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The Pattern Classification Problem

• i.i.d. (X,Y ), (X1, Y1), . . . , (Xn, Yn) from X × Y ,

|Y| <∞, for example, Y = {±1}.

• Use data (X1, Y1), . . . , (Xn, Yn) to choose fn : X → Y with small

risk, R(fn) = Pr (fn(X) 6= Y ) = E`(Y, fn(X)).

• Natural approach: minimize empirical risk,

R̂(f) = Ên`(Y, f(X)) =
1

n

n∑

i=1

`(Yi, f(Xi)).

• Often intractable...

• Replace 0-1 loss, `, with a convex surrogate, φ.
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Large Margin Algorithms: Two Class Case

• Suppose Y ∈ {±1}, fn : X → R. Define

R(fn) = Pr (sign(fn(X)) 6= Y ) = E`(Y, fn(X)).

• Consider the margins, Y fn(X).

• Define a margin cost function φ : R → R
+.

• Define the φ-risk of f : X → R as Rφ(f) = Eφ(Y f(X)).

• Choose f ∈ F to minimize φ-risk.
(e.g., use data, (X1, Y1), . . . , (Xn, Yn), to minimize empirical
φ-risk,

R̂φ(f) = Ênφ(Y f(X)) =
1

n

n∑

i=1

φ(Yif(Xi)),

or a regularized version.)
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Large Margin Algorithms

• Adaboost:

− F = span(G) for a VC-class G,

− φ(α) = exp(−α),

− Minimizes R̂φ(f) using greedy basis selection, line search.

• Support vector machines with 2-norm soft margin.

− F = ball in reproducing kernel Hilbert space, H.

− φ(α) = (max (0, 1 − α))
2.

− Algorithm minimizes R̂φ(f) + λ‖f‖2
H.
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Large Margin Algorithms

• Many other variants

− Neural net classifiers

φ(α) = max(0, (0.8 − α)2).

− Support vector machines with 1-norm soft margin

φ(α) = max(0, 1 − α).

− L2Boost, LS-SVMs

φ(α) = (1 − α)2.

− Logistic regression

φ(α) = log(1 + exp(−2α)).
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Large Margin Algorithms
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Statistical Consequences of Using a Convex Cost

• Universal consistency? For which φ?

• How is risk related to φ-risk?

• Model selection. Oracle inequalities.

• Does minimizing φ-risk correspond to estimating a model of Y |X?

• Similarly for multiclass.
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Statistical Consequences of Using a Convex Cost

Sources:
Lin, 2004: Loss functions.

Zhang, 2004: SVMs, regularized boosting.

Lugosi and Vayatis, 2004: Regularized boosting methods.

Steinwart, 2003, 2004: Support vector machines.

Jiang, 2004: Process consistency of boosting.

Koltchinskii and Panchenko, 2000: Boosting.

Blanchard, Lugosi and Vayatis, 2003: Regularized boosting methods.

Shen, Tseng, Zhang and Wong, 2003: ψ-learning.

Bickel and Ritov, 2004: Boosting.

Buhlmann and Yu, 2002: L2 boosting.

Bartlett, Jordan, McAuliffe, 2005: Convex loss functions.

Tewari and Bartlett, 2005: Multiclass.
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Overview

• Relating excess risk to excess φ-risk.

• The approximation/estimation decomposition, universal consistency,

and oracle inequalities.

• φ-risk and probability models.

• Multiclass classification: Universal consistency.
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Definitions and Facts

R(f) = Pr (sign(f(X)) 6= Y ) R∗ = inf
f
R(f) risk

Rφ(f) = Eφ(Y f(X)) R∗
φ = inf

f
Rφ(f) φ-risk

η(x) = Pr(Y = 1|X = x) conditional probability.

• η defines an optimal classifier: R∗ = R(sign(η(x) − 1/2)).
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Definitions and Facts

R(f) = Pr (sign(f(X)) 6= Y ) R∗ = inf
f
R(f) risk

Rφ(f) = Eφ(Y f(X)) R∗
φ = inf

f
Rφ(f) φ-risk

η(x) = Pr(Y = 1|X = x) conditional probability.

• η defines an optimal classifier: R∗ = R(sign(η(x) − 1/2)).

Notice: Rφ(f) = E (E [φ(Y f(X))|X]), and conditional φ-risk is:

E [φ(Y f(X))|X = x] = η(x)φ(f(x)) + (1 − η(x))φ(−f(x)).

11



Definitions

Conditional φ-risk:

E [φ(Y f(X))|X = x] = η(x)φ(f(x)) + (1 − η(x))φ(−f(x)).

