which requires
that the square of the subsample size L = Ln to be o(n):

A8. L2
n/n → 0.

Then, the consistency of Algorithm 4.3 given the true segmentation is given
in the following theorem.

Theorem 4.4. If assumptions A1-A8 hold, then

(4.5) L1/2
n Σn

−1/2[T ∗Ln
(τn)− Tn] ⇒ N(0, J)

in probability.

4.2.3. Consistency with Estimated Segmentation. Let τ̂ = τ̂ (n) = (τ̂ (n)
1 , . . . , τ̂

(n)

Ûn
)

be a segmentation of the sequence X1, . . . , Xn, which is determined from the
data, and which is intended to estimate the true change-points τ = τ (n). We
will state conditions on τ̂ such that the statistic obtained from Algorithm 4.3
based on τ̂ is close to the statistic obtained from the same algorithm based
on the true segmentation τ . This can be stated formally as follows. For any
segmentation t, let X∗(t) be a subsample drawn according to Algorithm 4.3
based on t. Let F ∗

n,t(·) be the distribution of
√

L{T [X∗(t)] − E∗T [X∗(t)]}
conditioned on X1, . . . , Xn and t. Then, the desired property on the esti-
mated segmentation τ̂ is that

(4.6) ρ2
M [F ∗

n,τ̂ (n) , F
∗
n,τ (n) ] →p 0, as n →∞

where ρ2
M is the Mallows’ metric described in Section 4.1.1. That is, for

inferential purposes, T [X∗(τ̂ )] has approximately the same distribution as
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T [X∗(τ )]. Then, since we have shown in Section 4.2.2 that

ρ2
M [F ∗

n,τ (n) ,Φ(Σn)] →p 0,

where Φ(Σn) is the Gaussian distribution with mean 0 and variance Σn,
(4.6) implies that

√
LnΣ−1

n {T [X∗(τ̂ (n))]−E∗T [X∗(t)]} → N(0, J).

Let n̂i = τ̂
(n)
i+1 − τ̂

(n)
i . We now state conditions on the estimated segmen-

tation which guarantee (4.6).

A9. Ûn
n → 0,

A10. 1
n

∑
i:n̂i≤k n̂i → 0 for all k < ∞,

A11.Ln
n

∑Un
i=1 min1≤j≤Ûn

|τi − τ̂j | →p 0.

Assumptions A9 and A10 for τ̂ (n) mirror assumptions A3 and A4 for τ (n).
Assumption A11 is a consistency criterion: As the data set grows, the total
discrepancy in the estimation of τ (n) by τ̂ (n) must be small.

Theorem 4.5. Under assumptions A1-A11, (4.6) holds.

The proof is given in the appendix. There are trivial extensions of this
theorem to smooth functions of vector means, which are, in fact, needed but
simply cloud the exposition.

Theorem 4.5 implies that confidence intervals based on subsamples

{X∗,j(τ̂ (n)) : j = 1, . . . , B}

constructed by Algorithm 4.3 conditional on τ̂ (n) are consistent, as long as
τ̂ (n) satisfies A9-A11. Here is the formal statement of this fact in the one
dimensional case, where σ̂2

n replaces Σ̂n and g is the identity.

Corollary 4.6. Under assumptions A1-A11,

1. Let σ̂2
n be the block subsampling estimate of variance defined in (4.4),

then

P (X̄ − z1−α/2σ̂n/
√

n < µ < X̄ − z1−α/2σ̂n/
√

n) →p 1− α.

2. Confidence intervals estimated by Efron’s percentile method are con-
sistent. That is,

P ([X̄∗
([nα/2]) < µ < X̄∗

([n(1−α/2)])) →p 1− α.
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4.3. Segmentation Methods. The objective of the segmentation step is to
divide the original data sequence X1, . . . , Xn into approximately homoge-
neous regions so that the variance estimated in Algorithm 4.3 approximates
the true variance of Tn. A segmentation into regions of constant mean is
sufficient for guaranteeing that Algorithm 4.3 gives consistent variance es-
timates. Therefore, we focus here on the segmentation of X into regions of
constant mean.

In our simulation and data analysis, we use the dyadic segmentation ap-
proach, which we motivate and describe here using the simple case of g
identity. First consider the simple case where X1, . . . , Xn are independent
with variance 1. In testing the null hypothesis

H0 : E[Xi] = µ,

versus the alternative HA that there exists 1 < τ < n such that E[Xi] = µ1

for i < τ and E[Xi] = µ2 6= µ1 for i ≥ τ , one can show that the following is
the generalized likelihood ratio test:

Reject H0 if max
1<j<n

nM(j) > c,

where

(4.7) M(j) =
j

n

(
X̄1:j − X̄1:n

)2 +
n− j

n

(
X̄j+1:n − X̄1:n

)2
.

The maximum likelihood estimate of the change-point parameter τ is the
value that maximizes M(j).

Our proof of Theorem 4.5 in the appendix shows that, in the case where
there is one true change in mean at τ , the increase in the variance esti-
mated by block subsampling with block length L given no segmentation
(i.e. t(n) = {0, n}) over the variance estimated by Algorithm 4.3 condi-
tioned on a change-point at τ is LM(τ) + op(1). Subsampling conditioned
on any segmentation t 6= τ would give an even larger variance estimate.
Hence, segmenting at τ̂ = arg maxj M(j) is optimal in the sense that τ̂ is
the change-point estimate that minimizes the asymptotic error of the block
subsampling variance estimate. This fact does not require the assumption of
independence observations, and is true for any stationary sequence. Thus, if
we knew that there were only one change-point, and if the goal of the seg-
mentation is to obtain the best stratified variance estimate, then the best
place to segment is t. The block subsampling variance estimate, given the
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segmentation {0, t, n}, would be

V (t) =
(

t

n2

) t−tL/n∑

i=1

(X̄i:i+tL/n − X̄1:t)2

+
(

n− t

n2

) n−(n−t)L/n∑

i=t+1

(X̄i:i+(n−t)L/n − X̄t+1:n)2.(4.8)

The Dyadic segmentation procedure recursively applies the above logic,
as described below.

Algorithm 4.7. Fix minimum region length 0 < Ls < n and threshold
b > 0. Initialize t = {t0 = 0, t1 = n}. Repeat:

1. For i = 1, . . . , |t| − 1, let M (i)(j) and V (i)(j) be respectively the pro-
cesses (4.7) and (4.8) computed on the subsequence Xti−1+1, . . . , Xti .

If ti − ti−1 > 2Ls then let t′i = arg maxti−1+Ls<j<ti−Ls
M (i)(j), Bi =

M (i)(t′i), and Vi = V (i)(t′i). Otherwise, let Bi = 0, Vi = ∞.
2. let λi = L(ti − ti−1)/n, and

Ji = 1


(ti − ti−1)Bi√

Viλ̂i

> b


 .

If
∏

i Ji = 0, stop and return t.
3. Let i∗ = arg maxi Bi, and tnew = t′i∗ .
4. Let t = t ∪ tnew, reordered so that ti is monotonically increasing in i.

Each step of the recursion in Algorithm 4.7 proceeds as follows: In step 1,
M (i)(j), the between group sum of squares, and V (i)(j), the block subsam-
pling variance estimates, are computed for each segment [ti−1 + 1, ti] of the
current segmentation. Bi is the maximum squared difference in mean for
segment i, t′i is the change-point estimate that achieves this maximum, and
λ̂iVi is the estimate of variance given a change-point at t′i. In computing Bi

and Vi we do not allow break points that create a region with length less
than Ls. In step 2, we normalize the statistic (ti − ti−1)Bi by the estimated

standard deviation
√

λ̂iVi. If this normalized statistic is below the boundary
b for every subsegment, then the recursion stops and returns the current
segmentation. Otherwise, in step 3, the optimal location to segment t(new)

is chosen to be the cut that maximizes the decrease in error of the block
subsampling variance estimate, conditioned on the fact that it had passed
the thresholding in step 2. In step 4, this new change-point t(new) is added
to the current segmentation t.
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The normalization by Vi in step 2 requires an appropriate choice L = Lb of
the block subsampling sample size. Often it is easier to choose this parameter
after the segmentation is given. If a ball park value of Lb is not available, then
the normalization by Vi can be omitted, in which case the parameter b in step
3 should be set to 0. This would be equivalent to stopping the segmentation
only when the next optimal cut will violate the minimum region length Ls.
In the examples of Section 5.1 we set b = 0, thus decoupling the choice of
Ls from that of Lb.

