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\The Pattern Classification Problem I

Lid (X,Y),(X1,Y7),..., (X, Y,) fromX x ),
| V| < oo, for example, Y = {£1}.

Use data (X1,Y1),...,(X,,Y,) to choose f,, : X — ) with small
risk, R(f5) = Pr (fn(X) #Y) = ELY, [,,(X)).

Natural approach: minimize empirical risk,

R(T) = Bab(Y, F(X)) = = 340V, F(X0)

Often intractable...

Replace 0-1 loss, ¢, with a convex surrogate, ¢.




‘ Large Margin Algorithms: Two Class Case I

Suppose Y € {1}, f,, : X — R. Define
R(fn) = Pr(sign(fn(X)) #Y) = EL(Y, fn(X)).
Consider the margins, Y f,, (X).
Define a margin cost function ¢ : R — R,
Define the ¢-risk of f : X — Ras Ry(f) = Ep(Y f(X)).

Choose f € F to minimize ¢-risk.
(e.g., use data, (X1,Y7),...,(Xn,Y,), to minimize empirical
O-risk,

Ry(f) = Bag(Y F(X Z¢ Yif(X

or a regularized version.)




Large Margin Algorithms I
Adaboost:

F = span(@G) for a VC-class G,
¢(ar) = exp(—a),
Minimizes Ry (f) using greedy basis selection, line search.

Support vector machines with 2-norm soft margin.
F = ball in reproducing kernel Hilbert space, H.
$(a) = (max (0,1 — o))",

Algorithm minimizes Ry (f) + || f113,.




Large Margin Algorithms I

Many other variants

Neural net classifiers
() = max(0, (0.8 — )?).

Support vector machines with 1-norm soft margin
¢(a) = max(0,1 — «).

L2Boost, LS-SVMSs

¢(a) = (1—a)%

Logistic regression

¢(a) = log(1 + exp(—2a)).




Large Margin Algorithms I

0-1

exponential

hinge

logistic

truncated quadratic




Statistical Consequences of Using a Convex Cost I

Universal consistency? For which ¢?
How is risk related to ¢-risk?

Model selection. Oracle inequalities.

Does minimizing ¢-risk correspond to estimating a model of Y| X?

Similarly for multiclass.




Statistical Consequences of Using a Convex Cost I
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\ Overview I

Relating excess risk to excess ¢-risk.

The approximation/estimation decomposition, universal consistency,
and oracle inequalities.

¢-risk and probability models.

Multiclass classification: Universal consistency.




Definitions and Facts I

R(f) = Pr(sign(f(X) #Y) R =t R(f)
Ro(f) = E6(Y (X)) Rj, = inf Ry (f)
n(x) =Pr(Y =1|X = x) conditional probability.

n defines an optimal classifier: R* = R(sign(n(z) — 1/2)).




Definitions and Facts I

R(f) =Pr(sign(f(X)) #Y)  R* =i R(})
Ro(f) = E6(Y (X)) Rj, = inf Ry (/)
n(x) =Pr(Y =1|X = x) conditional probability.

n defines an optimal classifier: R* = R(sign(n(z) — 1/2)).
Notice: Ry(f) = E(E [¢(Y f(X))|X]), and conditional ¢-risk is:

E[o(Y (X)X = 2| =n(2)o(f(x)) + (1 —n(x))d(—f(x)).




\ Definitions I

Conditional ¢-risk:

E[o(Y f(X)|X = 2| =n(2)o(f(x)) + (1 —n(x))d(—f(x)).

Optimal conditional ¢-risk for € [0, 1]:

H(n) = inf (np(a) + (1 =n)dp(—a)).

aceR

RS, =EH(n(X)).




‘Optimal Conditional ¢-risk: Example'




\ Definitions I

Optimal conditional ¢-risk for n € [0, 1]:

H(n) = inf (no(a) + (1 —n)é(—a)).

aeR

Optimal conditional ¢-risk with incorrect sign:

inf —_(n¢(a) + (1 —n)o(-a)).

a:a(2n—1)<0

H™(n) > H(n)




\ Definitions I

inf (ng(a) + (1 —n)o(—a))

aceR

inf _(n¢(a) + (1 =n)p(-a)).

a:a(2n—1)<0

Defi nition: ¢ is classifi cation-calibrated if,
forn #1/2,

H™(n) > H(n).

1.e., pointwise optimization of conditional ¢-risk leads to the correct sign.
(c.f. Lin (2001))




‘ The ¢ transform I

Defi nition: Given convex ¢, define
i [0,1] — [0, 00) by

140
—5 )

(The definition is a little more involved
for non-convex ¢.)




