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The Pattern Classification Problem I

Lid (X,Y), (X1, Y7),...,(X,,Y,) fromX x {£1}.

Usedata(X1,Y1),...,(X,,Y,) tochoose f,, : X — R with small
rsk,

R(fn) = Pr(sign(fn(X)) #Y) = ELY, f(X)).

Natural approach: minimize empirical risk,

A A

R(T) = BUY, £(X)) = 3" €Y F(X0).

Often intractable...

Replace O0-1 loss, ¢, with a convex surrogate, ¢.




‘ Large Margin AIgorithmsI

Consider the margins, Y f(X).
Define amargin cost function ¢ : R — R,
Definethe ¢-risk of f : X - Ras Ry, (f) = Eo(Y f(X)).

Choose f € F to minimize ¢-risk.
(e.g., usedata, (X1,Y7),...,(X,,Y,), tominimizeempirical ¢-risk,

Ry(f) = Eo(Y f(X Z¢ Y f(X

or aregularized version.)




‘ Large Margin AIgorithmsI
Adaboost:

F = span(G) foraVC-class G,
¢(a) = exp(—a),
Minimizes R¢(f) using greedy basis selection, line search.
Support vector machines with 2-norm soft margin.
F = ball in reproducing kernel Hilbert space, H.
(max (0,1 — a))”.

Algorithm minimizes R, (f) + || f13,.




‘ Large Margin AIgorithmsI

Many other variants

Neura net classifiers
() = max(0, (0.8 — «)?).

Support vector machines with 1-norm soft margin
¢(a) = max(0,1 — «).

L2Boost, LS-SVMs

d(a) = (1 —a)”.

Logistic regression

b(a) = log(1 + exp(—2a)).




‘ Large Margin AIgorithmsI




Statistical Consequences of Using a Convex Cost I

Bayes risk consistency? For which ¢?

(Lugos and Vayatis, 2004), (Mannor, Meir and Zhang, 2002).
regularized boosting.

(Zhang, 2004), (Steinwart, 2003). SV M.

(Jiang, 2004): boosting with early stopping.




Statistical Consequences of Using a Convex Cost I

How isrisk related to ¢-risk?
(Lugos and Vayatis, 2004), (Steinwart, 2003): asymptotic.

(Zhang, 2004): comparison theorem.

Convergence rates?

Estimating conditional probabilities?




Overview I

Relating excess risk to excess ¢-risk.

The approximation/estimation decomposition and universal
consistency.

Kernel classifiers: sparseness versus probability estimation.




\ Definitions and Facts.

R(f) = Pr(sign(f(X) #Y)  R*=nfR()

Ro(F) = Eo(Y £(X)) R} = inf Ry (f)
n(x) =Pr(Y =1|X =x) conditional probability.
n defines an optimal classifier: R* = R(sign(n(x) — 1/2)).

Notice: Ry(f) =E(E [¢(Y f(X))|X]), and conditiona ¢-risk is:

E[op(Y f(X)|X = z] = n(x)e(f(x) + (1 —n(x))p(—f(x)).
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Definitions'

Conditional ¢-risk:
E[p(Y f(X)|X = 2] =n(x)o(f(z)) + (1 — n(z))d(—f(z)).
Optimal conditional ¢-risk for n € [0, 1]:

H(n) = inf (no(a) + (1 —n)o(—a)).

Ry, =EH(n(X)).
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Optimal Conditional ¢-risk: Example'
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Definitions'

Optimal conditiona ¢-risk for € [0, 1]:

H(n) = inf (ng(a) + (1 =n)p(-a)).

aceR

Optimal conditional ¢-risk with incorrect sign:

inf _ (ng(a) + (1 —n)p(-a)).

a:a(2n—1)<0

H™(n) > H(n)
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Definitions'
ClyIElFR (no(a) + (1 —n)o(—a))
inf  (no(a) + (1 —n)p(—a)).

a:a(2n—1)<0

Definition: ¢ Is classification-calibrated if,
forn #£1/2,

H™(n) > H(n).

|.e., pointwise optimization of conditional ¢-risk leads to the correct sign.
(c.f. Lin (2001))
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Definitions'

Definition: Given ¢, define ) : [0,1] — [0, 00) by 1 = ¢**, where

A CORICD)

Here, ¢** isthe Fenchel-Legendre biconjugate of g,

epi(g™") = co(epi(g)),
epi(g) ={(z,y) 1z € (0,1}, g(x) <y}
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‘w-transform: Example'

e 1) isthe best convex lower bound on

Y(0) = H ((1+6)/2) — H((1+6)/2),
the excess conditional ¢-risk when the
sign isincorrect.

o 1) = ¢** isthe biconjugate of ),

co(epi(v)),
{(a,t) : o €[0,1], () <t}

o 1 isthe functional convex hull of 1.

16



The Relationship between Excess Risk and Excess qb-riskI

Theorem:
1. Forany Pand f, o(R(f) — R") < Ry(f) — R},

2. Thisbound cannot be improved.

3. Near-minimal ¢-risk implies near-minimal risk
precisely when ¢ Is classification-calibrated.
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The Relationship between Excess Risk and Excess qb-riskI

Theorem:
1. Forany Pand f, o(R(f) — R*) < Ry(f) — R},

2. Thisbound cannot be improved:
For |X|>2,e>0andf € [0, 1], thereisa P and an f with

R(f)—R" =0
Y(0) < Ry(f) — Ry < (0) +e.