The two parameters required by Algorithm 4.7 are Ls and b. The choice
for Ls is discussed in Section 4.5. The choice of b can be guided by the
fact that under the null hypothesis, if L were chosen appropriately, then
(ti− ti−1)M (i)(j)/[V (i)(j)λ̂i]1/2 is a pivot with approximate distribution χ2

1.
Asymptotic approximations for the family-wise error rate have been derived
in the case of independent sequences (James et al., 1987). In the case of
dependent sequences a Bonferroni adjustment can be applied to adjust for
for multiple testing. We also used the formulas given in James et al. (1987)
to get a crude cutoff, which seems to work in practice.

Algorithm 4.7 belongs to the class of dyadic segmentation algorithms
for detection of change-points, the consistency of which were studied by
Vostrikova (1981). These algorithms are greedy procedures that avoid the
search over all possible segmentations, which would be computationally in-
tractable. They have been applied successfully to various settings in biology,
including segmentation of GC content (Li et al., 2002) and the analysis of
DNA copy number data (Olshen et al., 2004).

The consistency of Algorithm 4.3 requires conditions A9-A11 to be satis-
fied by the estimated segmentation. The key condition is A11 which defines
a consistency criterion on the segmentation. Consistency of dyadic segmen-
tation has been proved in Vostrikova (1981) for sequences that satisfy the
following conditions:

1. Let εt = Xt − E[Xt], then ‖εt‖2 is a submartingale and E‖εt‖2 < ctβ,
c > 0, β < 2.

2. The number of regions is fixed and the region sizes are of order n, i.e.

τn = (nr1, . . . , nrU ), 0 < r1 < · · · < rU .

It is easy to verify that condition 1 is satisfied by the piecewise stationary
model due to the mixing condition A2. Condition 2 is more stringent than
our assumptions A3 and A4, under which Un is allowed to increase with n.
The consistency of dyadic segmentation for the case of Un → ∞ has been
explored in Venkatraman (1992), who gave asymptotic conditions on the re-
jection threshold and on the sizes of the regions to ensure consistency under
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the assumption of an independent Gaussian sequence. However, these condi-
tions are hard to verify in practice, and we believe that for our applications
in genomics the more stringent condition of Vostrikova (1981) is sufficient.
Previous studies on segmenting the genome based on features such as the
GC content (Fu and Curnow (1990), Li et al. (2002)) have used this finite
regions assumption to achieve reasonable results.

The dyadic segmentation procedure uses information from the entire se-
quence to call the first change, and then recursively uses all of the informa-
tion from each subsegment to call each successive change in that segment.
An alternative is to use pseudo-sequential procedures, which are sequential
(online) schemes that have been adapted for change-point detection when
the entire sequence of a fixed length is completely observed. The basic idea
of this class of methods is to do a directional scan starting at one end of
the sequence. Every time a change-point is called, the observations prior to
the change-point are ignored and the process starts over to look for the next
change after the previously detected change-point. Specifically, let τ̂0 = 0,
and given τ̂1, . . . , τ̂k,

τ̂k+1 = inf{l > τ̂k : S(Xτ̂k
, Xτ̂k+1

, . . . , Xτ̂l
) > b},

where S is a suitably defined change-point statistic and b is a pre-chosen
boundary. The estimates from pseudo-sequential schemes depend on the di-
rection in which the data is scanned. Thus, while they may be suitable for,
say, timeseries data, they may not be natural for segmentation of genomic
data, which in most cases do not have an obvious directionality. The con-
sistency of pseudo-sequential procedures has been studied by Venkatraman
(1992), who gave conditions on b = bn and τ̂ (n) for consistency of τ̂ (n) under
the setting that Xi are independent Gaussian with changing means.

4.4. Testing the Null Hypothesis of No Associations. Here we extend the
results in section 4.2 to testing the null hypothesis of no association using
non-linear statistics. As we discussed in Section 1.2, the inference problem
typically posed in high-throughput genomics is that of association of two
features. In terms of our framework we have two 0-1 processes {Ik}k=1,...,n

and {Jk}k=1,...,n both defined on a segment of length n of the genome. We
assume that the joint process {Ik, Jk} is piecewise stationary and mixing
and want to test the hypothesis that the two point processes {Ik}k=1,...,n

and {Jk}k=1,...,n are independent. We have studied two fairly natural test
statistics in ENCODE, the “percent basepair overlap”,

Bn =
∑n

k=1 IkJk∑n
k=1 Ik

,
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and the “regional overlap,” Rn, which we define in Section 3, with large
values of these statistics indicating dependence. The major problem we face
in constructing a test is what critical values onα, rnα we should specify so
that

(4.9) PH0 [Bn ≥ onα] ≈ α,

where H0 is the hypothesis that the vectors (I1, ..., In)T and (J1, ..., Jn)T are
independent, and the corresponding rnα for Rn.

We aim for statistics based on Bn, Rn (respectively) which are asymp-
totically Gaussian with mean 0 under H0. In general, we have to be careful
about our definition of independence. If we interpret H0 as we stated, simply
as independence of the vectors (I1, . . . , In)T and (J1, . . . , Jn)T , then

EH0(Bn) ≈
∑U

i=1

∑
k=1 niEH0(Iik)EH0(Jik)∑U

i=1

∑
k=1 niEH0(Iik)

where Iik and Jik refer to the kth basepair in the ith segment, and hence we
have,

(4.10) EH0(Bn) ≈
∑U

i=1 λiE
(i)
H0

(I)E(i)
H0

(J)
∑U

i=1 λiE
(i)
H0

(I)

The natural estimate of this expectation is then,

1
Ī

U∑

i=1

λiĪiJ̄i

where λi ≡ ni
n , Īi is the average of Iik, J̄i is the average of Jik, and Ī is the

grand average. We assume the correct segmentation.
We proceed with construction of a test statistic and estimation of the null

distribution. In view of (4.10) our test statistic based on Bn is

(4.11) TO
n ≡ n

1
2
(
Bn − J̃n

)

where

J̃n ≡
( Û∑

i=1

λ̂i
ˆ̄Ii

ˆ̄Ji
)
/
1
n

n∑

j=1

Îj

(4.12) where λ̂i = λi(t̂), ˆ̄Ii = n−1
i (t̂)

t̂i∑

j=t̂i−1+1

Ij

with ˆ̄Ji similarly defined. Here is the algorithm based on this statistic.
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Algorithm 4.8. We do the following.

1. Pick at random without replacement two starting points, K1 and K2,
of blocks of length L from {1, ..., n− L}.

2. Let (IK1+1, ..., IK1+L)T and (JK1+1, ..., JK1+L)T , (IK2+1, ..., IK2+L)T

and (JK2+1, ..., JK2+L)T be the two sets of two feature indicators.
3. Form

IJ
∗1
nL ≡

1
L

L∑

l=1

IK1+lJK2+l

Ī∗1nL ≡
1
L

L∑

l=1

IK1+l

IJ
∗2
nL ≡

1
L

L∑

l=1

IK2+lJK1+l

and define Ī∗2nL, J̄∗1nL, J̄∗2nL analogously. Let

F ∗
nL ≡

1
2

(
IJ

∗1
nL

Ī∗1nL

+
IJ

∗2
nL

Ī∗2nL

)

T ∗nL ≡ F ∗
nL − J̄∗nL

where

J̄∗nL =
1
2
(J̄∗1nL + J̄∗2nL)

and Ī∗nL is defined analogously. Let F ∗
nLb, IJ

∗1
nLb etc. be obtained by

choosing (K1b,K2b), b = 1, . . . , B independently as usual.
4. We use the following cnLα as a critical value for Bn at level α,

cnLα = J̄n +
(2L

n
)

1
2 T ∗nL(B(1−α)) ,

where T ∗nL(1) ≤ ... ≤ T ∗nL(B) are the ordered T ∗nLb and [.] denotes integer

part and J̄n = 1
n

∑n
k=1 Jk.

5. If the sequence is piecewise stationary with estimated segments j =
1, ..., Ûn as in Section 4.3, we draw independently B sets of starting

points, K
(j)
11 , ..., K

(j)
1B and K

(j)
21 , ..., K

(j)
2B , of blocks of length λ̂jL from

each segment i = 1, ..., j when each pair is drawn at random without
replacement. Here

∑U
i=1 λ̂i = 1 and λ̂i is proportional to the length of
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estimated segment i. Then piece T ∗nLb together as follows. Let

IJ
∗1i
nLb =

1
Lλ̂i

λ̂i∑

l=1

IiK1b+lJiK2b+l

Ī∗1i
nLb =

1
Lλ̂i

L∑

l=1

IiK1b+l

etc

F̄ ∗
nLb =

Û∑

i=1

λ̂i

(IJ
∗1i
nLb

Ī∗1i
nLb

+
IJ

∗2i
nLb

Ī∗2i
nLb

)
.

