Regression Methods for Pattern Classification: Statistical Properties of Large Margin Classifiers

Peter Bartlett

Computer Science Division and Department of Statistics UC Berkeley

slides at http://www.stat.berkeley.edu/~bartlett/talks

The Pattern Classification Problem

- i.i.d. $(X, Y), (X_1, Y_1), \dots, (X_n, Y_n)$ from $\mathcal{X} \times \mathcal{Y},$ $|\mathcal{Y}| < \infty$, for example, $\mathcal{Y} = \{\pm 1\}.$
- Use data $(X_1, Y_1), \ldots, (X_n, Y_n)$ to choose $f_n : \mathcal{X} \to \mathcal{Y}$ with small risk, $R(f_n) = \Pr(f_n(X) \neq Y) = \mathbb{E}\ell(Y, f_n(X)).$
- Natural approach: minimize empirical risk,

$$\hat{R}(f) = \hat{\mathbb{E}}_n \ell(Y, f(X)) = \frac{1}{n} \sum_{i=1}^n \ell(Y_i, f(X_i)).$$

- Often intractable...
- Replace 0-1 loss, ℓ , with a convex surrogate, ϕ .

Large Margin Algorithms: Two Class Case

• Suppose $Y \in \{\pm 1\}, f_n : \mathcal{X} \to \mathbb{R}$. Define

 $R(f_n) = \Pr\left(\operatorname{sign}(f_n(X)) \neq Y\right) = \mathbb{E}\ell(Y, f_n(X)).$

- Consider the margins, $Yf_n(X)$.
- Define a margin cost function $\phi : \mathbb{R} \to \mathbb{R}^+$.
- Define the ϕ -risk of $f : \mathcal{X} \to \mathbb{R}$ as $R_{\phi}(f) = \mathbb{E}\phi(Yf(X))$.
- Choose f ∈ F to minimize φ-risk.
 (e.g., use data, (X₁, Y₁), ..., (X_n, Y_n), to minimize empirical φ-risk,

$$\hat{R}_{\phi}(f) = \hat{\mathbb{E}}_n \phi(Yf(X)) = \frac{1}{n} \sum_{i=1}^n \phi(Y_i f(X_i)),$$

or a regularized version.)

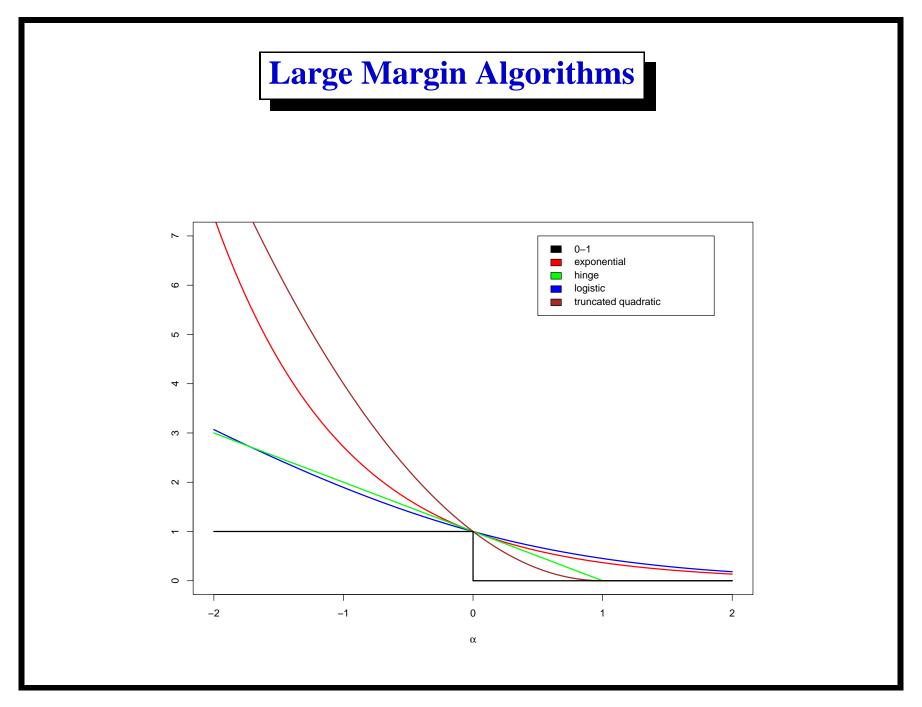
Large Margin Algorithms

- Adaboost:
 - $\mathcal{F} = \operatorname{span}(\mathcal{G})$ for a VC-class \mathcal{G} ,
 - $-\phi(\alpha) = \exp(-\alpha),$
 - Minimizes $\hat{R}_{\phi}(f)$ using greedy basis selection, line search.
- Support vector machines with 2-norm soft margin.
 - $\mathcal{F} =$ ball in reproducing kernel Hilbert space, \mathcal{H} .
 - $\phi(\alpha) = (\max(0, 1 \alpha))^2.$
 - Algorithm minimizes $\hat{R}_{\phi}(f) + \lambda \|f\|_{\mathcal{H}}^2$.

