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The Pattern Classification Problem

• i.i.d. (X,Y ), (X1, Y1), . . . , (Xn, Yn) from X × {±1}.

• Use data (X1, Y1), . . . , (Xn, Yn) to choose fn : X → R with small

risk,

R(fn) = Pr (sign(fn(X)) 6= Y ) = E`(Y, f(X)).

• Natural approach: minimize empirical risk,

R̂(f) = Ê`(Y, f(X)) =
1

n

n∑

i=1

`(Yi, f(Xi)).

• Often intractable...

• Replace 0-1 loss, `, with a convex surrogate, φ.
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Large Margin Algorithms

• Consider the margins, Y f(X).

• Define a margin cost function φ : R→ R
+.

• Define the φ-risk of f : X → R as Rφ(f) = Eφ(Y f(X)).

• Choose f ∈ F to minimize φ-risk.

(e.g., use data, (X1, Y1), . . . , (Xn, Yn), to minimize empirical φ-risk,

R̂φ(f) = Êφ(Y f(X)) =
1

n

n∑

i=1

φ(Yif(Xi)),

or a regularized version.)
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Large Margin Algorithms

• Adaboost:

− F = span(G) for a VC-class G,

− φ(α) = exp(−α),

− Minimizes R̂φ(f) using greedy basis selection, line search:

ft+1 = ft + αt+1gt+1,

R̂φ(ft + αt+1gt+1) = min
α∈R,g∈G

R̂φ(ft + αg).
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Large Margin Algorithms

• Many other variants

− Support vector machines:

∗ F = ball in reproducing kernel Hilbert space, H.

∗ φ(α) = max (0, 1− α).

∗ Algorithm minimizes R̂φ(f) + λ‖f‖2H.

− Neural net classifiers

− L2Boost, LS-SVMs

− Logistic regression
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Large Margin Algorithms
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Overview

• Review: Convex cost versus risk.

• Universal consistency.

• Classification with a reject option.

• Multiclass generalizations.
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Definitions and Facts

R(f) = Pr (sign(f(X)) 6= Y ) R∗ = inf
f
R(f) risk

Rφ(f) = Eφ(Y f(X)) R∗
φ = inf

f
Rφ(f) φ-risk

η(x) = Pr(Y = 1|X = x) conditional probability.

Notice: Rφ(f) = E (E [φ(Y f(X))|X]), and conditional φ-risk is:

E [φ(Y f(X))|X = x] = η(x)φ(f(x)) + (1− η(x))φ(−f(x)).
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Definitions

H(η) = inf
α∈R

(ηφ(α) + (1− η)φ(−α))

H−(η) = inf
α:α(2η−1)≤0

(ηφ(α) + (1− η)φ(−α)) .

Definition: We say that φ is classification-calibrated if, for η 6= 1/2,

H−(η) > H(η).

i.e., pointwise optimization of conditional φ-risk leads to the correct sign.
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The ψ transform

Definition: Given convex φ, define ψ : [0, 1]→ [0,∞) by

ψ(θ) = H−

(
1 + θ

2

)

−H

(
1 + θ

2

)

.

(The definition is a little more involved for non-convex φ.)
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The Relationship between Excess Risk and Excess φ-risk

Theorem:

1. For any P and f , ψ(R(f)−R∗) ≤ Rφ(f)−R∗
φ.

2. For |X | ≥ 2, ε > 0 and θ ∈ [0, 1], there is a P and an f with

R(f)−R∗ = θ

ψ(θ) ≤ Rφ(f)−R∗
φ ≤ ψ(θ) + ε.

3. The following conditions are equivalent:

(a) φ is classification calibrated.

(b) ψ(θi)→ 0 iff θi → 0.

(c) Rφ(fi)→ R∗
φ implies R(fi)→ R∗.
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Classification-calibrated φ

Theorem: If φ is convex,

φ is classification calibrated⇔







φ is differentiable at 0

φ′(0) < 0.
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Classification-calibrated φ

Theorem: If φ is convex,

φ is classification calibrated⇔







φ is differentiable at 0

φ′(0) < 0.