Optimal conditional φ-risk for η ∈ [0, 1]:

H(η) = inf
α∈R

(ηφ(α) + (1 − η)φ(−α)).

R∗
φ = EH(η(X)).
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Optimal Conditional φ-risk: Example
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Definitions

Optimal conditional φ-risk for η ∈ [0, 1]:

H(η) = inf
α∈R

(ηφ(α) + (1 − η)φ(−α)) .

Optimal conditional φ-risk with incorrect sign:

H−(η) = inf
α:α(2η−1)≤0

(ηφ(α) + (1 − η)φ(−α)).

Note: H−(η) ≥ H(η) H−(1/2) = H(1/2).
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Definitions

H(η) = inf
α∈R

(ηφ(α) + (1 − η)φ(−α))

H−(η) = inf
α:α(2η−1)≤0

(ηφ(α) + (1 − η)φ(−α)) .

Definition: φ is classification-calibrated if,

for η 6= 1/2,

H−(η) > H(η).

i.e., pointwise optimization of conditional φ-risk leads to the correct sign.

(c.f. Lin (2001))
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The ψ transform

Definition: Given convex φ, define

ψ : [0, 1] → [0,∞) by

ψ(θ) = φ(0) −H

(
1 + θ

2

)

.

(The definition is a little more involved

for non-convex φ.)
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The Relationship between Excess Risk and Excess φ-risk

Theorem:

1. For any P and f , ψ(R(f) −R∗) ≤ Rφ(f) −R∗
φ.

2. For |X | ≥ 2, ε > 0 and θ ∈ [0, 1], there is a P and an f with

R(f) −R∗ = θ

ψ(θ) ≤ Rφ(f) −R∗
φ ≤ ψ(θ) + ε.

3. The following conditions are equivalent:

(a) φ is classification calibrated.

(b) ψ(θi) → 0 iff θi → 0.

(c) Rφ(fi) → R∗
φ implies R(fi) → R∗.
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Classification-calibrated φ

If φ is classification-calibrated, then

ψ(θi) → 0 iff θi → 0.

Since the function ψ is always convex, in that case it is strictly increasing

and so has an inverse.

Thus, we can write

R(f) −R∗ ≤ ψ−1
(
Rφ(f) −R∗

φ

)
.
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Classification-calibrated φ

Theorem: If φ is convex,

φ is classification calibrated ⇔







φ is differentiable at 0

φ′(0) < 0.

Theorem: If φ is classification calibrated,

∃γ > 0, ∀α ∈ R,

γφ(α) ≥ 1 [α ≤ 0] .
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Overview

• Relating excess risk to excess φ-risk.

• The approximation/estimation decomposition,

universal consistency, and oracle inequalities.

• φ-risk and probability models.

• Multiclass classification: Universal consistency.
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Method of sieves/Regularized empirical risk

fn = f̂kn
f̂k = arg min

f∈Fk

R̂φ(f), F =
⋃

k

Fk,

or fn = arg min
f∈F

(

R̂φ(f) + λnΩ(f)
)

.

Examples:

• Adaboost:

− Fk = spank(G) =
{
∑k

i=1 αigi : gi ∈ G
}

, G is a VC-class, or

− Fk = k co(G), or

− F = span(G), Ω(f) =
∑

i |αi|.
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Method of sieves/Regularized empirical risk

fn = f̂kn
f̂k = arg min

f∈Fk

R̂φ(f), F =
⋃

k

Fk,

or fn = arg min
f∈F

(

R̂φ(f) + λnΩ(f)
)

.

Examples:

• Support vector machines:

− F = H, reproducing kernel Hilbert space, Ω(f) = ‖f‖H, or

− Fk = {f ∈ H : ‖f‖H ≤ k}.
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The Approximation/Estimation Decomposition

We can decompose the excess risk estimate as

R(fn) −R∗ ≤ ψ−1
(
Rφ(fn) −R∗

φ

)

= ψ−1

(

Rφ(fn) − inf
f∈Fn

Rφ(f)

︸ ︷︷ ︸

estimation error

+ inf
f∈Fn

Rφ(f) −R∗
φ

)

︸ ︷︷ ︸

approximation error

.

• Approximation and estimation errors are in terms of Rφ, not R.

• Like a regression problem.
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The Approximation/Estimation Decomposition

R(fn) −R∗ ≤ ψ−1
(
Rφ(fn) −R∗

φ

)

= ψ−1

(

Rφ(fn) − inf
f∈Fn

Rφ(f)

︸ ︷︷ ︸

estimation error

+ inf
f∈Fn

Rφ(f) −R∗
φ

)

︸ ︷︷ ︸

approximation error

.