Then,
T ∗nLb = F ∗

nLb − J̃∗nLb ,

where

J̃∗nLb =
∑Û

i=1(Ī
∗i
nLb)(J̄

∗i
nLb)λ̂i

∑Û
i=1(Ī∗inLb)λ̂i

with Ī∗inLb = Ī∗1i
nLb + Ī∗2i

nLb. The critical value is,

J̃n +
(2L

n
)

1
2 T ∗nL(B(1−α)) ,

as before.

We can apply this principle more generally to statistics which are func-
tions of sums of products of I’s and J ’s evaluated at the same positions.

The proof of the following theorem is given in the Appendix.

Theorem 4.9. If L0, P0 denote distributions under the hypothesis of inde-
pendence and (A1)-(A11) hold, then

1. L0(TO
n ) =⇒ N (0, σ2

0)
2. With probability tending to 1,

L∗0(TO∗
n,L) =⇒ N (0, σ2

0)

3. P0
[
TO

n ≥ (
2L
n

) 1
2 q̂0

1−α

] → α where q̂0
1−α is the

[
(1 − α)B

]
th of TO∗

nLb,
1 ≤ b ≤ B.

In practice, this definition of independence makes our statistic in effect
reflect conditional independence of Ii and Ji given the segment to which
i belongs. This can be unsatisfactory in practice, for instance, when the
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features are concentrated in small segments such that large, sparse, segments
swamp the inference.

We define independence irrespective of segment identity as saying that the
average over all permutations of the segments of the joint distribution of the
point process features are independent. Formally, if (P1, ..., PU ), (Q1, ..., QU )
denote the marginal distributions of {{Iik : k = 1, ..., ni} : i = 1, ..., U}
and {{Jik : k = 1, ..., ni} : i = 1, ..., U}, and (R1, ..., Rn) correspond to
the joint distribution of {(Iik, Jik) : 1 ≤ k ≤ n}, then let (P̄1, ..., P̄U ) =
1
U !

∑
(Pπ1, ..., PπU ) where π ranges over all permutations of 1, ..., U . Define

(Q̂1, ..., Q̂U ) and (R̂1, ..., R̂U ) similarly. Then, our hypothesis is

(4.13) H1 : R̂ = P̂ × Q̂

This is simply saying that independence is not conditional on relative ge-
nomic position of segments.

It is easy to see that we should now define

(4.14) T Õ
n = n

1
2 (Bn − Ĵn)

where Ĵn = 1
n

∑n
i=1 Ji.

The reason for this is that

(4.15) ER̂(Bn) ≈ ER̂( 1
n

∑n
i=1 IiJj)

ER̂(Î)

Under H1,

ER̂(
1
n

n∑

i=1

IiJj) = EP̂ (Î)EQ̂(Ĵ)

and

ER̂(I) = EP̂ (Î)

so that the statistic simplifies to the U = 1 form, as above.
It is clear that the conclusion of (4.9) continues to hold when applied to

T Õ
n . Note that the form of the bootstrap is unchanged, since T Õ

n is invariant
under permutation of the segments.

We now turn to Rn as defined in Section 3. We assume that Vk : k = 1, ...,K
are strongly mixing and stationary. If we assume H0 we have no closed form
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for EH0(
1
W

∑K
k=1 Vk) by which to center Rn. To estimate this quantity we

apply a version of the double bootstrap (Beran (1988); Hall (1992); Letson
and McCullough (1998)).

Consider 1
n

∑K
k=1 Vk under H1. We draw B1 pairs of large blocks of length

mL, and we compute the % false region overlap, call it R∗
b , b = 1, ..., B, in

each pair of “large” blocks, where mL is still negligible compared to segment
size, but m −→∞. Define

(4.16) ÊH1(Rn) =
1

2B

B1∑

b=1

R∗
b

and

(4.17) T̃ (R)
n = n

1
2 (Rn − ÊH1(Rn))

Note that we again want to consider independence irrespective of segment
identity, so that R∗

b above are computed without any segmentation beyond
the natural segmentation, e.g. chromosomes. Now compute the empirical
distribution of T̃

(R)
n using the size L segmented block subsampling and pro-

ceed as usual. We can define T̃
(R)
n corresponding to H0 in the same way,

though we now have to cut up our mL blocks in proportion to segment sizes
to center. We do not pursue this since the H1 hypothesis gives stable results
while H0 does not.

We have not proved a result justifying the use of the double bootstrap in
this way, but simulations suggest that it behaves as expected, see Section
5.3.

4.5. Choice of Segment Size Ls. Two tuning parameters appear in our
procedure in addition to b appearing in the segmentation scheme. Ls is the
smallest allowed size of a “stationary” piece after segmentation. It essentially
determines the scale of the segmentation, which we view as an application
context dependent quantity that users need to control. The reason is that
stationarity is a matter of scale. To put it concretely, consider the situations
where Ij , j = 1, . . . , n are simply the base pair nucleotides A,C, G, T and
consider the scale of a large gene of length n. Then, it seems natural that the
exons and introns correspond to consecutive stationary regimes. However,
suppose we now move our scale to a gene rich genomic region of length N .
Now, it is the genes themselves and the intergenic regions which correspond
to an at least initial segmentation.

This dependence of segmentation on scale has a natural intuitive conse-
quence. Consider a statistic such as base pair overlap of two features. As one
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increases the region size n in which one wishes to declare significant overlap,
the standard deviation of the statistic, which is O(n−1/2), decreases, and
p-values decrease. However, if, as one would expect, the region over which
n increases becomes homogeneous on a larger scale, coarser segmentation
would then be called for. This, as we have noted, necessarily increases the
standard deviation of the statistic, and from that point of view significance
becomes more difficult to achieve.

Put another way, it is not impossible to think of the whole genome itself
as being stationary on a large scale, but that we can hierarchically segment
the genome in many ways so that each large subsegment is stationary, but
the segments are not identically distributed, even where they are of equal
length. For instance, a natural initial segmentation is to chromosomes.

Finally, we argue in mathematical terms going the other way from in-
homogeneity to homogeneity. Start with a sequence of independent (say)
Bernoulli variables X1, X2, . . . , Xn, with Xj being Bernoulli(pj). If the pj

are arbitrary, the only segmentation we can perform is the useless trivial
one, where each Xj is its own segment. But, now if suppose that we tell
ourselves that pj , 1 ≤ j ≤ n/2 are drawn i.i.d. from U(0, 1/2) and for
n/2 + 1 ≤ j ≤ n from U(1/2, 1), we suddenly just have two segments to
consider.

Thus, Ls in our view needs to be treated as the smallest scale on which
homogeneity is expected. Note that these considerations are not limited to
testing. They also govern confidence intervals, as discussed in section 4.2.3.

4.6. Choice of Lb, the subsample size. We believe that the best way to
choose Lb, after segmentation has been estimated, is so that the resulting
subsampling distribution of the statistics is as stable as possible and Ls is
large but ¿ n. We also formally consider Gaussianity of the distribution
and, if possible, maximizing that feature as well. This does not necessarily
mean segment more – since A10 and A11 may then fail. We advocate but
do not analyze further the following proposal put forward in m-out-of-n
subsampling by Bickel, Götze, and van Zwet (1997) and analyzed in detail
by Götze and Rackauskas (2001) and Bickel and Sakov (2005):

1. Let X̄∗
n(L) be the statistic computed from the sample drawn with

blocks of length L. Compute the block subsampling distribution LLk

for the statistic √
Lk(X̄∗

n(Lk)− X̄n)

and Lk = ρkn, where ρ < 1 and k = 1, 2, . . . , K.
2. Compute a “distance” d∗(k) between LLk

and LLk−1
.

3. Choose Lb = Lk∗0 , where k∗0 = arg min d∗(k).
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In practice, we use for d∗(k) the pseudometric |
√

Lk−1

Lk
IQR(LLk

)−IQR(LLk−1
)|,

where IQR(L) is the interquartile range of L.
In continuing work with Götze, van Zwet, we are in the process of trying

to show that, under mild conditions, as n → ∞ we have Lb → ∞, Lb/n →
0. More significantly, we expect that in a fashion analogous to Götze and
Rackauskas (2001) and Bickel and Sakov (2005), under restrictive conditions
and for suitable choice of distance, Lb yields an estimate which is as good as
possible in the following sense: If Lm is the actual distribution of

√
m(X̄m−

µ), d(k) is the distance between Lm and LLk
, and k0 = arg mink d(k), then

d(k∗0)
d(k0)

→p c.

Thus, Lk∗0 = ρk∗0n yields performance of the same order as ρk0n.