φ (α)
η φ (α) + (1−η) φ (α)

(η < 1/2)
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Overview

• Review: Convex cost versus risk.

• Universal consistency.

• Classification with a reject option.

• Multiclass generalizations.
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Universal Consistency

• Assume: i.i.d. data, (X,Y ), (X1, Y1), . . . , (Xn, Yn) from

from X × Y (with Y = {±1}).

• Consider a method fn = A((X1, Y1), . . . , (Xn, Yn)),

e.g., fn = AdaBoost((X1, Y1), . . . , (Xn, Yn), tn).

Definition: We say that the method is universally consistent if, for all

distributions P ,

R(fn)
a.s
→ R∗,

where R is the risk and R∗ is the Bayes risk:

R(f) = Pr(Y 6= sign(f(X)), R∗ = inf
f
R(f).
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The Approximation/Estimation Decomposition

Consider an algorithm that chooses

fn = arg min
f∈Fn

R̂φ(f) or fn = arg min
f∈F

(

R̂φ(f) + λnΩ(f)
)

.

(R̂φ(f) is empirical φ-risk, F1 ⊆ F2 ⊆ · · · ⊆ F , and Ω is regularization.)

We can decompose the excess risk estimate as

ψ (R(fn)−R∗) ≤ Rφ(fn)−R∗
φ

= Rφ(fn)− inf
f∈Fn

Rφ(f)

︸ ︷︷ ︸

estimation error

+ inf
f∈Fn

Rφ(f)−R∗
φ

︸ ︷︷ ︸

approximation error

.
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The Approximation/Estimation Decomposition

ψ (R(fn)−R∗) ≤ Rφ(fn)−R∗
φ

= Rφ(fn)− inf
f∈Fn

Rφ(f)

︸ ︷︷ ︸

estimation error

+ inf
f∈Fn

Rφ(f)−R∗
φ

︸ ︷︷ ︸

approximation error

.

• Approximation and estimation errors are in terms of Rφ, not R.

• Like a regression problem.

• With a rich class and appropriate regularization, Rφ(fn)→ R∗
φ.

(e.g., Fn gets large slowly, or λn → 0 slowly.)

• Universal consistency (R(fn)→ R∗) iff φ is classification calibrated.
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Universal Consistency: SVMs

For a Reproducing Kernel Hilbert Space H, choose

fn = arg min
f∈Hn

(

R̂φ(f) + λn‖f‖
2
H

)

, withHn = {f ∈ H : λn‖f‖ ≤ 1}.

ψ (R(fn)−R∗) ≤ Rφ(fn)− inf
f∈Hn

Rφ(f)

︸ ︷︷ ︸

estimation error

+ inf
f∈Hn

Rφ(f)−R∗
φ

︸ ︷︷ ︸

approximation error

.

If H is large (for example, a Gaussian kernel on R
d), inff∈HRφ(f) = R∗

φ.

For λn → 0 (suitably slowly), |R̂φ(fn)−Rφ(fn)|
a.s
→ 0.

In that case, Rφ(fn)
a.s
→ R∗

φ, and universal consistency follows.
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Universal Consistency: AdaBoost?

• For SVMs, the regularization term keeps fn small, which is essential

for the uniform convergence result: |R̂φ(fn)−Rφ(fn)|
a.s
→ 0.

• AdaBoost?

19



AdaBoost

Sample, Sn = ((x1, y1), . . . , (xn, yn)) ∈ (X×{±1})n

Number of iterations, T

Class of basis functions, G

function AdaBoost(Sn, T):

f0 := 0

for t from 1, . . . , T

(αt, gt) := arg min
α∈R,g∈G

1

n

n
X

i=1

exp (−yi (ft−1(xi) + αg(xi)))

ft := ft−1 + αtgt

return fT
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Previous results: Regularized versions

Instead, we could consider a regularized version of AdaBoost:

1. Minimize R̂φ(f) over Fn = γnco(G), the scaled convex hull of G.

2. Minimize

R̂φ(f) + λn‖f‖∗,

over span(G), where ‖f‖∗ = inf{γ : f ∈ γco(G)}.

