Statistical Properties of Large Margin Classifiers

Peter Bartlett

Division of Computer Science and Department of Statistics UC Berkeley

Joint work with Mike Jordan, Jon McAuliffe, Ambuj Tewari.

slides at http://www.stat.berkeley.edu/~bartlett/talks

The Pattern Classification Problem

- i.i.d. $(X,Y), (X_1,Y_1), \ldots, (X_n,Y_n)$ from $\mathcal{X} \times \{\pm 1\}$.
- Use data $(X_1, Y_1), \ldots, (X_n, Y_n)$ to choose $f_n : \mathcal{X} \to \mathbb{R}$ with small risk,

$$R(f_n) = \Pr\left(\operatorname{sign}(f_n(X)) \neq Y\right) = \mathbf{E}\ell(Y, f(X)).$$

• Natural approach: minimize empirical risk,

$$\hat{R}(f) = \hat{\mathbf{E}}\ell(Y, f(X)) = \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, f(X_i)).$$

- Often intractable...
- Replace 0-1 loss, ℓ , with a convex surrogate, ϕ .

- Consider the margins, Yf(X).
- Define a margin cost function $\phi : \mathbb{R} \to \mathbb{R}^+$.
- Define the ϕ -risk of $f: \mathcal{X} \to \mathbb{R}$ as $R_{\phi}(f) = \mathbf{E}\phi(Yf(X))$.
- Choose $f \in \mathcal{F}$ to minimize ϕ -risk. (e.g., use data, $(X_1, Y_1), \ldots, (X_n, Y_n)$, to minimize **empirical** ϕ -risk,

$$\hat{R}_{\phi}(f) = \hat{\mathbf{E}}\phi(Yf(X)) = \frac{1}{n} \sum_{i=1}^{n} \phi(Y_i f(X_i)),$$

or a regularized version.)

- Adaboost:
 - $-\mathcal{F} = \operatorname{span}(\mathcal{G})$ for a VC-class \mathcal{G} ,
 - $\phi(\alpha) = \exp(-\alpha),$
 - Minimizes $\hat{R}_{\phi}(f)$ using greedy basis selection, line search.
- Support vector machines with 2-norm soft margin.
 - $-\mathcal{F}$ = ball in reproducing kernel Hilbert space, \mathcal{H} .
 - $\phi(\alpha) = (\max(0, 1 \alpha))^2.$
 - Algorithm minimizes $\hat{R}_{\phi}(f) + \lambda ||f||_{\mathcal{H}}^2$.

- Many other variants
 - Neural net classifiers

$$\phi(\alpha) = \max(0, (0.8 - \alpha)^2).$$

- Support vector machines with 1-norm soft margin $\phi(\alpha) = \max(0, 1 \alpha)$.
- L2Boost, LS-SVMs

$$\phi(\alpha) = (1 - \alpha)^2.$$

Logistic regression

$$\phi(\alpha) = \log(1 + \exp(-2\alpha)).$$

Statistical Consequences of Using a Convex Cost

- Bayes risk consistency? For which ϕ ?
 - (Lugosi and Vayatis, 2004), (Mannor, Meir and Zhang, 2002): regularized boosting.
 - (Zhang, 2004), (Steinwart, 2003): SVM.
 - (Jiang, 2004): boosting with early stopping.

Statistical Consequences of Using a Convex Cost

- How is risk related to ϕ -risk?
 - (Lugosi and Vayatis, 2004), (Steinwart, 2003): asymptotic.
 - (Zhang, 2004): comparison theorem.
- Convergence rates?
- Estimating conditional probabilities?

Overview

- Relating excess risk to excess ϕ -risk.
- The approximation/estimation decomposition and universal consistency.
- Kernel classifiers: sparseness versus probability estimation.

Definitions and Facts

$$R(f) = \Pr\left(\operatorname{sign}(f(X)) \neq Y\right)$$
 $R^* = \inf_f R(f)$ risk $R_{\phi}(f) = \mathbb{E}\phi(Yf(X))$ $R_{\phi}^* = \inf_f R_{\phi}(f)$ ϕ -risk $\eta(x) = \Pr(Y = 1|X = x)$ conditional probability.