5. Simulation and Data Studies.

5.1. Simulation Study I. In this section, we perform a simple simula-
tion study to demonstrate the power of our block-subsampling method in
the situation where features are naturally clustered. We simulated a binary
sequence x1, ..., xn with n = 10, 000 by the following Markovian model:

(5.1) P (x1 = 1) =
p0

2
, P (xi = 1) =

p0

2
+ (1− p0)

∑i−1
k=i−w xk

w
for i = 2, .., n,

where w is the order of the Markov model, or intuitively, the size of the
dependency window, and p0 indicates the level of dependency. The smaller
p0 is, the stronger the dependence between the neighboring positions is. We
define the following two types of features at position i in the sequence:

• Feature I: the occurrence of sequence 11100 starting at position i
• Feature II: the occurrence of more than six 1’s in the next 10 consec-

utive positions including the current position i.

From model (5.1), the feature II will occur in clusters in the sequence. The
overlap between the two types of features can be measured by the statistic

S =
∑n

k=1 IkJk∑n
k=1 Ik

with Ik, Jk being binary and indicating the occurrences of sites of Type I
and II respectively.

Figure 1 shows the distribution of S estimated through different ways:
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• The true distribution is the empirical distribution of estimated S from
10000 random sequences generated under model (5.1)

• The Ordinary Bootstrap distribution is derived by performing a base-
by-base uniform sampling of the sequence x1, ..., xn to construct 10000
sequences of length n.

• The Feature Randomization distribution is derived by keeping features
of type I fixed and randomizing uniformly the start positions of the
features of type II to construct 10000 sequences of length n.

• The block subsampling distribution is derived by drawing independent
samples of blocks of length L = 40 and stringing the blocks together
to construct 10000 sequences of length n.

Fig 1. Comparison of different subsampling schemes

We see that block subsampling produces more reliable estimates of the
variance of S compared to the naive methods: ordinary bootstrapping and
feature randomization. Both naive methods ignore the dependence between
positions and thus fail to take into account the natural clumps of the feature
II. This is the key reason for the poor performance of the two naive methods.
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5.2. Simulation Study IIa. Our second simulation study examines the
case where the sequence is generated from a piecewise stationary model
where there is more than one homogeneous region. As before, we consider
the problem of estimating the percentage of base pair overlap between two
features, and compare the performance of four strategies:

1. feature randomization,
2. naive block subsampling from unsegmented sequence,
3. block subsampling from sequence segmented using the true change-

points, and
4. block subsampling from sequence segmented using the change-points

estimated by binary segmentation.

In our simulation model, we generate Xt, Yt independently from a Neyman-
Scott process characterized as follows:

1. Cluster centers occur along the sequence according to a Poisson process
of rate λi in region i.

2. The number of features in each cluster follows Poisson distribution
with mean α.

3. The start of features are located at a geometric distance (mean µ)
from the cluster center.

4. The features are generated with length that is geometric with mean
β.

5. Overlap between features generated using steps 1-4 are ignored.

For simplicity we let there be only 2 homogeneous regions, each of length T =
10000. Consider the setting where the parameters for the two regions have
the following values: (λ1, α1, µ1, β1) = (0.01, 10, 10, 5) and (λ2, α2, µ2, β2) =
(0.02, 10, 10, 5). Figure 2 shows a simulated example, where features A and
B are plotted as well as their overlap. Figure 2 also shows the cumulative
sum and the segmentation. Figure 3 shows respectively the histograms of the
estimated distribution of the overlap statistic X̄∗ centered and scaled. It is
clear that the feature randomization underestimates the standard deviation,
whereas naive block subsampling without segmentation gives a mixture dis-
tribution with long tails. Strategy 3, which subsamples assuming the true
changepoint at τ is known, gives the correct distribution as expected. Strat-
egy 4, which uses the estimated change-point, reassurringly gives a very
similar distribution to Strategy 3. Table 1 gives the standard deviation es-
timates.
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Fig 2. Example of one instance from simulation model 2. Top plot shows cumulative sum and
estimated segmentation.
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Fig 3. Comparison of different subsampling schemes

Method Standard Error Fold change from
Estimate true value

True value 1.2e-002 –
Uniform shuffle 3.6e-003 0.3
Subsample, no segmentation 1.7e-002 1.4
Subsample, true segmentation 1.1e-002 0.91
Subsample, estimated segmentation 1.0e-002 0.83

Table 1. Estimates of standard error by four sampling strategies in simu-
lation study 2a.

5.3. Simulation Study IIb. We utilized the Neyman-Scott process de-
scribed in Simulation Study IIa to study the consistency of the double boot-
strap method described in Section 4.4 for estimating the distribution of Rn.
We consider the simple case where there is one homogeneous region. We
utilized a larger region and a parameterization of the process that results
in more and longer feature instances than we consider in the study above.
We use T = 5Mb and (λ1, α1, µ1, β1) = (λ2, α2, µ2, β2) = (0.05, 10, 100, 75).
This yields a pair of feature-sets with around 5,000 instances, where each
feature-set covers around 17% of the 5Mb region. We simulated 20,000 pairs
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of feature-sets from this process, and found that the mean of region-overlap
between pairs, Rn, was 0.293, and the standard error was 0.0072. We sub-
sampled 1,000 sets of 10,000 draws from this distribution, each of which
yielded the mean above (to 3 significant digits), and the standard errors
ranged from 0.0071 to 0.0073, which corresponds almost exactly to the the-
oretical 95% confidence interval for the standard error of the standard error
of a Gaussian with standard deviation 0.0072 after 10,000 draws. No surpris-
ingly, the distribution of Rn was Gaussian, as indicated by the Lilliefors and
the Shapiro-Wilk test, which did not reject the hypothesis of Gaussianity at
a significance level 0.05 with the full sample of 20,000 observations.

In order to test the capacity of segmented subsampling with a version
of the double block bootstrap to discover this distribution based on only a
single pair of observations, we selected the most extreme pair found during
simulation, for which Rn was 0.321, corresponding to a z-score of 3.87. Since
the number of feature instances is itself a random quantity, the job of block
subsampling is particularly difficult: when Rn is far to the right of expec-
tation, the feature-sets tend to contain more feature instances than those
closer to the center. The pair we chose was no exception. The results are
given in Table 2. Hence, it is not surprising that our subsampling procedure
tends to over-estimate the mean. The Lilliefors test fails to reject the Gaus-
sianity of any of the resulting distributions with sample sizes up to 1,000 at
a significance level of 0.05, but does reject it for several of the smaller block-
sizes when the sample size is pushed up to 10,000. The Shapiro-Wilk test,
however, detects departures from Gaussianity for many of the distributions
at a significance level of 0.05 for samples larger than 500. This is because
Rn is predicated on relatively small counts of feature-instance overlaps, and
hence the distributions tend to have heavy tails.

We note that the global minimum of the Inter-Qantile (IQ) statistic was
found at Lb/Lr = 0.15 and Lr/n = 0.06. That is, 0.9% of the 5Mb re-
gion, or 45Kb, were included in each block sample. This block sample size
is certainly sufficient to capture multiple feature-clusters, since the parame-
terized Neyman-Scott process above yields an average inter-cluster distance
of about 1Kb.

To corroborate our hypothesis that the mean was overestimated because
the feature-sets we chose were more dense than most, we applied our method
with learned parametrization, Lb/Lr = 0.15 and Lr/n = 0.06, for a pair of
feature-sets with Rn = 0.293, the population average. Indeed, the mean was
estimated, after 10,000 samples, to be 0.293, and σ̂n was 0.0072.

Although the purpose of this simulation was merely to check the con-
sistency of our version of the double block bootstrap for data not unlike
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actual genomic data, e.g. ChIP-seq “broad-peaks”, we decided to also check
the performance of feature-start site shuffling for the same pair of feature-
sets used above. In the case of Bn, the basepair overlap statistic, feature
start-site shuffling correctly estimates the mean, but can (in the stationary
case), radically underestimate the standard deviation. The same is not true
in the case of Rn. Start-site shuffling is not assured (under our model) to
provide an unbiased estimate of the mean or the standard deviation. We
drew 10,000 samples from the distribution under shuffling, and found the
mean to be 0.337, and the standard deviation to be 0.0070, which indicates
that the pair of feature-sets under study in fact overlap slightly less than
expected at random (p ≈ 0.011). The fact that this conclusion is actually in
the wrong direction in this relatively easy, stationary example, should make
us skeptical of studies that rely upon start-site shuffling to draw conclusions
about statistics that cannot be defined locally, such as Rn.

Our discussion of this simulation and the following real data examples ex-
hibit the subtleties inherent in our approach. Subtleties appearing whenever
inference follows regularization.