Large Margin Algorithms

- Many other variants
 - Neural net classifiers $\phi(\alpha) = \max(0, (0.8 - \alpha)^2).$
 - Support vector machines with 1-norm soft margin $\phi(\alpha) = \max(0, 1 \alpha).$
 - L2Boost, LS-SVMs
 - $\phi(\alpha) = (1 \alpha)^2.$

 $\phi(\alpha) = \log(1 + \exp(-2\alpha)).$



Statistical Consequences of Using a Convex Cost

- Universal consistency? For which ϕ ?
- How is risk related to ϕ -risk?
- Model selection. Oracle inequalities.
- Does minimizing ϕ -risk correspond to estimating a model of Y|X?
- Similarly for multiclass.

Statistical Consequences of Using a Convex Cost

Sources:

Lin, 2004: Loss functions.

Zhang, 2004: SVMs, regularized boosting.

Lugosi and Vayatis, 2004: Regularized boosting methods.

Steinwart, 2003, 2004: Support vector machines.

Jiang, 2004: Process consistency of boosting.

Koltchinskii and Panchenko, 2000: Boosting.

Blanchard, Lugosi and Vayatis, 2003: Regularized boosting methods.

Shen, Tseng, Zhang and Wong, 2003: ψ -learning.

Bickel and Ritov, 2004: Boosting.

Buhlmann and Yu, 2002: L2 boosting.

Bartlett, Jordan, McAuliffe, 2005: Convex loss functions.

Tewari and Bartlett, 2005: Multiclass.

Overview

- Relating excess risk to excess ϕ -risk.
- The approximation/estimation decomposition, universal consistency, and oracle inequalities.
- ϕ -risk and probability models.
- Multiclass classification: Universal consistency.

Definitions and Facts

$$\begin{split} R(f) &= \Pr\left(\text{sign}(f(X)) \neq Y\right) & R^* = \inf_f R(f) & \text{risk} \\ R_{\phi}(f) &= \mathbb{E}\phi(Yf(X)) & R_{\phi}^* = \inf_f R_{\phi}(f) & \phi\text{-risk} \\ \eta(x) &= \Pr(Y = 1 | X = x) & \text{conditional probability.} \end{split}$$

• η defines an optimal classifier: $R^* = R(\operatorname{sign}(\eta(x) - 1/2)).$

Definitions and Facts

$$\begin{split} R(f) &= \Pr\left(\operatorname{sign}(f(X)) \neq Y\right) & R^* = \inf_f R(f) & \operatorname{risk} \\ R_{\phi}(f) &= \mathbb{E}\phi(Yf(X)) & R_{\phi}^* = \inf_f R_{\phi}(f) & \phi\operatorname{-risk} \\ \eta(x) &= \Pr(Y = 1 | X = x) & \operatorname{conditional probability.} \\ \bullet \ \eta \text{ defines an optimal classifier: } R^* &= R(\operatorname{sign}(\eta(x) - 1/2)). \end{split}$$

Notice: $R_{\phi}(f) = \mathbb{E} \left(\mathbb{E} \left[\phi(Yf(X)) | X \right] \right)$, and conditional ϕ -risk is:

$$\mathbb{E}\left[\phi(Yf(X))|X=x\right] = \eta(x)\phi(f(x)) + (1 - \eta(x))\phi(-f(x)).$$

Conditional ϕ -risk:

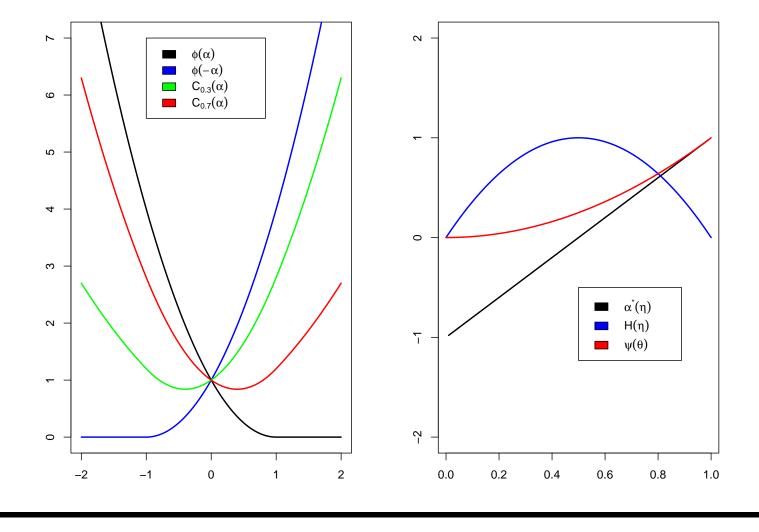
$$\mathbb{E}[\phi(Yf(X))|X = x] = \eta(x)\phi(f(x)) + (1 - \eta(x))\phi(-f(x)).$$