For suitable choices of the parameters (γn and λn), these algorithms are

universally consistent. (Lugosi and Vayatis, 2004), (Zhang, 2004)

Also bounded step size. (Zhang and Yu, 2005), (Bickel, Ritov, Zakai, 2006)
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Previous results: ‘Process consistency’

If the log odds ratio, log(η(x)/(1− η(x))), is smooth, then it turns out that

AdaBoost estimates it in some asymptotic sense:

Theorem: [Jiang, 2004]

For a (suitable) basis class defined on R
d, and for all probability

distributions P satisfying certain smoothness assumptions, there is

a sequence tn such that fn =AdaBoost(Sn, tn) satisfies

R(fn)
a.s.
→ R∗.
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Universal consistency of AdaBoost

Theorem: [with Mikhail Traskin]

If dV C(F ) <∞,

R∗
φ = lim

λ→∞
inf {Rφ(f) : f ∈ λco(F )} ,

tn →∞

tn = O(n1−α) for some α > 0,

then AdaBoost is universally consistent.
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Universal consistency of AdaBoost

Theorem:

If dV C(F ) <∞,

R∗
φ = lim

λ→∞
inf {Rφ(f) : f ∈ λco(F )} ,

tn →∞

tn = O(n1−α) for some α > 0,

then AdaBoost is universally consistent.

Idea of proof:

Uniform convergence of clipped tn-combinations. Clipping does not greatly

increase R̂φ. Then R̂φ(ftn
) approaches best in an `∗-ball. Then uniform

convergence over `∗-balls.
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Overview

• Review: Convex cost versus risk.

• Universal consistency.

• Classification with a reject option.

• Multiclass generalizations.
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Classification with a reject option

(with Marten Wegkamp)

• Classifier can predict {−1, 0, 1}. The loss incurred in predicting ŷ is

`(ŷ, y) =







1 if ŷ ∈ {−1, 1}, ŷ 6= y,

d if ŷ = 0, ←− 0 < d ≤ 1/2.

0 otherwise.

• Risk of f : X → {−1, 0, 1} is

R(f) = E`(f(X), Y ).
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Classification with a reject option

• Optimal decision rule:

f∗(x) =







1 if η(x) > 1− d,

−1 if η(x) < d,

0 otherwise.

• d = 1/2 is the usual binary classification problem.
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Classification with a reject option

(Herbei and Wegkamp, 2005): Empirical minimization.

We consider a convex alternative that is a generalization of the hinge loss:

φ(α) =







1− α(1− d)/d if α ≤ 0,

1− α if 0 < α ≤ 1,

0 otherwise.

φ (α)
η φ (α) + (1−η) φ (α)

(η < 1/2)
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Classification with a reject option

φ(α) =







1− α(1− d)/d if α ≤ 0,

1− α if 0 < α ≤ 1,

0 otherwise.

Choose fn = arg minf∈Fn
R̂φ(f).

Predict using g(fn(x)) =







−1 if fn(x) < −1/2,

1 if fn(x) > 1/2,

0 otherwise.
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Classification with a reject option

Comparison theorem:

R(fn)−R∗ ≤ 2d(Rφ(fn)−R∗
φ)

This generalizes the corresponding result for binary classification with

hinge loss (d = 1/2):

ψ(θ) = φ(0)−H

(
θ + 1

2

)

= θ.

R(fn)−R∗ ≤ Rφ(fn)−R∗
φ.
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Classification with a reject option

Comparison theorem:

R(fn)−R∗ ≤ 2d(Rφ(fn)−R∗
φ)

Thus, minimizing Rφ(·) makes sense. If, for example, we choose

fn = arg min
f∈F

(

R̂φ(f) + λnΩ(f)
)

,

then the usual arguments show that, for a suitably rich class F and slowly

decreasing regularization coefficient λn,

R(fn)→ R∗.
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Low Noise

The difficulty of a binary classification problem (for example, convergence

rate) is determined by the probability that η(X) is near 1/2.

Most favorable case: for some c > 0, Pr (0 < |2η(X)− 1| < c) = 0.