The Relationship between Excess Risk and Excess gb-riskl

Theorem:
1. Forany Pand f, 9(R(f)— R*) < Re(f) — R,
2. For |X| >2,e>0and@ € [0,1], there is a P and an f with

R(f)~ R =4
v(0) < Ro(f) — R

3. The following conditions are equivalent:

(a) ¢ is classification calibrated.
(€) Ry(fi) — Ry implies R(f;) — R*.




Classification-calibrated ¢ I

If ¢ Is classification-calibrated, then

Since the function ) Is always convex, in that case it is strictly increasing
and so has an inverse.

Thus, we can write

R(f)— B* <o~ (Ry(f) — RY) -




Classification-calibrated ¢ I

Theorem: If ¢ Is convex,

¢ is differentiable at 0
¢’ (0) < 0.

¢ Is classification calibrated < {

Theorem: If ¢ is classification calibrated,
v > 0, Va € R,
Yp(a) > 1]a <0].




\ Overview I

Relating excess risk to excess ¢-risk.

The approximation/estimation decomposition,

universal consistency, and oracle inequalities.

¢-risk and probability models.

Multiclass classification: Universal consistency.



Method of sieves/Regularized empirical risk'

n — f ; — I R ; — ’
fn = fr, fx arg min s (f) F L/;J]:k

or fu = argmin (Rs(f) + M)

Examples:

Adaboost:
Fi. = span, (G) = {Z,’f:l ;i : G; € g}, G is a VC-class, or
Fr. = kco(G), or
F = span(G), Q(f) = 2, ail.




Method of sieves/Regularized empirical risk'

n — f ; — I R ; — ’
fn = fr, fx arg min s (f) F L/;J]:k

or fu = argmin (Rs(f) + M)

Examples:

Support vector machines:

F = H, reproducing kernel Hilbert space, Q(f) = || f|~, or
Fre =4S € H:|Iflln <k}




The Approximation/Estimation Decomposition I

We can decompose the excess risk estimate as

R(fn) — R* <9~ (Ry(fa) — R})

= (Ralf) = jnf Ro(f) + jnf Rolf) - 13).

A\ . 7

7

estimation error approximation error
Approximation and estimation errors are in terms of R, not R.

Like a regression problem.




The Approximation/Estimation Decomposition I

R(fn) = R* <9~ (Rg(fn) — R3)
b1 (R¢(fn) — inf Ry(f) + inf R4(f) — RZ) :

\ - 7
~~ ~~

estimation error approximation error

7

If the class is suitably rich (so that inf s = Ry (f) = R}), and the
regularization is relaxed suitably slowly (e.g., k,, — oo slowly, or

An — 0 slowly),

Ry(fn) = R,

Universal consistency (R(f,) — R*) follows iff ¢ is classification
calibrated.




‘Oracle Inequalities'

For f. = in R
fr arg min s(f),

fn = fk with & = arg mkin

for some penalty p;. (that might depend on n),
we are interested in oracle inegualities of the form

o) — RS <inf | inf — R}, :
Ry(fn) Hg < 1n (flgn]__qub(f) R¢+cpk>

This would imply

R(f,) — R* < irklfw_l (fienjf“k R¢(f) — R;’; + Cpk> :




Oracle Inequalities: Uniform Convergence Suffices'

Define

empirical risk minimizer in F: fp = arg }111}1 }?¢(f),
€5k

penalized ERM in F: fn = fis

class with best penalized emp. risk: &k = arg mljn (R¢(fk) + pk) :

risk minimizer in Fy: r = arg min Ry(f),
fEFk

class with best penalized risk: k* = arg mkin (Ro(fr) + 2pk) -




Oracle Inequalities: Uniform Convergence Suffices'

Sup <Sup Ry(f) —&(f)\ m) <0, (¥

fEF

fi)+p;  (by (*) and definition of f,,)
k) +pp- (definition of &)
e ) + Pre (definition of fj,-)

fi=) +2pk- (by (*) again)

— inf inf (R 2m) .
in flenf_k( o(f) + 2pi)

o
o(f
o
s

R
R

So uniform convergence of empirical ¢-risks to ¢-risks suffices.




Oracle Inequalities: Ratio Inequalities Suffice'

But this approach can be improved. For example, if ¢ is quadratic and Fj
IS convex, finite dimensional, and uniformly bounded, then the rate of
uniform convergence over Fj, is Q(n~1/2), but with high probability

Ro() ~ R(f) <2 (Rolh) - Rol1) +0 ()

7
Vv \

excess risk

N

difference of empirical risks

Since Ry (fi) < Ro(f7), this implies E <R¢(fk) ~ R¢(f;)) — 0(1/n).
The key property is the relationship
E (¢(Y f(X)) = (Y f5(X))* < c(E(S(Y (X)) = ¢(Y i (X))))*,

which follows from ¢ being Lipschitz and uniformly convex.