Optimal conditional ϕ -risk for $\eta \in [0, 1]$:

$$H(\eta) = \inf_{\alpha \in \mathbb{R}} \left(\eta \phi(\alpha) + (1 - \eta) \phi(-\alpha) \right).$$

$$R_{\phi}^* = \mathbb{E}H(\eta(X)).$$

Optimal Conditional ϕ **-risk: Example**



Definitions

Optimal conditional ϕ -risk for $\eta \in [0, 1]$:

$$H(\eta) = \inf_{\alpha \in \mathbb{R}} \left(\eta \phi(\alpha) + (1 - \eta) \phi(-\alpha) \right).$$

Optimal conditional ϕ -risk with incorrect sign:

$$H^{-}(\eta) = \inf_{\alpha:\alpha(2\eta-1)\leq 0} \left(\eta\phi(\alpha) + (1-\eta)\phi(-\alpha)\right).$$

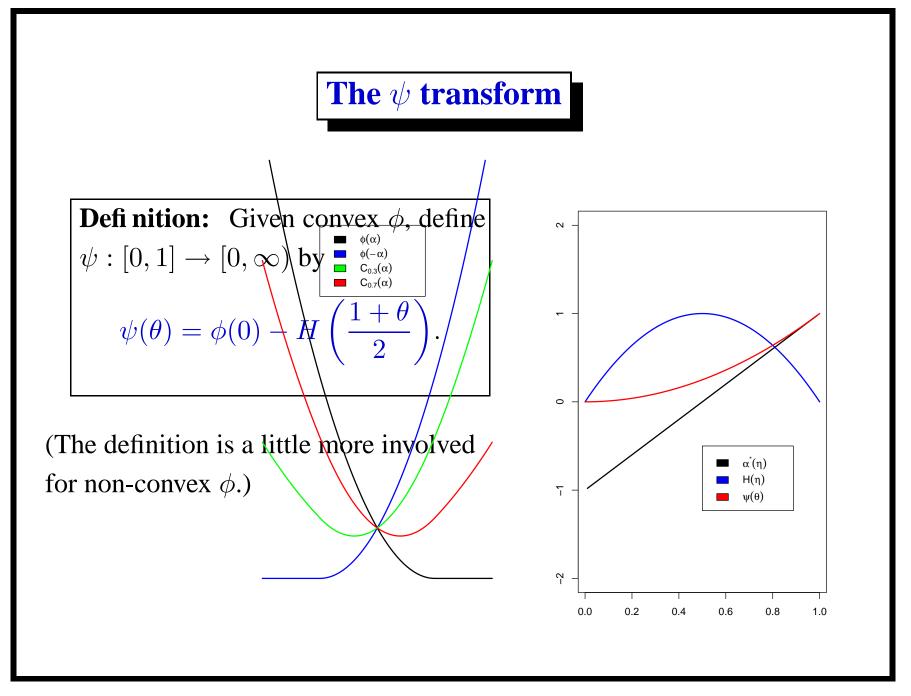
Note:
$$H^{-}(\eta) \ge H(\eta)$$
 $H^{-}(1/2) = H(1/2).$

Definitions

$$H(\eta) = \inf_{\alpha \in \mathbb{R}} \left(\eta \phi(\alpha) + (1 - \eta) \phi(-\alpha) \right)$$
$$H^{-}(\eta) = \inf_{\alpha: \alpha(2\eta - 1) \le 0} \left(\eta \phi(\alpha) + (1 - \eta) \phi(-\alpha) \right).$$

Definition: ϕ is **classifi cation-calibrated** if, for $\eta \neq 1/2$, $H^{-}(\eta) > H(\eta)$.

i.e., pointwise optimization of conditional ϕ -risk leads to the correct sign. (c.f. Lin (2001))



The Relationship between Excess Risk and Excess ϕ -risk

Theorem:

- 1. For any P and f, $\psi(R(f) R^*) \leq R_{\phi}(f) R_{\phi}^*$.
- 2. For $|\mathcal{X}| \geq 2$, $\epsilon > 0$ and $\theta \in [0, 1]$, there is a P and an f with

$$R(f) - R^* = \theta$$

$$\psi(\theta) \le R_{\phi}(f) - R_{\phi}^* \le \psi(\theta) + \epsilon.$$

- 3. The following conditions are equivalent:
 - (a) ϕ is classification calibrated.