• If the class is suitably rich (so that inff∈F Rφ(f) = R∗
φ), and the

regularization is relaxed suitably slowly (e.g., kn → ∞ slowly, or

λn → 0 slowly),

Rφ(fn)
P
→ R∗

φ.

• Universal consistency (R(fn) → R∗) follows iff φ is classification

calibrated.
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Oracle Inequalities

For f̂k = arg min
f∈Fk

R̂φ(f),

fn = f̂k̂ with k̂ = arg min
k

(

R̂φ(f̂k) + pk

)

,

for some penalty pk (that might depend on n),

we are interested in oracle inequalities of the form

Rφ(fn) −R∗
φ ≤ inf

k

(

inf
f∈Fk

Rφ(f) −R∗
φ + cpk

)

.

This would imply

R(fn) −R∗ ≤ inf
k
ψ−1

(

inf
f∈Fk

Rφ(f) −R∗
φ + cpk

)

.
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Oracle Inequalities: Uniform Convergence Suffices

Define

empirical risk minimizer in Fk: f̂k = arg min
f∈Fk

R̂φ(f),

penalized ERM in F : fn = f̂k̂,

class with best penalized emp. risk: k̂ = arg min
k

(

R̂φ(f̂k) + pk

)

,

risk minimizer in Fk: f∗k = arg min
f∈Fk

Rφ(f),

class with best penalized risk: k∗ = arg min
k

(Rφ(f∗k ) + 2pk) .
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Oracle Inequalities: Uniform Convergence Suffices

If

sup
k

(

sup
f∈Fk

∣
∣
∣Rφ(f) − R̂φ(f)

∣
∣
∣− pk

)

≤ 0, (∗)

then

Rφ(fn) ≤ R̂φ(f̂k̂) + pk̂ (by (*) and definition of fn)

≤ R̂φ(f̂k∗) + pk∗ (definition of k̂)

≤ R̂φ(f∗k∗) + pk∗ (definition of f̂k∗ )

≤ Rφ(f∗k∗) + 2pk∗ (by (*) again)

= inf
k

inf
f∈Fk

(Rφ(f) + 2pk) .

So uniform convergence of empirical φ-risks to φ-risks suffices.
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Oracle Inequalities: Ratio Inequalities Suffice

But this approach can be improved. For example, if φ is quadratic and Fk

is convex, finite dimensional, and uniformly bounded, then the rate of

uniform convergence over Fk is Ω(n−1/2), but with high probability

Rφ(f) −Rφ(f∗k )
︸ ︷︷ ︸

excess risk

≤ 2
(

R̂φ(f) − R̂φ(f∗k )
)

︸ ︷︷ ︸

difference of empirical risks

+O

(
1

n

)

.

Since R̂φ(f̂k) ≤ R̂φ(f∗k ), this implies E

(

Rφ(f̂k) −Rφ(f∗k )
)

= O(1/n).

The key property is the relationship

E (φ(Y f(X)) − φ(Y f∗
k (X)))

2 ≤ c (E (φ(Y f(X)) − φ(Y f∗
k (X))))

2
,

which follows from φ being Lipschitz and uniformly convex.
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Oracle Inequalities: Ratio Inequalities Suffice

It turns out that such inequalities suffice for oracle inequalities, provided

the Fk are ordered by inclusion.

Theorem: Suppose F1 ⊆ F2 ⊆ F3 ⊆ · · · and
⋃

k Fk = F . If

sup
k

sup
f∈Fk

(

Rφ(f) −Rφ(f∗k ) − 2
(

R̂φ(f) − R̂φ(f∗k )
)

− εk

)

≤ 0,

sup
k

sup
f∈Fk

(

R̂φ(f) − R̂φ(f∗k ) − 2 (Rφ(f) −Rφ(f∗k )) − εk

)

≤ 0,

then with pk = 7εk/2, we have

Rφ(fn) ≤ inf
k

(Rφ(f∗k ) + 9εk) .
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Oracle Inequalities: Ratio Inequalities Suffice

For example, for φ(α) = exp(−α) and Fk = ln(k) co(G), with

probability at least 1 − δ, we can choose

εk = c

(
k ln k

n(d+2)/(2d+2)
+
k3 ln(k/δ)

n

)

,

where d = VCdim(G).

Choosing fn to minimize R̂φ(f̂k) + c1εk gives

Rφ(fn) −R∗
φ ≤ inf

k

(

inf
f∈Fk

Rφ(f) −R∗
φ + c2εk

)

.
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Overview

• Relating excess risk to excess φ-risk.

• The approximation/estimation decomposition,

universal consistency, and oracle inequalities.