• η defines an optimal classifier: $R^* = R(\operatorname{sign}(\eta(x) - 1/2))$.

Notice: $R_{\phi}(f) = \mathbb{E}(\mathbb{E}[\phi(Yf(X))|X])$, and conditional ϕ -risk is:

$$\mathbb{E}\left[\phi(Yf(X))|X=x\right] = \eta(x)\phi(f(x)) + (1-\eta(x))\phi(-f(x)).$$

Conditional ϕ -risk:

$$\mathbb{E}\left[\phi(Yf(X))|X=x\right] = \eta(x)\phi(f(x)) + (1-\eta(x))\phi(-f(x)).$$

Optimal conditional ϕ -risk for $\eta \in [0, 1]$:

$$H(\eta) = \inf_{\alpha \in \mathbb{R}} (\eta \phi(\alpha) + (1 - \eta)\phi(-\alpha)).$$

$$R_{\phi}^* = \mathbb{E}H(\eta(X)).$$

Optimal Conditional ϕ -risk: Example

 $\alpha^{^{\star}}\!(\eta) \\ H(\eta)$

 $\psi(\theta)$

8.0

1.0

Optimal conditional ϕ -risk for $\eta \in [0, 1]$:

$$H(\eta) = \inf_{\alpha \in \mathbb{R}} \left(\eta \phi(\alpha) + (1 - \eta) \phi(-\alpha) \right).$$

Optimal conditional ϕ -risk with incorrect sign:

$$H^{-}(\eta) = \inf_{\alpha:\alpha(2\eta - 1) \le 0} (\eta \phi(\alpha) + (1 - \eta)\phi(-\alpha)).$$

Note:
$$H^{-}(\eta) \ge H(\eta)$$
 $H^{-}(1/2) = H(1/2)$.

$$H(\eta) = \inf_{\alpha \in \mathbb{R}} (\eta \phi(\alpha) + (1 - \eta)\phi(-\alpha))$$

$$H^{-}(\eta) = \inf_{\alpha : \alpha(2\eta - 1) \le 0} (\eta \phi(\alpha) + (1 - \eta)\phi(-\alpha)).$$

Definition: ϕ is classification-calibrated if, for $\eta \neq 1/2$,

$$H^-(\eta) > H(\eta).$$

i.e., pointwise optimization of conditional ϕ -risk leads to the correct sign. (c.f. Lin (2001))

Definition: Given ϕ , define $\psi:[0,1]\to[0,\infty)$ by $\psi=\tilde{\psi}^{**}$, where

$$\tilde{\psi}(\theta) = H^{-}\left(\frac{1+\theta}{2}\right) - H\left(\frac{1+\theta}{2}\right).$$

Here, g^{**} is the Fenchel-Legendre biconjugate of g,

$$\begin{aligned} \operatorname{epi}(g^{**}) &= \overline{\operatorname{co}}(\operatorname{epi}(g)), \\ \operatorname{epi}(g) &= \left\{ (x,y) : x \in [0,1], \ g(x) \leq y \right\}. \end{aligned}$$

ψ -transform: Example

- ψ is the best convex lower bound on $\tilde{\psi}(\theta) = H^-((1+\theta)/2) H((1+\theta)/2)$, the excess conditional ϕ -risk when the sign is incorrect.
- $\psi = \tilde{\psi}^{**}$ is the biconjugate of $\tilde{\psi}$, $\operatorname{epi}(\psi) = \overline{\operatorname{co}}(\operatorname{epi}(\tilde{\psi})),$ $\operatorname{epi}(\psi) = \{(\alpha,t) : \alpha \in [0,1], \, \psi(\alpha) \leq t\} \,.$
- ψ is the functional convex hull of $\tilde{\psi}$.

The Relationship between Excess Risk and Excess ϕ -risk

Theorem:

- 1. For any P and f, $\psi(R(f) R^*) \le R_{\phi}(f) R_{\phi}^*$.
- 2. This bound cannot be improved.
- 3. Near-minimal ϕ -risk implies near-minimal risk precisely when ϕ is classification-calibrated.