Oracle Inequalities: Ratio Inequalities Suffice'

It turns out that such inequalities suffice for oracle inequalities, provided
the ;. are ordered by inclusion.

Theorem: Suppose 7} C F, C F3 C---and |, F, = F. If

sup sup (Ro(f) = Rolfi) =2 (Ro(f) = Ro(fi) = ) <0,

sup sup (Ro(f) = Ro(fi) =2 (Ro(f) = Ro(fi)) — e ) <0,
k feFi

then with p, = 7ex /2, we have

Ro(fa) < inf (Ry(f) +9e).




Oracle Inequalities: Ratio Inequalities Suffice'

For example, for ¢(a) = exp(—a) and Fj = In(k) co(G), with
probability at least 1 — 9, we can choose

6k:6( klnk k?’ln(k/(S))’

n(d+2)/(2d+2) + n

where d = VCdim(G).
Choosing f,, to minimize Ry(fi,) + c1e), gives

n) — Ry <inf (| inf — R}, .
Ry(fn) R¢_1ré (flenfkR¢(f) R¢—|—62€k)




\ Overview I

Relating excess risk to excess ¢-risk.

The approximation/estimation decomposition,

universal consistency, and oracle inequalities.

¢-risk and probability models.

Multiclass classification: Universal consistency.



Estimating Conditional Probabilities I

Does a large margin classifier, f,,, correspond to a model for the

conditional probability n(x) = Pr(Y = 1|X = z)?
For what ¢?




Estimating Conditional Probabilities I

If ¢ IS convex, we can write

H(n) = inf (ng(a) + (1 =n)o(-a))

aceR

= no(a”(n)) + (1 —n)e(—a™(n)),

where o*(n) = arg moin (no(a) + (1 —m)op(—a)) C RU {£o0}.

Recall:

Ry =EH(n(X)) =Ep(Ya™(n(X)))
n(zx) =Pr(Y =1|X =z).




Estimating Conditional Probabilities I

a”(n) = argmin (né(a) + (1 —n)d(—a)) C RUFoo}.

Examples of a*(n) versus n € [0, 1]:

L2-SVM:  ¢(a)
L1-SVM:  ¢(a)

0.2 4‘: e L2 SVM
- / where () +
_ e [ 1-SVM




Estimating Conditional Probabilities I

|| s |2 - SVM

- | ]1-SVM

We say that o* is invertible at » if, for all n; # n, o*(n) Na*(ny) = 0.

If o is invertible, then for any f satisfying R, (f) = R}, we can write
as a monotone function of f.

If o is not invertible, we cannot use f,, with Ry (f,) il R, to estimate 7.




‘ Estimating Conditional Probabilities I

Theorem: Thereisa g € [0,1/2] such that

1. o* is invertible on an interval (5,1 — 3).

2. If B > 0, o™ is constant on [, 3] and on [1 — 3,1 — '], for some
5" €10,5).

3.0=1.

4. Every point a € [—ag, o] of non-differentiability of ¢ corresponds to
aset [n1,m2] U1 —n9,1 — n1] where o™ is constant.

¢ (o)
¢ (ao) + ¢/ (—ap)’
ap = inf{a: 0 € 9p(a)},

O¢(a) = [¢_ (), ¢', ()] (subgradient of ¢ at ).

where ~ =




Estimating Conditional Probabilities I
(Zhang, 2004)

If o* is invertible and H is differentiable (it suffices, for example, for
o, o 10 be differentiable), then we can view minimization of ¢-risk as

estimation of a probability model:
Ry(a” (1)) — Ry = Edu (7(X), n(X)),
where d g Is the Bregman divergence with respect to H,

dp (7),n) = H(#H) + H'(7)(n — 1) — H(n).

(dy 1s non-negative and zero only when its arguments are equal).




\ Overview I

Relating excess risk to excess ¢-risk.

The approximation/estimation decomposition, universal consistency,

and oracle inequalities.
¢-risk and probability models.

Multiclass classification: Universal consistency.




Multiclass large margin methods (|| > 2)
Ambuj Tewari

Two broad categories:
e Combine several binary classifiers,
e Minimize a cost function defined on a vector space.

We will focus on methods in the second category.
Think of a classifier as a vector valued function f : X — R¥.