3. Near-minimal ¢-risk implies near-minimal risk
precisely when ¢ is classification-calibrated.
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The Relationship between Excess Risk and Excess qb-riskI

Theorem:
1. Forany Pand f, o(R(f) — R*) < Ry(f) — R},

2. Thisbound cannot be improved.

3. The following conditions are equivalent:
(@) ¢ isclassification calibrated.
(©) Ry(fi) — R implies R(f;) — R*.

Proof involves Jensen’s inequality.

19



‘ Classification-calibrated gb.

Theorem: If ¢ isconvex,

¢ isdifferentiable at 0
¢'(0) < 0.

¢ I1s classification calibrated < {

Theorem: If ¢ isclassification calibrated,
3y > 0, Va € R,
vP(a) = 1 < 0].
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Overview I

Relating excess risk to excess ¢-risk.

The approximation/estimation decomposition and universal
consistency.

Kernel classifiers: sparseness versus probability estimation.
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The Approximation/Estimation Decomposition I

Algorithm chooses

fn = arg miri EnR¢(f) + A\ 2(f).

fer

We can decompose the excess risk estimate as

= Ry(fn) = inf Ry(f)+ fien]{in Ry(f) — Ry -

\ . 7

estimation error approximation error

7
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The Approximation/Estimation Decomposition I

= Ro(fn) = inf Ro(f)+ fienjf_n Ry(f) — Ry

\ - 7

estimation error approximation error

7

o Approximation and estimation errors are in terms of Ry, not .
o Like aregression problem.

e With arich class and appropriate regularization, Ry (fn) — R}.
(e.q., F,, getslarge slowly, or \,, — 0 slowly.)

o Universal consistency (R(f,) — R*) iff ¢ isclassification calibrated.
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Overview I

Relating excess risk to excess ¢-risk.

The approximation/estimation decomposition and universal
consistency.

Kernel classifiers: sparseness versus probability estimation.
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‘ Estimating Conditional Probabilities.

Does alarge margin classifier, f,,, allow estimates of the conditional
probability n(x) = Pr(Y = 1|X = x), say, asymptotically?

Confidence-rated predictions are of interest for many decision
problems.

Probabilities are useful for combining decisions.

25



‘ Estimating Conditional Probabilities'

If ¢ IS convex, we can write

H(n) = inf (né(a) + (1 —n)d(—a))
=no(a”(n)) + (1 —n)o(—=a™(n)),

where a”(n) = arg min (n¢(a) + (1 —17)¢(—a)) C R U {Fooj.

Recall:

Ry =EH(n(X)) = Eo(Ya™(n(X)))
n(x) =Pr(Y = 1|X = x).
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‘ Estimating Conditional Probabilities'

a’(n) = argmin (np(a) + (1 = n)d(—a)) C RUFoo}.

Examples of o*(n) versusn € [0, 1]:

1

.5
1
.5

0

| — I L2-SVM: ¢(a) = (1 - a)y)’
_Oj m— 1,1-SVM Ll-SVM ¢(Oz) = (1 — Oé)_|_.
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‘ Estimating Conditional Probabilities.

If a*(n) isnot invertible, that is, there are n; # 7, with

a*(m) Na’(n2) # 0,

then there are distributions P and functions f,, with Ry (f,) — R}, but
fn(x) cannot be used to estimate n(x).

eg. fn(x) = a™(m) Na*(n2). Isn(x) = m orn(z) = n?
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‘ Kernel classifiersand sparseness'

Kernel classification methods:

o = argmin (Eo(Y £(X)) + Adllf]?)

where H isareproducing kernel Hilbert space (RKHS), with norm
| - ||, and A\, > 0 isaregularization parameter.

Representer theorem: solution of optimization problem can be
represented as.

fn(x) = Zaik(x,xi) .

Data x; with «; # 0 are called support vectors (SV's).

Sparseness (number of support vectors < n) means faster evaluation of
the classifier.
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Spar seness. Steinwart’sresults'

For L1 and L2-SVM, Steinwart proved that the asymptotic fraction of
SV’'sis EG(U(X)) (under some technical assumptions).

The function G(7) depends on the loss function used:

L2-SVM doesn’'t produce sparse solutions (asymptotically) while
L1-SVM does.

Recall: L2-SVM can estimate n while L1-SVM cannot.
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‘ Spar seness ver sus Estimating Conditional Probabilities'

The ability to estimate conditional probabilities always causes | oss of
Sparseness.

e Lower bound of the asymptotic fraction of data that become SV’s can
bewritten as EG(n(X)).

e ((n)is1 throughout the region where probabilities can be estimated.

e Theregion where G(n) = 1 isaninterval centered at 1/2.
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‘Asymptotically Sharp Result I

For loss functions of the form:
o(t) = h((to —t)+)

where h is convex, differentiable and A/(0) > 0, if the kernel k isanalytic
and universal (and the underlying Px iscontinuous and non-trivial), then for a
regularization sequence \,, — 0 sufficiently slowly:

0<n<~n
y<n<1l—v
(1-7n)/y 1-7v<n<1
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Example'

(1=t + 30 —t)+
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Overview I

Relating excess risk to excess ¢-risk.

The approximation/estimation decomposition and universal
consistency.

Kerndl classifiers

No sparseness where o* () isinvertible.

Can design ¢ to trade off sparseness and probability estimation.

dides at http://www.stat.berkel ey.edu/~bartlett/talks
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