The Relationship between Excess Risk and Excess ϕ -risk

Theorem:

- 1. For any P and f, $\psi(R(f) R^*) \le R_{\phi}(f) R_{\phi}^*$.
- 2. This bound cannot be improved: For $|\mathcal{X}| \geq 2$, $\epsilon > 0$ and $\theta \in [0, 1]$, there is a P and an f with

$$R(f) - R^* = \theta$$

$$\psi(\theta) \le R_{\phi}(f) - R_{\phi}^* \le \psi(\theta) + \epsilon.$$

3. Near-minimal ϕ -risk implies near-minimal risk precisely when ϕ is classification-calibrated.

The Relationship between Excess Risk and Excess ϕ -risk

Theorem:

- 1. For any P and f, $\psi(R(f) R^*) \le R_{\phi}(f) R_{\phi}^*$.
- 2. This bound cannot be improved.
- 3. The following conditions are equivalent:
 - (a) ϕ is classification calibrated.
 - (b) $\psi(\theta_i) \to 0 \text{ iff } \theta_i \to 0.$
 - (c) $R_{\phi}(f_i) \to R_{\phi}^*$ implies $R(f_i) \to R^*$.

Proof involves Jensen's inequality.

Classification-calibrated ϕ

Theorem: If ϕ is convex,

$$\phi$$
 is classification calibrated $\Leftrightarrow \begin{cases} \phi \text{ is differentiable at } 0 \\ \phi'(0) < 0. \end{cases}$

Theorem: If ϕ is classification calibrated,

$$\exists \gamma > 0, \forall \alpha \in \mathbb{R},$$

$$\gamma \phi(\alpha) \geq \mathbf{1} \left[\alpha \leq 0 \right].$$

Overview

- Relating excess risk to excess ϕ -risk.
- The approximation/estimation decomposition and universal consistency.
- Kernel classifiers: sparseness versus probability estimation.

The Approximation/Estimation Decomposition

Algorithm chooses

$$f_n = \arg\min_{f \in \mathcal{F}_n} \hat{E}_n R_{\phi}(f) + \lambda_n \Omega(f).$$

We can decompose the excess risk estimate as

$$\psi\left(R(f_n) - R^*\right) \le R_{\phi}(f_n) - R_{\phi}^*$$

$$= R_{\phi}(f_n) - \inf_{f \in \mathcal{F}_n} R_{\phi}(f) + \inf_{f \in \mathcal{F}_n} R_{\phi}(f) - R_{\phi}^* .$$
estimation error approximation error

The Approximation/Estimation Decomposition

$$\psi\left(R(f_n) - R^*\right) \le R_{\phi}(f_n) - R_{\phi}^*$$

$$= R_{\phi}(f_n) - \inf_{f \in \mathcal{F}_n} R_{\phi}(f) + \inf_{f \in \mathcal{F}_n} R_{\phi}(f) - R_{\phi}^*.$$
estimation error approximation error

- Approximation and estimation errors are in terms of R_{ϕ} , not R.
- Like a regression problem.
- With a rich class and appropriate regularization, $R_{\phi}(f_n) \to R_{\phi}^*$. (e.g., \mathcal{F}_n gets large slowly, or $\lambda_n \to 0$ slowly.)
- Universal consistency $(R(f_n) \to R^*)$ iff ϕ is classification calibrated.

Overview

- Relating excess risk to excess ϕ -risk.
- The approximation/estimation decomposition and universal consistency.
- Kernel classifiers: sparseness versus probability estimation.

Does a large margin classifier, f_n , allow estimates of the conditional probability $\eta(x) = \Pr(Y = 1 | X = x)$, say, asymptotically?

- Confidence-rated predictions are of interest for many decision problems.
- Probabilities are useful for combining decisions.