Lb/Lr = 0.1 Lb/Lr = 0.15 Lb/Lr = 0.2
(Lr/n) d∗(k) Mean σ̂n d∗(k) Mean σ̂n d∗(k) Mean σ̂n

0.10 0.0240 0.3032 0.0074 0.0231 0.3029 0.0073 0.0181 0.3034 0.0072
0.09 0.0116 0.3042 0.0072 0.0064 0.3035 0.0072 0.0092 0.3035 0.0071
0.08 0.0070 0.3040 0.0072 0.0067 0.3038 0.0072 0.0049 0.3041 0.0071
0.07 0.0032 0.3039 0.0071 0.0042 0.3043 0.0072 0.0017 0.3042 0.0071
0.06 0.0003 0.3042 0.0071 0.00004 0.3044 0.0072 0.0002 0.3040 0.0071
0.05 0.0036 0.3042 0.0072 0.0070 0.3040 0.0071 0.0031 0.3042 0.0071
0.04 0.0115 0.3045 0.0071 0.0031 0.3044 0.0071 0.0057 0.3043 0.0071
0.03 0.0194 0.3047 0.0072 0.0178 0.3045 0.0072 0.0169 0.3047 0.0070
0.02 0.0571 0.3045 0.0071 0.0498 0.3047 0.0071 0.0396 0.3049 0.0071
0.01 N/A 0.3047 0.0071 N/A 0.3047 0.0071 N/A 0.3047 0.0071

Table 2: Comparison of block subsampling distributions

5.4. Association of Non-coding ENCODE annotations and Constrained
Sequences.. Here we present a real example of the study of association be-
tween “constrained sequences” and “non-exonic annotations” from the EN-
CODE project, limited to the 1.87Mbp ENCODE Pilot Region ENm001,
also known as the CFTR locus. The constrained sequences are those highly
conserved between human and the 14 mammalian species studied and se-
quenced by the ENCODE consortium. Enrichment of evolutionary con-
straint at the “non-exonic annotations” sites implies that the biochemical
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assays employed by the ENCODE consortium are capable of identifying
biologically functional elements. We tested the association of non-coding
annotations and constrained elements using the base pair overlap statistic
Bn in Section 4.3, using the conditional formuation. We interpret the lack of
association as, given sequence composition and the distribution of each fea-
ture along the genome as observed, the assignments (by Nature) of feature
A and feature B to individual bases are made independently. We derive the
significance of the observed statistic under this null hypothesis following the
method proposed in Section 4.3.

As we discussed, we have several issues to deal with:

i) How do we segment? That is, what statistic(s) do we use for segme-
nation?

ii) Is segmentation necessary or is the region sufficiently homogeneous?
iii) If we segment, what Ls should we use?
iv) Given a segmentation, what Lb is appropriate?

Here are our methods:

a) The simplest choice for i) and the one we followed was to segment
according to both numerator and denominator in Bn: intersect parti-
tions and enforce an Ls bound. Given our theory, this should ensure
homogeneity in the mean of Bn.

b) Although strictly speaking ii) and iii) can be combined, we experi-
mented a bit to also see if the theory of Section 4.1 was borne out in
practice.

c) We did not use the V statistic and thus only had to choose Ls. Again,
we experimented with Ls = 500Kb to preserve as much genomic struc-
ture as possible, and Ls = 200Kb to ensure we had not underseg-
mented.

d) We explored a variety of values of Lb, and studied the consistency
between nearby values under the interquartile statistic (IQ statistic)
discussed in Section 4.6. We draw conclusions based on the value of
Lb that optimizes local consistency.

To segment the data, we applied the method in Section 4.3 to both fea-
tures A and B, or in the language of Section 4, I and J , and then combined
the segmentation. In segmenting each feature, we experimented with mini-
mum segment lengths Ls of 200 and 500 Kb. Before subsampling, we com-
bined the segmentations of A and B by taking a union of the change-points.
This created regions with length less than Ls. However the total length of
these regions comprise < 0.1% of the total Encode region, and were left out
of the remaining analyses.
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If the sequence were sufficiently homogeneous, we could forgo the ini-
tial segmentation step. Figure 4 shows an estimate of variance of Bn (with
the appropriate renormalization) for a reasonable range of Lb, both before
and after segmentation. Two trends are clearly evident. First, segmentation
greatly reduces the estimated variance. As we discussed in Section 4.1.2,
inhomogeneity of the sequence causes an inflated estimate of variance. If the
data were homogeneous, segmentation should not change the variance esti-
mate. Thus, the fact that the estimated variances drop after segmentation for
such a large range of Lb’s suggests that the data is inhomogeneous. Secondly,
and more importantly, the estimated variance of Bn increases sharply with
increasing Lb in the unsegmented data. This is evidence of inhomogeneity
in the mean of Bn across this ENCODE region: underlying shifts in mean,
if ignored, can be mistaken for spurious long range autocorrelation, which
also implicitly runs against our assumption. In either case, as Theorem 4.2.1
suggests, we would be overly conservative. Thus, a preliminary exploration
of the data convinces us that this ENCODE region is inhomogeneous in I
and/or J and segmentation is necessary.

Fig 4. Estimated σn as a function of Lb for 10,000 samples

We found that 200Kb and 500Kb gave 5 and 3 segments respectively.
Table 2 gives the results for 500Kb. What is fairly surprising, but reassur-
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ing, is that over the whole broad range of Lb considered, the estimated SD
of the statistic under the null was essentially flat after segmentation. Flat
here means that variability was within a Monte Carlo SD for the 10,000
replications we used. We would expect longer values of Lb to include, in
our estimate of σ, additional covariance between distant genomic positions
captured by the extended block-length. The fact that this, by and large,
does not appear to be happening is consistent with our hypothesis that
the relevant mixing distance is indeed quite small compared to the size of
approximately stationary regimes.

We found that there is still moderate deviation from Gaussianity in both
the segmented and unsegmented case for 0.05 < Lb < 0.25, both in the tails,
as detected by the Shapiro-Wilk test, and in the body of the distribution
under Lilliefors test. With a sample size of 100, neither test detects this
departure, but at a sample size of only 500, it is detected under a number
of parameterizations of Lb. As we discussed in Section 4.5, the definition
of stationarity depends on the scale at which we view the genome. This
suggests that our segmentation still does not take care of inhomogenity in
the variance. Hence, as we have mentioned, if we use the variance for the
Gaussian approximation our results are still conservative.

The scientific conclusion of this example is that, indeed, there is strong
association since the z value is over 9 SDs. We note that the effect of seg-
mentation on our scientific conclusion is essentially non-existent. However,
it is comforting to note that the change in (with and without segmentation)
variance is in the correct direction.
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Bn

Lb/n unsegmented Ls = 500Kb Ls = 250Kb
(ρ = 0.99) d∗(k) σ̂n z-score d∗(k) σ̂n z-score d∗(k) σ̂n z-score

0.239 0.032 0.0051 8.47 0.043 0.0043 9.95 0.027 0.0044 9.71
0.217 0.010 0.0050 8.60 0.026 0.0044 9.82 0.015 0.0044 9.79
0.197 0.033 0.0050 8.65 0.008 0.0043 10.02 0.024 0.0043 10.07
0.179 0.010 0.0048 8.92 0.026 0.0043 10.00 0.015 0.0043 9.96
0.163 0.007 0.0048 9.04 0.017 0.0043 10.07 0.034 0.0043 10.14
0.148 0.017 0.0047 9.18 0.027 0.0042 10.23 0.016 0.0043 10.01
0.135 0.005 0.0047 9.18 0.017 0.0043 10.02 0.027 0.0044 10.14
0.122 0.019 0.0045 9.47 0.019 0.0042 10.18 0.015 0.0042 10.27
0.111 0.007 0.0045 9.66 0.011 0.0042 10.26 0.022 0.0042 10.24
0.101 0.005 0.0045 9.64 0.025 0.0042 10.23 0.022 0.0042 10.24
0.092 0.016 0.0044 9.91 0.006 0.0042 10.25 0.017 0.0042 10.20
0.083 0.006 0.0044 9.92 0.030 0.0042 10.31 0.015 0.0042 10.37
0.076 0.014 0.0042 10.16 0.011 0.0042 10.26 0.022 0.0042 10.24
0.069 0.004 0.0042 10.29 0.013 0.0042 10.18 0.014 0.0042 10.23
0.063 0.001 0.0042 10.32 0.013 0.0042 10.27 0.018 0.0042 10.24
0.057 N/A 0.00412 10.46 N/A 0.0041 10.45 N/A 0.0043 10.05

Table 3: Comparison of block subsampling distributions, ρβn vs. ρβ+1n un-
der the IQR statistic. Estimates σ̂n and resulting z − scores of Bn shown.