(b)
$$\psi(\theta_i) \to 0 \text{ iff } \theta_i \to 0.$$

(c) $R_{\phi}(f_i) \to R_{\phi}^*$ implies $R(f_i) \to R^*$.

Classification-calibrated ϕ

If ϕ is classification-calibrated, then

$$\psi(\theta_i) \to 0 \text{ iff } \theta_i \to 0.$$

Since the function ψ is always convex, in that case it is strictly increasing and so has an inverse.

Thus, we can write

$$R(f) - R^* \le \psi^{-1} \left(R_{\phi}(f) - R_{\phi}^* \right).$$

Classification-calibrated ϕ

Theorem: If ϕ is convex,

 ϕ is classification calibrated $\Leftrightarrow \begin{cases} \phi \text{ is differentiable at } 0 \\ \phi'(0) < 0. \end{cases}$

Theorem: If ϕ is classification calibrated, $\exists \gamma > 0, \forall \alpha \in \mathbb{R},$ $\gamma \phi(\alpha) \ge \mathbf{1} [\alpha \le 0].$

Overview

- Relating excess risk to excess ϕ -risk.
- The approximation/estimation decomposition, universal consistency, and oracle inequalities.
- ϕ -risk and probability models.
- Multiclass classification: Universal consistency.

Method of sieves/Regularized empirical risk

$$f_n = \hat{f}_{k_n} \qquad \hat{f}_k = \arg\min_{f \in \mathcal{F}_k} \hat{R}_{\phi}(f), \qquad \mathcal{F} = \bigcup_k \mathcal{F}_k,$$

or
$$f_n = \arg\min_{f \in \mathcal{F}} \left(\hat{R}_{\phi}(f) + \lambda_n \Omega(f) \right).$$

Examples:

• Adaboost:

$$- \mathcal{F}_{k} = \operatorname{span}_{k}(\mathcal{G}) = \left\{ \sum_{i=1}^{k} \alpha_{i} g_{i} : g_{i} \in \mathcal{G} \right\}, \mathcal{G} \text{ is a VC-class, or}$$
$$- \mathcal{F}_{k} = k \operatorname{co}(\mathcal{G}), \text{ or}$$
$$- \mathcal{F} = \operatorname{span}(\mathcal{G}), \Omega(f) = \sum_{i} |\alpha_{i}|.$$

Method of sieves/Regularized empirical risk

$$f_n = \hat{f}_{k_n} \qquad \hat{f}_k = \arg\min_{f \in \mathcal{F}_k} \hat{R}_{\phi}(f), \qquad \mathcal{F} = \bigcup_k \mathcal{F}_k,$$

or
$$f_n = \arg\min_{f \in \mathcal{F}} \left(\hat{R}_{\phi}(f) + \lambda_n \Omega(f) \right).$$

Examples:

• Support vector machines:

- $\mathcal{F} = \mathcal{H}$, reproducing kernel Hilbert space, $\Omega(f) = ||f||_{\mathcal{H}}$, or - $\mathcal{F}_k = \{f \in \mathcal{H} : ||f||_{\mathcal{H}} \le k\}.$

The Approximation/Estimation Decomposition

We can decompose the excess risk estimate as

$$R(f_n) - R^* \le \psi^{-1} \left(R_{\phi}(f_n) - R_{\phi}^* \right)$$

= $\psi^{-1} \left(\frac{R_{\phi}(f_n) - \inf_{f \in \mathcal{F}_n} R_{\phi}(f)}{estimation \, error} + \underbrace{\inf_{f \in \mathcal{F}_n} R_{\phi}(f) - R_{\phi}^*}_{approximation \, error} \right).$

- Approximation and estimation errors are in terms of R_{ϕ} , not R.
- Like a regression problem.

The Approximation/Estimation Decomposition

$$R(f_n) - R^* \le \psi^{-1} \left(R_{\phi}(f_n) - R_{\phi}^* \right)$$

= $\psi^{-1} \left(\frac{R_{\phi}(f_n) - \inf_{f \in \mathcal{F}_n} R_{\phi}(f)}{estimation error} + \underbrace{\inf_{f \in \mathcal{F}_n} R_{\phi}(f) - R_{\phi}^*}_{approximation error} \right).$

If the class is suitably rich (so that inf_{f∈F} R_φ(f) = R^{*}_φ), and the regularization is relaxed suitably slowly (e.g., k_n → ∞ slowly, or λ_n → 0 slowly),

$$R_{\phi}(f_n) \xrightarrow{P} R_{\phi}^*.$$

Universal consistency (R(f_n) → R^{*}) follows iff φ is classification calibrated.