If ϕ is convex, we can write

$$H(\eta) = \inf_{\alpha \in \mathbb{R}} (\eta \phi(\alpha) + (1 - \eta)\phi(-\alpha))$$
$$= \eta \phi(\alpha^*(\eta)) + (1 - \eta)\phi(-\alpha^*(\eta)),$$

where
$$\alpha^*(\eta) = \arg\min_{\alpha} \left(\eta \phi(\alpha) + (1 - \eta) \phi(-\alpha) \right) \subset \mathbb{R} \cup \{\pm \infty\}.$$

Recall:

$$R_{\phi}^* = \mathbb{E}H(\eta(X)) = \mathbb{E}\phi(Y\alpha^*(\eta(X)))$$
$$\eta(x) = \Pr(Y = 1|X = x).$$

$$\alpha^*(\eta) = \arg\min_{\alpha} \left(\eta \phi(\alpha) + (1 - \eta) \phi(-\alpha) \right) \subset \mathbb{R} \cup \{\pm \infty\}.$$

Examples of $\alpha^*(\eta)$ versus $\eta \in [0, 1]$:

L2-SVM:
$$\phi(\alpha) = ((1 - \alpha)_{+})^{2}$$

L1-SVM:
$$\phi(\alpha) = (1 - \alpha)_{+}$$
.

If $\alpha^*(\eta)$ is not invertible, that is, there are $\eta_1 \neq \eta_2$ with

$$\alpha^*(\eta_1) \cap \alpha^*(\eta_2) \neq \emptyset,$$

then there are distributions P and functions f_n with $R_{\phi}(f_n) \to R_{\phi}^*$ but $f_n(x)$ cannot be used to estimate $\eta(x)$.

e.g.,
$$f_n(x) \to \alpha^*(\eta_1) \cap \alpha^*(\eta_2)$$
. Is $\eta(x) = \eta_1$ or $\eta(x) = \eta_2$?

Kernel classifiers and sparseness

• Kernel classification methods:

$$f_n = \arg\min_{f \in \mathcal{H}} \left(\hat{E}\phi(Yf(X)) + \lambda_n ||f||^2 \right),$$

where \mathcal{H} is a reproducing kernel Hilbert space (RKHS), with norm $\|\cdot\|$, and $\lambda_n > 0$ is a regularization parameter.

• Representer theorem: solution of optimization problem can be represented as:

$$f_n(x) = \sum_{i=1}^n \alpha_i k(x, x_i) .$$

- Data x_i with $\alpha_i \neq 0$ are called *support vectors* (SV's).
- Sparseness (number of support vectors $\ll n$) means faster evaluation of the classifier.

Sparseness: Steinwart's results

- For L1 and L2-SVM, Steinwart proved that the asymptotic fraction of SV's is $\mathbb{E}G(\eta(X))$ (under some technical assumptions).
- The function $G(\eta)$ depends on the loss function used:

- L2-SVM doesn't produce sparse solutions (asymptotically) while L1-SVM does.
- Recall: L2-SVM can estimate η while L1-SVM cannot.

Sparseness versus Estimating Conditional Probabilities

The ability to estimate conditional probabilities always causes loss of sparseness:

- Lower bound of the asymptotic fraction of data that become SV's can be written as $\mathbb{E}G(\eta(X))$.
- $G(\eta)$ is 1 throughout the region where probabilities can be estimated.
- The region where $G(\eta) = 1$ is an interval centered at 1/2.

Asymptotically Sharp Result

For loss functions of the form:

$$\phi(t) = h((t_0 - t)_+)$$

where h is convex, differentiable and h'(0) > 0, if the kernel k is analytic and universal (and the underlying P_X is continuous and non-trivial), then for a regularization sequence $\lambda_n \to 0$ sufficiently slowly:

$$\frac{|\{i:\alpha_i\neq 0\}|}{n} \stackrel{P}{\to} \mathbb{E}G(\eta(X))$$

where

$$G(\eta) = \begin{cases} \eta/\gamma & 0 \le \eta \le \gamma \\ 1 & \gamma < \eta < 1 - \gamma \\ (1 - \eta)/\gamma & 1 - \gamma \le \eta \le 1 \end{cases}$$

Example

$$\frac{1}{3}((1-t)_{+})^{2} + \frac{2}{3}(1-t)_{+}$$

 $\alpha^*(\eta)$ vs. η

 $G(\eta)$ vs. η

- Relating excess risk to excess ϕ -risk.
- The approximation/estimation decomposition and universal consistency.
- Kernel classifiers
 - No sparseness where $\alpha^*(\eta)$ is invertible.
 - Can design ϕ to trade off sparseness and probability estimation.

slides at http://www.stat.berkeley.edu/~bartlett/talks