5.5. The association of Copy Number Variation with RefSeq annotated
Exons in the human genome. In this example, we re-analyzing a published
dataset; this re-analysis leads to a different conclusion from the one made
by the original paper. In 2006, Redon et al. published a set of 1,445 genomic
regions with observed Copy Number Variation (CNVs) across individuals.
These regions consist of both deletions and insertions, and more than half
of them overlap genes. In the paper, the authors reported, amongst other
things, a paucity of overlap with RefSeq genes at a significance level of 0.05.
The statistic that they used is precisely our marginal formulation of Rn, but
the null distribution to which they refered it is quite different. Their null
was computed by randomly permuting both genes and CNVs, and hence
treats the entire genome (or at least entire chromosomes), as homogeneous,
and the distances between feature-instances as exponential. Thus, if feature-
instance lengths were all 1bp, this would be a Poisson process. As discussed
in Simulation Study IIb, under our model this procedure provides a non-
biased estimate of the mean in the case of the Bn, but is unpredictable with
respect to its estimate of the variance. In the case of Rn, it is unpredictable
with respect to both the mean and the variance. Here, for comparison with
the result of Redon et al. (2006), we examine only Rn.
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Although we have attempted to replicate this portion of the Redon study,
undoubtedly there are small differences between our efforts and those of
Redon et al. (2006). For instance, we have masked all genomic repeats in the
“Repeat Masker” track on the UCSC genome browser (genome.ucsc.edu).
Redon et al. also considered patterns of repeats in their analysis, but may
have utilized an at least slightly different map of genomic repeats. We find
that 61.8% of the CNVs overlap RefSeq genes by at least 1 basepair. That
is, we wish to assess the significance of our observed statistic Rn = 0.618.

The calibration of the subsampling procedure is non-trivial, especially in
this application where we must consider the additional parameter Lr. Hence,
in the following we provide complete detail regarding the calibration of our
method for the data of Redon et al. (2006).

As before, our analysis begins with an assessment of the need for seg-
mentation. In this case, we are dealing with whole human chromosomes,
we expect that, in general, at least some segmentation is necessary. We
segmented down to a minimum segment length of 10,000,000bps (10Mbs),
letting Ls = 10Mb. The mean length of these CNVs is around 250Kb, and
they are not uniformly distributed, so we are compelled not to segment down
to regions much smaller than 10Mb by our desire to capture the appropriate
spatial distribution of clusters of feature-instances. To assess the sufficiency
of the resulting segmentation, we examine the Gaussianity of the segmented
subsampling distributions. This examination is tied to our selection of block
length.

To select an inner block length, Lb, and an outer block-length, Lr, we
drew 10,000 samples for each of several lengths. We chose to use a linear,
rather than exponential, scale for Lr/n: we selected 10 values from 0.01 to
0.10 in increments of 0.01. We chose three values of Lb/Lr, 0.05, 0.10, and
0.20. Each of these parameterizations yields several responses, including: an
estimated z-score, d∗(k), and measures of Gaussianity. In Figure 5, we plot
the relationship between the estimated z-score, d∗(k), Lr and Lb. Regarding
the Gaussianity of the resulting distributions, at a significance level of 0.01
and a sample size of 5,000, neither the Shapiro-Wilk nor the Lilliefors test
rejected the null hypothesis of Gaussianity for any of the 30 explored pa-
rameterizations. To supplement our biological intuition that segmentation
is necessary when whole chromosomes are considered, we used the same
30 parameterizations with the unsegmented data, and performed the same
tests to check the Gaussianity of the resulting distributions. Of the 30 pa-
rameterizations, 3 showed departures from Gaussianity under Lilliefors test,
and 9 showed strong departures in the tails under the Shapiro-Wilks test.
This indicates, as expected, that segmentation has substantially improved
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the Gaussianity of the sample distributions. In practice, one might attempt
a finer segmentation in hopes of further reducing the (conservative) bias in
σ̂n. For this example we are satisfied with the current segmentation.

The global minimum of d∗(k) occurs for Lr/n = 0.09 and Lb/Lr = 0.20.
This parameterization yields an estimated z-score of 1.25, and therefore we
conclude that we cannot corroborate the result of Redon et al. (2006). Un-
der our model it appears that CNVs are, if anything, very slightly positively
associated with genes (p ≈ 0.105). We note that a few parameterizations,
as shown in Figure 5, do produce z-scores greater than 2. However, these
parameterizations correspond to large values of d∗(k), and furthermore, sig-
nificance is in the opposite direction reported by Redon et al. (2006). This
highlights the need for carefully defined null distributions in genomic studies.
We are not suggesting that the results presented necessarily invalidate the
corresponding result of Redon et al. (2006), but rather we caution that sci-
entific conclusions of this kind are predicated on how the researcher defines
“at random”, and that this definition should be made to reflect, as much
as possible, that which is known about the actual distribution of genomic
elements. We presume that authors wish, in general, to err on the side of
caution, and hence do not wish to report significant association when the
association can be explained simply by a conservative choice of null.

Fig 5. The relationship between the estimated z-score, d∗(k), Lr and Lb. As Lr increases,
our estimate of σ̂n (not shown) increases, which drives the estimated z-score down. As Lr

becomes too small, we lose the stability of our estimates, and d∗(k) increases. For the smallest
value of Lr shown here, the estimated z-score increases sharply, but the corresponding value
of d∗(k) indicates that this parameterization is unreliable. The ideal parameterization under
d∗(k) is given by Lr/n = 0.09 and Lb/Lr = 0.20.

6. Appendix.
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6.1. Proof of Theorem 3.1. For simplicity we have d = 1 and g the
identity. The general case follows by the Cramér-Wold device. Write,

V ar(Sn/
√

n) = An + Bn,

where

An =
1
n

n∑

a=1

n∑

b=1

Cov[Xa, Xb]I(π1(a) = π1(b)),

Bn =
1
n

n∑

a=1

n∑

b=1

Cov[Xa, Xb]I(π1(a) 6= π1(b)).

We will show that

(6.1) Bn = o(I)

The theorem then follows from, for example, Corollary 1, page 142 of Hern-
dorff (1984).

Proof of (6.1): We first note that, by A2 we have the standard bound

(6.2) |Cov[Xa, Xa+k]| ≤ C2m(k),

and by A2, since β > 1,
∑

k≥k0

m(k) ≤ c
∑

k≥k0

k−β → 0 as k0 →∞.

Thus, for all ε > 0, exists k1(ε) such that for all k ≥ k1(ε),

(6.3)
1
n

n∑

a=1

n∑

b=1

|Cov[Xa, Xb]|I(π1(a) 6= π1(b), |a− b| > k) ≤ ε.

Now, by A4, since

n∑

a=1

I(π1(a + k) > π1(a) + 1) ≤
∑

i:ni≤k

ni = o(n),

by A2 and (6.2) we have,

1
n

n∑

a=1

n∑

b=1

|Cov[Xa, Xb]|I(π1(a) 6= π1(b), |a− b| ≤ k)

≤ C2

n

n∑

a=1

n∑

b=1

I(π1(b) = π1(a) + 1, |a− b| ≤ k) + o(1).(6.4)
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The first term on right hand side of (6.4) is bounded by

(6.5)
C2

n

U∑

i=1

ni∑

j=ni−k+1

1 ≤ 2C2Uk/n.

Thus by A3, the above expression is o(1). Combining (6.3-6.5) we obtain
(6.1). Evidently, An = σ2

n, and thus Theorem 4.2 follows.

6.2. Proof of Theorem 4.2..

(i) We use P ∗ throughout here for the randomization measure. By B2,

(6.6) P ∗[π1(N) = π1(N + L− 1)] → 1

since the complementary event can happen iff π1(N) = i, π2(N) =
ni−L+1, ..., ni for some i and that probability is bounded by

∑U
i=1

L
n .