Oracle Inequalities

For
$$\hat{f}_k = \arg \min_{f \in \mathcal{F}_k} \hat{R}_{\phi}(f),$$

 $f_n = \hat{f}_{\hat{k}}$ with $\hat{k} = \arg \min_k \left(\hat{R}_{\phi}(\hat{f}_k) + p_k \right),$

for some penalty p_k (that might depend on n), we are interested in *oracle inequalities* of the form

$$R_{\phi}(f_n) - R_{\phi}^* \le \inf_k \left(\inf_{f \in \mathcal{F}_k} R_{\phi}(f) - R_{\phi}^* + cp_k \right).$$

This would imply

$$R(f_n) - R^* \le \inf_k \psi^{-1} \left(\inf_{f \in \mathcal{F}_k} R_\phi(f) - R_\phi^* + cp_k \right).$$

Oracle Inequalities: Uniform Convergence Suffices

Define

 $\begin{array}{ll} \text{empirical risk minimizer in } \mathcal{F}_k \colon & \hat{f}_k = \arg\min_{f\in\mathcal{F}_k}\hat{R}_\phi(f), \\ \text{penalized ERM in } \mathcal{F} \colon & f_n = \hat{f}_k, \\ \text{class with best penalized emp. risk:} & \hat{k} = \arg\min_k \left(\hat{R}_\phi(\hat{f}_k) + p_k\right), \\ \text{risk minimizer in } \mathcal{F}_k \colon & f_k^* = \arg\min_{f\in\mathcal{F}_k} R_\phi(f), \\ \text{class with best penalized risk:} & k^* = \arg\min_k \left(R_\phi(f_k^*) + 2p_k\right). \end{array}$

Oracle Inequalities: Uniform Convergence Suffices

If

$$\sup_{k} \left(\sup_{f \in \mathcal{F}_{k}} \left| R_{\phi}(f) - \hat{R}_{\phi}(f) \right| - p_{k} \right) \le 0, \qquad (*)$$

then

$$\begin{aligned} R_{\phi}(f_n) &\leq \hat{R}_{\phi}(\hat{f}_{\hat{k}}) + p_{\hat{k}} & \text{(by (*) and definition of } f_n) \\ &\leq \hat{R}_{\phi}(\hat{f}_{k^*}) + p_{k^*} & \text{(definition of } \hat{k}) \\ &\leq \hat{R}_{\phi}(f_{k^*}^*) + p_{k^*} & \text{(definition of } \hat{f}_{k^*}) \\ &\leq R_{\phi}(f_{k^*}^*) + 2p_{k^*} & \text{(by (*) again)} \\ &= \inf_k \inf_{f \in \mathcal{F}_k} \left(R_{\phi}(f) + 2p_k \right). \end{aligned}$$

So *uniform convergence* of empirical ϕ -risks to ϕ -risks suffices.

Oracle Inequalities: Ratio Inequalities Suffice

But this approach can be improved. For example, if ϕ is quadratic and \mathcal{F}_k is convex, finite dimensional, and uniformly bounded, then the rate of uniform convergence over \mathcal{F}_k is $\Omega(n^{-1/2})$, but with high probability

$$\underbrace{R_{\phi}(f) - R_{\phi}(f_k^*)}_{\text{excess risk}} \le 2\underbrace{\left(\hat{R}_{\phi}(f) - \hat{R}_{\phi}(f_k^*)\right)}_{\text{if constraints}} + O\left(\frac{1}{n}\right).$$

difference of empirical risks

Since
$$\hat{R}_{\phi}(\hat{f}_k) \leq \hat{R}_{\phi}(f_k^*)$$
, this implies $\mathbb{E}\left(R_{\phi}(\hat{f}_k) - R_{\phi}(f_k^*)\right) = O(1/n)$.

The key property is the relationship

 $\mathbb{E}\left(\phi(Yf(X)) - \phi(Yf_k^*(X))\right)^2 \le c\left(\mathbb{E}\left(\phi(Yf(X)) - \phi(Yf_k^*(X))\right)\right)^2,$

which follows from ϕ being Lipschitz and uniformly convex.

Oracle Inequalities: Ratio Inequalities Suffice

It turns out that such inequalities suffice for oracle inequalities, provided the \mathcal{F}_k are ordered by inclusion.