• φ-risk and probability models.

• Multiclass classification: Universal consistency.
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Estimating Conditional Probabilities

Does a large margin classifier, fn, correspond to a model for the

conditional probability η(x) = Pr(Y = 1|X = x)?

For what φ?
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Estimating Conditional Probabilities

If φ is convex, we can write

H(η) = inf
α∈R

(ηφ(α) + (1 − η)φ(−α))

= ηφ(α∗(η)) + (1 − η)φ(−α∗(η)),

where α∗(η) = arg min
α

(ηφ(α) + (1 − η)φ(−α)) ⊂ R ∪ {±∞}.

Recall:

R∗
φ = EH(η(X)) = Eφ(Y α∗(η(X)))

η(x) = Pr(Y = 1|X = x).
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Estimating Conditional Probabilities

α∗(η) = arg min
α

(ηφ(α) + (1 − η)φ(−α)) ⊂ R ∪ {±∞}.

Examples of α∗(η) versus η ∈ [0, 1]:

0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0.5

1

1.5

L1-SVM

L2-SVM

L2-SVM: φ(α) = ((1 − α)+)2

L1-SVM: φ(α) = (1 − α)+,

where (x)+ = max{0, x}.
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Estimating Conditional Probabilities
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We say that α∗ is invertible at η if, for all η1 6= η, α∗(η) ∩ α∗(η1) = ∅.

If α∗ is invertible, then for any f satisfying Rφ(f) = R∗
φ, we can write η

as a monotone function of f .

If α∗ is not invertible, we cannot use fn with Rφ(fn)
P
→ R∗

φ to estimate η.
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Estimating Conditional Probabilities

Theorem: There is a β ∈ [0, 1/2] such that

1. α∗ is invertible on an interval (β, 1 − β).

2. If β > 0, α∗ is constant on [β′, β] and on [1 − β, 1 − β′], for some

β′ ∈ [0, β).

3. β ≥ γ.

4. Every point α ∈ [−α0, α0] of non-differentiability of φ corresponds to

a set [η1, η2] ∪ [1 − η2, 1 − η1] where α∗ is constant.

where γ =
φ′−(α0)

φ′−(α0) + φ′+(−α0)
,

α0 = inf{α : 0 ∈ ∂φ(α)},

∂φ(α) = [φ′
−(α), φ′

+(α)] (subgradient of φ at α).
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Estimating Conditional Probabilities
(Zhang, 2004)

If α∗ is invertible and H is differentiable (it suffices, for example, for

φ, α∗ to be differentiable), then we can view minimization of φ-risk as

estimation of a probability model:

Rφ(α∗(η̂)) −R∗
φ = EdH(η̂(X), η(X)),

where dH is the Bregman divergence with respect to H ,

dH(η̂, η) = H(η̂) +H ′(η̂)(η − η̂) −H(η).

(dH is non-negative and zero only when its arguments are equal).
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Overview

• Relating excess risk to excess φ-risk.

• The approximation/estimation decomposition, universal consistency,

and oracle inequalities.

• φ-risk and probability models.

• Multiclass classification: Universal consistency.
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Multiclass large margin methods (|Y| > 2)
Ambuj Tewari

Two broad categories:

• Combine several binary classifiers,

• Minimize a cost function defined on a vector space.

We will focus on methods in the second category.

Think of a classifier as a vector valued function f : X 7→ R
K .

For a suitable loss function L : Y × R
K → R+, pick f̂n by minimizing

1

n

n∑

i=1

L(yi, f(xi)) + Ωn(f) .
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Multiclass large margin methods

A few methods of this kind from the literature:
(x+ = max{0, x})

L(yi, f(xi))

Vapnik; Weston and Watkins;
P

y′ 6=yi
(fy′(xi) − fyi

(xi) + 1)+

Bredensteiner and Bennett

Crammer and Singer; Taskar et al maxy′ 6=yi
(fy′(xi) − fyi

(xi) + 1)+

Lee, Lin and Wahba
P

y′ 6=yi
(1 + fy′(xi))+

with sum-to-zero constraint,
P

y
fy(x) = 0

All predict label using arg maxy∈Y fy(x).
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Different behaviors

• For K = 2, all methods are equivalent and universally consistent.

• But they have different behaviors for K > 2.

− Lee, Lin and Wahba’s is consistent.

− The other two are not.

• This led us to investigate consistency of a general class of methods of

which all of these are special cases.
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General Framework

• L(y, f(x)) = Ψy(f(x)), Ψy : R
K 7→ R+.

• Pointwise constraint on f , ∀x, f(x) ∈ C for some C ⊆ R
K .