Analogous condition here:

Pr (|η(X)− d| < c) = Pr (|η(X)− (1− d)| < c) = 0.
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Low Noise

Definition: [Tsybakov] The distribution P on X ×{±1} has

noise exponent 0 ≤ α <∞ if there is a c > 0 such that

Pr (0 < |2η(X)− 1| < ε) ≤ cεα.

• Equivalently, there is a c such that for every f : X → {±1},

Pr (f(X)(η(X)− 1/2) < 0) ≤ c (R(f)−R∗)β ,

where β =
α

1 + α
.

• α =∞: for some c > 0, Pr (0 < |2η(X)− 1| < c) = 0.

33



Low Noise

• Tsybakov considered empirical risk minimization in binary

classification.

• With the noise assumption, and the Bayes classifier in the function

class Tsybakov showed that the empirical risk minimizer has (true) risk

converging suprisingly quickly to the minimum.

(More recently, similar results for plug-in methods.)
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Risk Bounds with Low Noise: Convex Losses

A similar result is true for strictly convex losses, such as AdaBoost’s loss.
In these cases, we can improve the comparison inequality:

c (R(f)−R∗)
β
ψ

(

(R(f)−R∗)1−β

2c

)

≤ Rφ(f)−R∗
φ,

where β =
α

1 + α
∈ [0, 1]. (Consider, for example, α =∞.)

Theorem: [Bartlett, Jordan, McAuliffe, 2006] If φ has quadratic modulus

of convexity, Pr (0 < |2η(X)− 1| < c) = 0, and fn minimizes R̂φ over

a finite-dimensional function class F , then

ER(fn)−R∗ ≤ C

(

inf
f∈F

Rφ(f)−R∗
φ +

log n

n

)

.
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Modified Hinge Loss for Classification with Rejects

A similar result applies for classification with a reject option. (and SVMs)
Recall that the critical probabilities in the optimal decision rule are d, 1− d:

f∗(x) =







1 if η(x) > 1− d,

−1 if η(x) < d,

0 otherwise.

Theorem: If φ is the modified hinge loss, Pr (|η(X)− d| < c) =

Pr (|η(X)− (1− d)| < c) = 0, and fn minimizes R̂φ over a finite-

dimensional function class F , then

ER(fn)−R∗ ≤ C

(

inf
f∈F

Rφ(f)−R∗
φ +

log n

n

)

.
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Overview

• Review: Convex cost versus risk.

• Universal consistency.

• Classification with a reject option.

• Multiclass generalizations.
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Multiclass large margin methods (|Y| > 2)

(with Ambuj Tewari)

Two broad categories of methods:

• Combine several binary classifiers,

•Minimize a cost function defined on a vector space.

We will focus on methods in the second category.

Think of a classifier as a vector valued function f : X 7→ R
K .

For a suitable loss function L : Y × R
K → R+, pick f̂n by minimizing

1

n

n∑

i=1

L(yi, f(xi)) + Ωn(f) .
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Multiclass large margin methods

A few methods of this kind from the literature:
(x+ = max{0, x})

L(yi, f(xi))

Vapnik; Weston and Watkins;
P

y′ 6=yi
(fy′(xi) − fyi

(xi) + 1)+

Bredensteiner and Bennett

Crammer and Singer; Taskar et al maxy′ 6=yi
(fy′(xi) − fyi

(xi) + 1)+

Lee, Lin and Wahba
P

y′ 6=yi
(1 + fy′(xi))+

with sum-to-zero constraint,
P

y
fy(x) = 0

All predict label using arg maxy∈Y fy(x) = arg miny∈Y L(y, f(x)).
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Different behaviors

• For K = 2, all methods are equivalent and universally consistent.

• But they have different behaviors for K > 2.

− Lee, Lin and Wahba’s is consistent.

− The other two are not.

• This led us to investigate consistency of a general class of methods of

which all of these are special cases.
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General Framework

• L(y, f(x)) = Ψy(f(x)), Ψy : R
K 7→ R+.

• Pointwise constraint on f , ∀x, f(x) ∈ C for some C ⊆ R
K .