But given π1(N) = π1(N + L− 1), X̄∗
L is then a draw from the finite

population {L−1 ∑k+L−1
j=k Xij : 1 ≤ k ≤ ni − L + 1}. By A5 and A7

and Dedeker et al. (2004)
(6.7)

max{ρM (L−1
k+L−1∑

j=k

Xij , µi) : 1 ≤ k ≤ ni − L + 1, 1 ≤ i ≤ U} P→ 0

and (i) follows from 6.6, 6.7 and property b) of ρM .
(ii) It is enough to show that

ρM

(
L∗(

√
L(X̄∗

L − X̄) | π1(N) = i
)
,N (0, Ci)

)
P−→ 0

for each i. But by Dedeker et al (2004),

ρM

(
L−

1
2

∑ {
(Xk−µi) : π1(k) = i, j ≤ π2(k) ≤ j+L−1

}
,N (0, Ci)

)
→ 0

for each i uniformly in j by the stationarity of {Xk : π1(k) = i} as
L →∞. But

√
L(X̄∗

L − X̄) =
√

L(X̄∗
L − µ) + oP (1)

by B1. Further, as we have shown,

ρM

(√
L(X̄∗

L − µπ1(N)),N (0, Ci)
) P−→ 0

and finally,

L
U∑

i=1

fi(µi − µ)2 = o(1),

thus the result follows by Property b) of ρM .
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(iii) It is enough to show that

ρM

( ∑
fiN (0, Ci),N (0,Σn)

) → 0 .

But
ρM

(N (0, Ci),N (0, Σn)
)

= O
(|Ci − Σn|

)

and again

ρ2
M

( ∑
fiN (0, Ci),

∑
fiN (0,Σn)

) ≤
∑

fiρ
2
M

(
N(0, Ci),N (0, Σn)

)
= o(1).

2

6.3. Proof of Theorem 4.4. Let ḡi =
∑ni

j=1 g(Xij)/ni. By Theorem 4.2.1
of Politis, Romano and Wolf (1999), if fiL →∞, then

(fiL)1/2[TfiL(XNi;fiL)− ḡi] ⇒ N(0, Ci(fiL))

in law in probability. Since by the stratified block subsampling algorithm,
the terms on the left above are independent across i under P ∗, for every
ε > 0 there exists U(ε) independent of n such that

E∗
∣∣∣∣∣∣
L1/2

U∑

i=U(ε)+1

fi[TfiL(XNi;fiL)− ḡi]

∣∣∣∣∣∣

2

≤ c2
U∑

i=U(ε)+1

fi ≤ ε

and hence,

E∗
∣∣∣L1/2(T ∗L − Tn)− L1/2[T ∗L(U(ε))− Tn(U(ε))]

∣∣∣
2 ≤ ε

where

T ∗L(U(ε)) =
U(ε)∑

i=1

fiTfiL(XNi;fiL)(6.8)

Tn(U(ε)) =
U(ε)∑

i=1

fiḡi.(6.9)

The result then follows if

min{nfi : 1 ≤ i ≤ U(ε)} → ∞

for all ε > 0. This is implied by assumption A4.
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6.4. Proof of Theorem 4.5. We first define some notation. Let R̂i =
{τ̂i−1 + 1, . . . , τ̂i} be the region between τ̂i−1 and τ̂i, and

ki =
Un∑

j=1

I{τ̂i−1<τj<τ̂i} + 1

be the number of stationary regions within R̂i. Let τi,0 = τ̂i and for j =
1, . . . , ki − 1, τi,j = min{j : τj > τi,j−1}. Thus τi,j is the j-th true change-
point in region R̂i, and let

τ̃ = τ̃ (n) = τ (n)
⋃

τ̂ (n) = {τi,j : i = 1, . . . , Un, j = 1, . . . , ki}.

Define Rij = {τi,j−1 + 1, . . . , τi,j} to be the j-th stationary region in R̂i.
Then, define

fij = |Rij |/n,

f̂i = |R̂i|/n,

λij = fijL,

λ̂i = f̂iL.

We use the notation Xs;t = {Xs, . . . , Xs+t−1} to denote the block of size t
starting at s, and X̄s;t to be the mean of this block.

Consider a subsample X∗(τ̃ ) = {XNi,j ,λij : i = 1, . . . , Ûn; j = 1, . . . , ki}
by Algorithm 4.3 conditioned on τ̃ . Thus for each i, j, Ni,j ∼ Uniform(Rij).
Let

µ̃n,i =
ki∑

j=1

fij

f̂i

X̄Nij ;λij
(6.10)

µ̃ =
∑

i

f̂iµ̃n,i.(6.11)

Then, because of assumptions (A10-A11), τ̃ satisfies all of the conditions of
Theorem 4.4 and hence as a direct consequence of that theorem,

(6.12)
√

Lnσ−1
n [µ̃n − X̄n] → N(0, 1).

Thus, proving Theorem 4.5 is equivalent to proving

(6.13) ρ2
M [F ∗

n(τ̂ (n)), F ∗
n(τ̃ (n))] →p 0.

The subsample drawn by Algorithm 4.3 conditional on τ̂ is

X∗(τ̂ ) = {XNi,λ̂i
: i = 1, . . . , Ûn}.
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We couple X∗(τ̂ ) to X∗(τ̃ ) by letting

Ni = Nij with probability fij/f̂i, j = 1, . . . , ki

for each i = 1, . . . , Ûn. One can verify that by this construction, Ni ∼
Uniform(R̂i) as required by Algorithm 4.3. We let µ̂n,i = X̄Ni;λ̂i

and µ̂n =
∑Ûn

i=1 fiµ̂n,i.
Let F ∗

n,i(τ̂ ) be the distribution of
√

L(µ̂n,i − X̄τi−1;ni) and F ∗
n,i(τ̃ ) be the

distribution of
√

L(µ̃n,i−X̄τi−1;ni) conditional on X1, . . . , Xn and τ̂ (n). Since
under this conditioning, {µ̃n,i} and {µ̂n,i} are each sets of independent ran-
dom variables, by property (b) of the Mallows’ metric,

ρ2
M [F ∗

n(τ̂ ), F ∗
n(τ̃ )] ≤

Ûn∑

i=1

f̂2
i ρ2

M [F ∗
n,i(τ̂ ), F ∗

n,i(τ̃ )]

≤ L
Ûn∑

i=1

f̂2
i E∗[µ̂n,i − µ̃n,i]2

= L
Ûn∑

i=1

f̂2
i Var∗[µ̂n,i − µ̃n,i].

The second inequality above is due to the definition of Mallows’ metric, and
the following equality is due to the fact that E∗[µ̂n,i − µ̃n,i] = op(1). Hence,
to show (6.13) it is sufficient to show that

(6.14)
Ûn∑

i=1

f̂iλ̂iVar∗(µ̃n,i − µ̂n,i) →p 0.

We now study the terms λ̂iVar∗(µ̃n,i− µ̂n,i). For clarity, we first derive an
explicit formula for this term when Ûn = 1 and Un = 2, and then generalize
to the case Ûn > 2, Un > 1. Under this simple scenario, the estimated
segmentation contains no change-points, but there is one true change-point
at τ . In this specific case we simplify our notation to let N1 be uniformly
drawn from {1, . . . , τ} and N2 be uniformly drawn from {τ + 1, . . . , n−L},
and let f1 = τ/n and f2 = 1− f1. Then, define

A1
i = f1LX̄i;f1L,

A2
i = f2LX̄i;f2L,

B1
i = (1− f1)LX̄i;(1−f1)L,

B2
i = (1− f2)LX̄i;(1−f2)L.
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The subsample drawn by Algorithm 4.3 assuming τ̂ would simply be one
block of length L with starting index N uniformly distributed on {1, . . . , n}.
Since L/n → 0, we can ignore the effects at the edges of the sequence and
thus by the coupling of N to N1 and N2,

µ̂ = [(A1
N1

+ B1
N1

)(1− J) + (A2
N2

+ B2
N2

)J ]/L + o(1),

where J ∼ Bernoulli(f2) is the indicator variable for the event {N = N2}.
The coupled subsample which assumes knowledge of τ would have have mean

µ̃ = (A1
N1

+ A2
N2

)/L + o(1),

and hence,

µ̂− µ̃ = [(B1
N1
−A2

N2
)(1− J) + (B2

N2
−A1

N1
)J ]/L.

Since
Var∗(µ̂− µ̃) = E∗[Var∗(µ̂− µ̃|J)] + Var∗[E∗(µ̂− µ̃|J)],

we will examine each of the two terms in the above decomposition separately:

E∗(µ̂− µ̃|J = 0) = E∗(B1
N1
−A2

N2
)/L

=
1
L




τ−L∑

N1=1

N1+L∑

i=N1+f1L

Xi −
n−L∑

N2=τ+1

N2+f2L∑

i=N2

Xi




= f2[X̄1:τ − X̄τ+1:n] + o(1).

Similarly,

E∗(µ̂− µ̃|J = 1) = f1[X̄1:τ − X̄τ+1:n].

It is easy to check by combining the above equations that E∗[µ̂ − µ̃] = 0,
and hence,

LVar∗[E∗(µ̂− µ̃)] = L(f1f
2
2 + f2f

2
1 )[X̄1:τ − X̄τ+1:n]2

= f1f2L[X̄1:τ − X̄τ+1:n]2.(6.15)

Now consider the term E∗[Var∗(µ̂n − µ̃n|J)].