Theorem: Suppose
$$\mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq \mathcal{F}_3 \subseteq \cdots$$
 and $\bigcup_k \mathcal{F}_k = \mathcal{F}$. If

$$\sup_k \sup_{f \in \mathcal{F}_k} \left(R_\phi(f) - R_\phi(f_k^*) - 2\left(\hat{R}_\phi(f) - \hat{R}_\phi(f_k^*)\right) - \epsilon_k \right) \leq 0,$$

$$\sup_k \sup_{f \in \mathcal{F}_k} \left(\hat{R}_\phi(f) - \hat{R}_\phi(f_k^*) - 2\left(R_\phi(f) - R_\phi(f_k^*)\right) - \epsilon_k \right) \leq 0,$$
then with $p_k = 7\epsilon_k/2$, we have
 $R_\phi(f_n) \leq \inf_k \left(R_\phi(f_k^*) + 9\epsilon_k \right).$

Oracle Inequalities: Ratio Inequalities Suffice

For example, for $\phi(\alpha) = \exp(-\alpha)$ and $\mathcal{F}_k = \ln(k) \cos(\mathcal{G})$, with probability at least $1 - \delta$, we can choose

$$\epsilon_k = c \left(\frac{k \ln k}{n^{(d+2)/(2d+2)}} + \frac{k^3 \ln(k/\delta)}{n} \right),$$

where $d = \text{VCdim}(\mathcal{G})$. Choosing f_n to minimize $\hat{R}_{\phi}(\hat{f}_k) + c_1 \epsilon_k$ gives

$$R_{\phi}(f_n) - R_{\phi}^* \le \inf_k \left(\inf_{f \in \mathcal{F}_k} R_{\phi}(f) - R_{\phi}^* + c_2 \epsilon_k \right)$$

Overview

- Relating excess risk to excess ϕ -risk.
- The approximation/estimation decomposition, universal consistency, and oracle inequalities.
- ϕ -risk and probability models.
- Multiclass classification: Universal consistency.

Does a large margin classifier, f_n , correspond to a model for the conditional probability $\eta(x) = \Pr(Y = 1 | X = x)$?

For what ϕ ?

If ϕ is convex, we can write

$$H(\eta) = \inf_{\alpha \in \mathbb{R}} \left(\eta \phi(\alpha) + (1 - \eta) \phi(-\alpha) \right)$$
$$= \eta \phi(\alpha^*(\eta)) + (1 - \eta) \phi(-\alpha^*(\eta)),$$

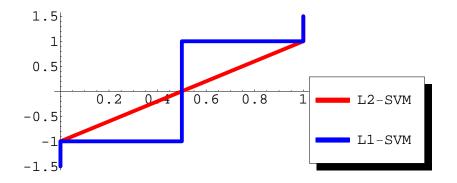
where $\alpha^*(\eta) = \arg \min_{\alpha} \left(\eta \phi(\alpha) + (1 - \eta) \phi(-\alpha) \right) \subset \mathbb{R} \cup \{\pm \infty\}.$

Recall:

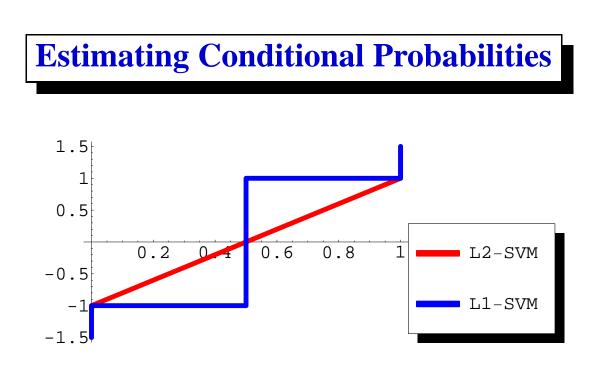
$$R_{\phi}^{*} = \mathbb{E}H(\eta(X)) = \mathbb{E}\phi(Y\alpha^{*}(\eta(X)))$$
$$\eta(x) = \Pr(Y = 1 | X = x).$$

$$\alpha^*(\eta) = \arg\min_{\alpha} \left(\eta \phi(\alpha) + (1 - \eta) \phi(-\alpha) \right) \subset \mathbb{R} \cup \{\pm \infty\}.$$

Examples of $\alpha^*(\eta)$ versus $\eta \in [0, 1]$:



L2-SVM: $\phi(\alpha) = ((1 - \alpha)_{+})^{2}$ L1-SVM: $\phi(\alpha) = (1 - \alpha)_{+},$ where $(x)_{+} = \max\{0, x\}.$



We say that α^* is invertible at η if, for all $\eta_1 \neq \eta$, $\alpha^*(\eta) \cap \alpha^*(\eta_1) = \emptyset$. If α^* is invertible, then for any f satisfying $R_{\phi}(f) = R_{\phi}^*$, we can write η as a monotone function of f. If α^* is not invertible, we cannot use f_n with $R_{\phi}(f_n) \xrightarrow{P} R_{\phi}^*$ to estimate η .