Ψy(f): C:
∑

y′ 6=y φ(fy − fy′) R
K

maxy′ 6=y φ(fy − fy′) R
K

∑

y′ 6=y φ(−fy′) {z ∈ R
K :

∑K
i=1 zi = 0}

• φ(x) = (1− x)+ gives us our three example methods but we can think

of using other φ as well.
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Ψ-risk

Fix a class F = {f : ∀x, f(x) ∈ C} of vector functions.

Ψ-risk: RΨ(f) = EΨy(f(x)) ,

optimal Ψ-risk: R∗
Ψ = inf

f∈F
RΨ(f) = Ex

[

inf
f(x)∈C

∑

y

py(x)Ψy(f(x))

]

where py(x) = P (Y = y|X = x).

Since f enters into the Ψ-risk definition only through Ψ, we assume that we

predict labels using

pred(Ψ1(f(x)), . . . ,ΨK(f(x)))

for some pred : R
K 7→ Y .
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Consistency

Here, consistency means that for all probability distributions and all

sequences {f (n)},

RΨ(f (n))→ R∗
Ψ =⇒ R(f (n))→ R∗.

R∗
Ψ = Ex

[

inf
f(x)∈C

∑

y

py(x)Ψy(f(x))

]

• To minimize the inner sum for a given x, we have to minimize:

〈p(x), z〉

for z ∈ S , where S = conv{(Ψ1(f), . . . ,ΨK(f)) : f ∈ C}.
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Consistency

• Consider an (informal) game where:

− The opponent chooses a p ∈ ∆K and reveals to us a sequence z(n)

with 〈p, z(n)〉 → infz∈S〈p, z〉

− We output the sequence ln = pred(z(n)).

We win if pln = maxy py ultimately.

• For consistency, there should be a pred such that we win irrespective of

the choice of the opponent.
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Pictures of boundary of S

Weston & Watkins Crammer & Singer

Lee, Lin & Wahba
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Classification Calibration

Definition: S ⊆ R
K
+ is CC iff ∃ pred such that ∀p ∈ ∆K and all {z(n)} in

S ,

〈p, z(n)〉 → inf
z∈S
〈p, z〉 ,

implies

ppred(z(n)) = max
y

py

ultimately.

• Assume that the set S is convex and symmetric (symmetry means that

all K classes are treated equally).

• The definition is useful because we can show that it is equivalent to:

∀{f (n)} in F , RΨ(f (n))→ R∗
Ψ ⇒ R(f (n))→ R∗ .
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Admissibility

• If any pred works then so will one satisfying zpred(z) = miny zy ,

which motivates the definition below.

Definition: S is admissible if ∀z ∈ ∂S , ∀p ∈ N (z), we have

arg min
y

(zy) ⊆ arg max
y

(py) .

where N (z) is the set of non-negative normals (to S) at z.

• For admissibility, it seems that we have to check all points z on the

boundary of S , but it turns out that we can ignore many points

(like those with singleton normal sets or those which have a unique

minimum coordinate).
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Necessary and sufficient condition

• Admissibility weaker than classification calibration.

• It is equivalent to the CC definition with the additional assumption of

boundedness of the sequence {z(n)}.

• Necessary and sufficient condition is given by:

Theorem Let S ⊆ R
K
+ be a symmetric convex set. Define the sets

S(i) = {(z1, . . . , zi) : z ∈ S}

for i ∈ {2, . . . ,K}. Then S is classification calibrated iff each S (i) is

admissible.
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Example 1: Crammer and Singer

Ψy(f) = max
y′ 6=y

φ(fy − fy′)

• For all φ differentiable at 0, the set of normals at z = (φ(0), φ(0), φ(0))

includes (0, 1, 1), (1, 0, 1) and (1, 1, 0). Since arg miny(zy) = {1, 2, 3}

and arg maxy((0, 1, 1)) = {2, 3}, admissibility is violated.
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Example 2: A smooth loss function
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The set S(2)

• Ψy(f) = exp(−fy) with K = 3 and
∑

y fy = 0 gives

S = {z ∈ R+ : z1z2z3 ≥ 1}.

• S is admissible, S(2) is not (origin has (0, 1) and (1, 0) as normals).
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