Ψy(f): C:
∑

y′ 6=y φ(fy − fy′) R
K

maxy′ 6=y φ(fy − fy′) R
K

∑

y′ 6=y φ(−fy′) {z ∈ R
K :

∑K
i=1 zi = 0}

• φ(x) = (1 − x)+ gives us our three example methods but we can

think of using other φ as well.
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Ψ-risk

Fix a class F = {f : ∀x, f(x) ∈ C} of vector functions.

Ψ-risk: RΨ(f) = EΨy(f(x)) ,

optimal Ψ-risk: R∗
Ψ = inf

f∈F
RΨ(f) = Ex

[

inf
f(x)∈C

∑

y

py(x)Ψy(f(x))

]

where py(x) = P (Y = y|X = x).

Since f enters into the Ψ-risk definition only through Ψ, we assume that

we predict labels using

pred(Ψ1(f(x)), . . . ,ΨK(f(x)))

for some pred : R
K 7→ Y .
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Consistency

Here, consistency means that for all probability distributions and all

sequences {f (n)},

RΨ(f (n)) → R∗
Ψ =⇒ R(f (n)) → R∗.

R∗
Ψ = Ex

[

inf
f(x)∈C

∑

y

py(x)Ψy(f(x))

]

• To minimize the inner sum for a given x, we have to minimize:

〈p(x), z〉

for z ∈ S , where S = conv{(Ψ1(f), . . . ,ΨK(f)) : f ∈ C}.
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Consistency

• Consider an (informal) game where:

− The opponent chooses a p ∈ ∆K and reveals to us a sequence

z(n) with 〈p, z(n)〉 → infz∈S〈p, z〉

− We output the sequence ln = pred(z(n)).

We win if pln = maxy py ultimately.

• For consistency, there should be a pred such that we win irrespective

of the choice of the opponent.
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Pictures of boundary of S

Weston & Watkins Crammer & Singer

Lee, Lin & Wahba
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Classification Calibration

Definition: S ⊆ R
K
+ is CC iff ∃ pred such that ∀p ∈ ∆K and all {z(n)}

in S ,

〈p, z(n)〉 → inf
z∈S

〈p, z〉 ,

implies

ppred(z(n)) = max
y

py

ultimately.

• Assume that the set S is convex and symmetric (symmetry means

that all K classes are treated equally).

• The definition is useful because we can show that it is equivalent to:

∀{f (n)} in F , RΨ(f (n)) → R∗
Ψ ⇒ R(f (n)) → R∗ .
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Admissibility

• If any pred works then so will one satisfying zpred(z) = miny zy ,

which motivates the definition below.

Definition: S is admissible if ∀z ∈ ∂S , ∀p ∈ N (z), we have

arg min
y

(zy) ⊆ arg max
y

(py) .

where N (z) is the set of non-negative normals (to S) at z.

• For admissibility, it seems that we have to check all points z on the

boundary of S , but it turns out that we can ignore many points

(like those with singleton normal sets or those which have a unique

minimum coordinate).
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Necessary and sufficient condition

• Admissibility weaker than classification calibration.

• It is equivalent to the CC definition with the additional assumption of

boundedness of the sequence {z(n)}.

• Necessary and sufficient condition is given by:

Theorem Let S ⊆ R
K
+ be a symmetric convex set. Define the sets

S(i) = {(z1, . . . , zi) : z ∈ S}

for i ∈ {2, . . . ,K}. Then S is classification calibrated iff each S (i) is

admissible.
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Example 1: Crammer and Singer

Ψy(f) = max
y′ 6=y

φ(fy − fy′)

• For all φ differentiable at 0, the set of normals at

z = (φ(0), φ(0), φ(0)) includes (0, 1, 1), (1, 0, 1) and (1, 1, 0). Since

arg miny(zy) = {1, 2, 3} and arg maxy((0, 1, 1)) = {2, 3},

admissibility is violated.
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Example 2: A smooth loss function
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Boundary of the set S = S(3)
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The set S(2)

• Ψy(f) = exp(−fy) with K = 3 and
∑

y fy = 0 gives

S = {z ∈ R+ : z1z2z3 ≥ 1}.

• S is admissible, S(2) is not (origin has (0, 1) and (1, 0) as normals).

• A differentiable loss function yields an inconsistent method:

something that cannot happen for binary classification.
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Statistical Consequences of Using a Convex Cost

• The relationship between excess risk and excess φ-risk.

• The approximation/estimation decomposition, universal consistency,

and oracle inequalities.

• φ-risk and probability models.

• Multiclass classification: Universal consistency.
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