Theorem: There is a $\beta \in [0, 1/2]$ such that **1.** α^* is invertible on an interval $(\beta, 1 - \beta)$. **2.** If $\beta > 0$, α^* is constant on $[\beta', \beta]$ and on $[1 - \beta, 1 - \beta']$, for some $\beta' \in [0, \beta)$. **3.** $\beta \ge \gamma$. **4.** Every point $\alpha \in [-\alpha_0, \alpha_0]$ of non-differentiability of ϕ corresponds to a set $[\eta_1, \eta_2] \cup [1 - \eta_2, 1 - \eta_1]$ where α^* is constant.

where
$$\gamma = \frac{\phi'_{-}(\alpha_{0})}{\phi'_{-}(\alpha_{0}) + \phi'_{+}(-\alpha_{0})},$$

 $\alpha_{0} = \inf\{\alpha : 0 \in \partial\phi(\alpha)\},$
 $\partial\phi(\alpha) = [\phi'_{-}(\alpha), \phi'_{+}(\alpha)]$ (subgradient of ϕ at α).

Estimating Conditional Probabilities

(Zhang, 2004)

If α^* is invertible and *H* is differentiable (it suffices, for example, for ϕ, α^* to be differentiable), then we can view minimization of ϕ -risk as estimation of a probability model:

$$R_{\phi}(\alpha^*(\hat{\eta})) - R_{\phi}^* = \mathbb{E}d_H(\hat{\eta}(X), \eta(X)),$$

where d_H is the Bregman divergence with respect to H,

$$d_H(\hat{\eta},\eta) = H(\hat{\eta}) + H'(\hat{\eta})(\eta - \hat{\eta}) - H(\eta).$$

 $(d_H \text{ is non-negative and zero only when its arguments are equal}).$

Overview

- Relating excess risk to excess ϕ -risk.
- The approximation/estimation decomposition, universal consistency, and oracle inequalities.
- ϕ -risk and probability models.
- Multiclass classification: Universal consistency.

Multiclass large margin methods $(|\mathcal{Y}| > 2)$

Ambuj Tewari

Two broad categories:

- Combine several binary classifiers,
- Minimize a cost function defined on a vector space.

We will focus on methods in the second category.

Think of a classifier as a vector valued function $\mathbf{f} : \mathcal{X} \mapsto \mathbb{R}^{K}$.

For a suitable loss function $L: \mathcal{Y} \times \mathbb{R}^K \to \mathbb{R}_+$, pick $\hat{\mathbf{f}}_n$ by minimizing

$$\frac{1}{n}\sum_{i=1}^n L(y_i, \mathbf{f}(x_i)) + \Omega_n(\mathbf{f}) \ .$$

Multiclass large margin methods

A few methods of this kind from the literature:

$$(x_+ = \max\{0, x\})$$

	$L(y_i, \mathbf{f}(x_i))$
Vapnik; Weston and Watkins;	$\sum_{y' \neq y_i} (f_{y'}(x_i) - f_{y_i}(x_i) + 1)_+$
Bredensteiner and Bennett	
Crammer and Singer; Taskar et al	$\max_{y' \neq y_i} (f_{y'}(x_i) - f_{y_i}(x_i) + 1)_+$
Lee, Lin and Wahba	$\sum_{y' \neq y_i} (1 + f_{y'}(x_i))_+$
	with sum-to-zero constraint, $\sum_{y} f_{y}(x) = 0$

All predict label using $\arg \max_{y \in \mathcal{Y}} f_y(x)$.

Different behaviors

- For K = 2, all methods are equivalent and universally consistent.
- But they have different behaviors for K > 2.
 - Lee, Lin and Wahba's is consistent.
 - The other two are not.
- This led us to investigate consistency of a general class of methods of which all of these are special cases.

General Framework

- $L(y, \mathbf{f}(x)) = \Psi_y(\mathbf{f}(x)), \Psi_y : \mathbb{R}^K \mapsto \mathbb{R}_+.$
- Pointwise constraint on $\mathbf{f}, \forall x, \mathbf{f}(x) \in \mathcal{C}$ for some $\mathcal{C} \subseteq \mathbb{R}^{K}$.

$\Psi_y(\mathbf{f})$:	\mathcal{C} :
$\sum_{y' \neq y} \phi(f_y - f_{y'})$	\mathbb{R}^{K}
$\max_{y' \neq y} \phi(f_y - f_{y'})$	\mathbb{R}^{K}
$\sum_{y' \neq y} \phi(-f_{y'})$	$\{\mathbf{z} \in \mathbb{R}^K : \sum_{i=1}^K z_i = 0\}$

 φ(x) = (1 − x)₊ gives us our three example methods but we can
 think of using other φ as well.