Var∗[µ̂− µ̃|J = 0] = Var∗(B1
N1
−A2

N2
)/L2

= [Var∗(B1
N1

) + Var∗(A2
N2

)− 2Cov∗(A2
N2

, B1
N1

)]/L2.

By independence of N1 and N2, Cov∗(A2
N2

, B1
N1

) = 0.

Var∗(B1
N1

) = f2Lσ̂2
1(f2L),

Var∗(A2
N2

) = f2Lσ̂2
2(f2L),
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thus
Var∗[µ̂− µ̃|J = 0] = f2[σ̂2

1(f2L) + σ̂2
2(f2L)]/L,

and similarly,

Var∗[µ̂− µ̃|J = 1] = f1[σ̂2
1(f1L) + σ̂2

2(f1L)]/L,

and therefore

(6.16) LE∗[Var∗(µ̂− µ̃|J)] = f1f2[σ̂2
1(f1L)+ σ̂2

1(f2L)+ σ̂2
2(f1L)+ σ̂2

2(f2L)].

Now we generalize (6.15) and (6.16) to the case where Un > 2, Ûn = 1. For
j = 1, . . . , Un, let Nj be uniformly distributed on {τj−1 + 1, . . . , τj} and

Ai
Ni

= fiLX̄Ni;fiL

Bi
Ni

= (1− fi)LX̄Ni;(1−fi)L.

Then

µ̂ =
1
L

Un∑

i=1

I{J=i}(Ai
Ni

+ Bi
Ni

),

where J is multinomial with P (J = i) = fi, i = 1, . . . , Un. The corresponding
coupled statistic is

µ̃ =
1
L

Un∑

i=1

Ai
Ni

,

and hence

µ̂− µ̃ =
1
L

Un∑

i=1

I{J=i}


Bi

Ni
−

∑

j 6=i

Aj
Nj


 .

Similar to the Un = 2 case, by computing the first and second moments of
Ai

Ni
and Bi

Ni
conditional on the observed sequence, we have the correspond-

ing equations to (6.15) and (6.16) for the Un > 2, Ûn = 1 case:

LVar∗[E∗(µ̂− µ̃|J)] =
Un∑

i=1

fiE∗(µ̂− µ̃|J = i)

=
Un∑

i=1

fi(1− fi)2L


∑

j 6=i

fj

1− fi
(X̄Rj − X̄Ri)




2

+ op(1).

(6.17)
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LE∗[Var∗(µ̂− µ̃|J)] =
Un∑

i=1

fi(1− fi)


σ̂2

i ((1− fi)L) +
∑

j 6=i

fj

1− fi
σ̂2

j (fiL)


 + op(1)

(6.18)

Finally, generalizing (6.17) and (6.18) to the Ûn > 1 case, we have, for each
region i, an independent variable Ji defined as for J above, taking values in
1, . . . , ki, giving us:

λ̂iVar∗[E∗(µ̂n,i − µ̃n,i|Ji)] = λ̂i

ki∑

j=1

fij

f̂i

(
1− fij

f̂i

)2

∑

k 6=j

fik

f̂i − fij

(X̄Rik
− X̄Rij )




2

,

and

λ̂iE∗[Var∗(µ̂n,i − µ̃n,i|Ji)]

=
ki∑

j=1

fij

f̂i

(
1− fij

f̂i

) 
σ̂2

ij((f̂i − fij)L) +
∑

k 6=j

fik

f̂i − fij

σ̂2
ik(fijL)


 ,

where for any R ⊆ {1, . . . , n}, X̄R =
∑

i∈R Xi/|R| and for any i, j, and l
σ̂2

ij(l) = l
∑

i∈Rij
(X̄i;l − X̄Rij )

2/nij . By assumptions A5 and A6, and sum-
ming the above quantities over i = 1, . . . , Ûn, we have

Ûn∑

i=1

fiλ̂iVar∗(µ̂n,i − µ̃n,i) ≤ C
Ûn∑

i=1

fi

ki∑

j=1


λ̂i

fij

f̂i

(
1− fij

f̂i

)2

+
fij

f̂i

(
1− fij

f̂i

)


≤ C
Ûn∑

i=1

ki∑

j=1

[Lmin(fij , f̂i − fij) + min(f̂i, f̂i − fij)]

≤ 2C
L + 1

n

Un∑

i=1

min
1≤j≤Ûn

|τi − τ̂j |.

By assumption A11, the above converges in probability to 0, and thus (6.14)
holds. 2

6.5. Proof of Theorem 4.10. We begin with the known stationary case.
Evidently, we need only apply the delta method to

(IJn, Īn, J̄n)

where IJn ≡ 1
n

∑n
k=1 IkJk and Īn ≡ 1

n

∑n
k=1 Ik, J̄n as defined. The result

follows from Theorem 3.1. We continue with part 2. We require first a series
of couplings.
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Since we are working under H0, {Ik} and {Jk} are independent. Condi-
tional on K1,K2 we construct for each M a joint distribution of (Ic

nJc
n) with

the following properties.

1. Let S11 ≡ {k : k < K1 < K2, K2 > K1+M +L}, S12 = {k : k > K2 >
K1+M+L} and S21, S22 with K1,K2 interchanged. Let Sa = ∪2

b=1Sab.
If |K1 −K2| ≤ M + L let Sa ≡ Sb ≡ φ. Else let (Ic

k, J
c
k), k ← S1 be

independent of (Ic
k, J

c
k), k ∈ S2.

2. The marginal distributions of {Ic
k} and {Ik} and {Jc

k} and {Jk} are
the same respectively.

3. The conditional distribution of {(Ic
k, J

c
k) : k 6∈ S1∪S2} given {(Ic

k, J
c
k) =

(εk1, εk2) : k ∈ S1 ∪S2} and {(Ik, Jk) : 1 ≤ k ≤ n} is that of {(Ik, Jk) :
k 6∈ S1 ∪ S2 given (Ik, Jk) = (εk1, εk2) : k ← S1 ∪ S2}. Since {Ik}, {Jk}
are independent {Ic

k} and {Jc
k} are also.

4. P [Ik 6= Ic
k or Jk 6= Jc

k for any k ∈ S1 ∪ S2] ≤ m(M).
This construction is possible by Strassen’s (1965) Theorem.

5. If |K1 − K2| ≤ M + L, then make {Ic
k}{Jc

k} be independent of each
other and of {Ik, Jk}.

If we adjoin (K1,K2) we see that we have constructed a coupling which
depends only on M and which has properties 1–4 given K1,K2. We now
define statistics IJ

∗1c, J̄∗1c etc. (suppressing dependence on n,L,M) defined
on (Ic, Jc) and bootstrap versions IJ

∗1c etc. as well.
We want to argue generically that if |g| ≤ c < ∞ and the assumptions of

the theorem hold and

SL ≡ 1
L

L∑

l=1

[
g(IK1+l, JK2+l) + g(IK2+l, JK1+l)

]

Sc
L =

1
L

L∑

l=1

[
g(IK1+l, J

c
K2+l) + g(IK2+l, J

c
K1+l)

]

then,
|SL − Sc

L| = oP (L−
1
2 )

as L, n →∞, L = o(n), M = o(n) uniformly in g as above. But,

(6.19) P
[|SL − Sc

L| ≥ εL−
1
2 , |K1 −K2| ≤ M + L

] ≤ M + L

n

(6.20) P
[|SL − Sc

L| ≥ εL−
1
2 , |K1 −K2| > M + L

] ≤ m(M)
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Plugging in g(I, J) = IJ, I, J we see that in the stationary case,

T ∗nL = T ∗cnL + oP (L−
1
2 )

where T ∗cnL is defined by replacing I, J by Ic, Jc throughout in Algorithm 4.9.
Now we can appeal to Theorem 4.1 to establish part 2 of Theorem 4.10 once
we note that for T c

nL given K1−K2 > M+L, IJ
∗1c

, IJ
∗2c

, Ī∗1c, Ī∗2c, J̄∗1c, J̄∗2c

are mutually independent so that the asymptotic covariance of the two com-
ponents of T ∗cnL and J∗cnL is 0.

The generalization to the case of a fixed known segmentation satisfying the
assumptions of Theorem 4.3 is straightforward by coupling the component
corresponding to each segment and computing the variance of the difference
using the independence of the bootstrap statistics for different segments.
Finally the case of unknown segmentation can be dealt with by reducing
the unknown segmentation case to the known one using Theorem 4.4 and
then applying the result for known segmentation, Theorem 4.5. The result
follows. 2
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