For a suitable loss function L : ) x REX — R, pick f,, by minimizing

3 Ll £) + lF)

1=1




Multiclass large margin methods'

A few methods of this kind from the literature:
(x4 = max{0,x})

L(yi, f(z:))
Vapnik; Weston and Watkins; Dy, Sy (i) = fyi (zs) + 1)+

Bredensteiner and Bennett

Crammer and Singer; Taskar et al max,/ 2y (fy (i) — fy, (i) + 1)+
Lee, Lin and Wahba Doyry, (L fyr (i) +

with sum-to-zero constraint, » | fy(z) =0

All predict label using arg max,cy f, ().




Different behaviors I

For K = 2, all methods are equivalent and universally consistent.

But they have different behaviors for K > 2.
Lee, Lin and Wahba’s iIs consistent.

The other two are not.

This led us to investigate consistency of a general class of methods of
which all of these are special cases.




\ General Framework'

Ly, f(z)) = U, (f(z)), U, : RE s R,.

Pointwise constraint on f, Vx, f(x) € C for some C C R¥,

v, (f): C:

Dyry Oy — Jy)
maxy 2y ¢(fy — fy’) R*

Yy 9fy) | {ZE€RF:TT 2 =0)

¢(x) = (1 — x) gives us our three example methods but we can
think of using other ¢ as well.




\If-riskI

Fixaclass F = {f : Vx,f(x) € C} of vector functions.

U-risk:  Ry(f) = EV,(f(z)),

optimal W-risk: Ry = t;nﬁ Ry (f) = E,
<

where p, () =

Since f enters into the W-risk definition only through ¥, we assume that
we predict labels using

pred(V:(f(z)), ..., Yk (f(z)))

for some pred : RX — .




Consistency'

Here, consistency means that for all probability distributions and all
sequences {f(™)},

Ry(f™) - R:;, = R(f")— R*.

To minimize the inner sum for a given z, we have to minimize:

(p(z),2)
forz € S, where S = conv{(¥(f),..., Ug(f)): f eC}.




‘ Consistency'

Consider an (informal) game where:

The opponent chooses a p € Ak and reveals to us a sequence
z™ with (p,z™) — inf,cs(p, z)

We output the sequence I,, = pred(z(™).

We win if p;, = max, p, ultimately.

For consistency, there should be a pred such that we win irrespective
of the choice of the opponent.




‘ Pictures of boundary of S I

Weston & Watkins Crammer & Singer

Lee, Lin & Wahba




\ Classification Calibration I

Defi nition: S C RE is CC iff 3 pred such that Vp € A and all {z(™}
In S,
(n) :
(p,z") — inf (p,2),
Implies
DPpred(z(m) = m??xpy

ultimately.

Assume that the set S is convex and symmetric (Ssymmetry means
that all K classes are treated equally).

The definition is useful because we can show that it is equivalent to:

V{f™Yin F, Re(f"™)— R: = R(E™) - R*.




Admissibility.

If any pred works then so will one satisfying z;;cq(z) = miny, zy,
which motivates the definition below.

Defi nition: S is admissible if Vz € 0S, Vp € N(z), we have

arg min(z,) C arg max(p,) .
Y Y

where N/ (z) is the set of non-negative normals (to S) at z.

For admissibility, it seems that we have to check all points z on the
boundary of S, but it turns out that we can ignore many points
(like those with singleton normal sets or those which have a unique
minimum coordinate).




‘ Necessary and sufficient condition I

Admissibility weaker than classification calibration.

It is equivalent to the CC definition with the additional assumption of
boundedness of the sequence {z(™}.

Necessary and sufficient condition is given by:

Theorem Let S C R% be a symmetric convex set. Define the sets

SO ={(z,...,2):z€ 8}

fori e {2,..., K}. Then S is classification calibrated iff each S is
admissible.




Example 1: Crammer and Singer'

v, (f) = 3}22{ (fy — fy)

For all ¢ differentiable at 0, the set of normals at

z = (¢(0), ¢(0), »(0)) includes (0,1,1), (1,0,1) and (1,1, 0). Since
arg min, (z,) = {1,2,3} and argmax, ((0,1,1)) = {2, 3},
admissibility is violated.




Example 2: A smooth loss function I

1

1

Boundary of the set S = S®) The set S(2)

W, (f) = exp(—f,) with K =3and »_ f, =0 gives
S={z€c Ry 212023 > 1}.

S is admissible, S(?) is not (origin has (0, 1) and (1, 0) as normals).

A differentiable loss function yields an inconsistent method:
something that cannot happen for binary classification.




Statistical Consequences of Using a Convex Cost I

The relationship between excess risk and excess ¢-risk.

The approximation/estimation decomposition, universal consistency,

and oracle inequalities.
¢-risk and probability models.

Multiclass classification: Universal consistency.