Ψ -risk

Fix a class $\mathcal{F} = {\mathbf{f} : \forall x, \mathbf{f}(x) \in \mathcal{C}}$ of vector functions.

$$\begin{split} \Psi\text{-risk:} \quad & R_{\Psi}(\mathbf{f}) = \mathbb{E}\Psi_y(\mathbf{f}(x)) \ ,\\ \text{optimal }\Psi\text{-risk:} \quad & R_{\Psi}^* = \inf_{\mathbf{f}\in\mathcal{F}} R_{\Psi}(\mathbf{f}) = \mathbb{E}_x \left[\inf_{\mathbf{f}(x)\in\mathcal{C}} \sum_y p_y(x) \Psi_y(\mathbf{f}(x)) \right]\\ & \text{ where } p_y(x) = P(Y = y | X = x). \end{split}$$

Since **f** enters into the Ψ -risk definition only through Ψ , we assume that we predict labels using

 $\operatorname{pred}(\Psi_1(\mathbf{f}(x)),\ldots,\Psi_K(\mathbf{f}(x)))$

for some pred : $\mathbb{R}^K \mapsto \mathcal{Y}$.

Consistency

Here, consistency means that for all probability distributions and all sequences $\{\mathbf{f}^{(n)}\}$,

$$R_{\Psi}(\mathbf{f}^{(n)}) \to R_{\Psi}^* \implies R(\mathbf{f}^{(n)}) \to R^*.$$

$$R_{\Psi}^* = \mathbb{E}_x \left[\inf_{\mathbf{f}(x) \in \mathcal{C}} \sum_y p_y(x) \Psi_y(\mathbf{f}(x)) \right]$$

• To minimize the inner sum for a given x, we have to minimize:

 $\langle \mathbf{p}(x), \mathbf{z} \rangle$

for
$$\mathbf{z} \in \mathcal{S}$$
, where $\mathcal{S} = \operatorname{conv}\{(\Psi_1(\mathbf{f}), \dots, \Psi_K(\mathbf{f})) : \mathbf{f} \in \mathcal{C}\}.$

Consistency

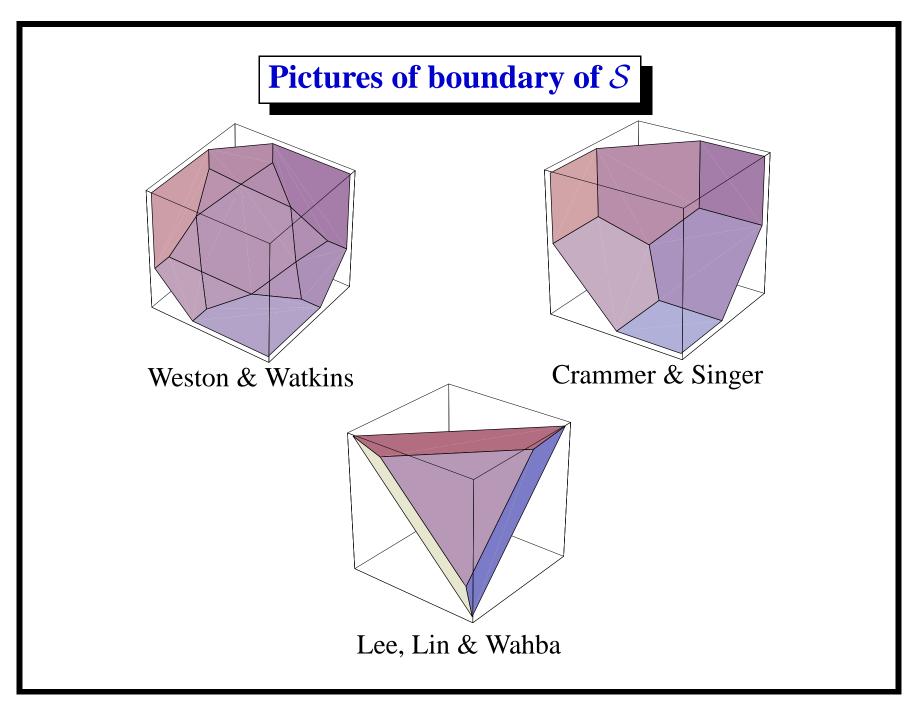
• Consider an (informal) game where:

- The opponent chooses a $\mathbf{p} \in \Delta_K$ and reveals to us a sequence $\mathbf{z}^{(n)}$ with $\langle \mathbf{p}, \mathbf{z}^{(n)} \rangle \rightarrow \inf_{\mathbf{z} \in \mathcal{S}} \langle \mathbf{p}, \mathbf{z} \rangle$

- We output the sequence $l_n = \text{pred}(\mathbf{z}^{(n)})$.

We win if $p_{l_n} = \max_y p_y$ ultimately.

• For consistency, there should be a pred such that we win irrespective of the choice of the opponent.



Classification Calibration

Definition: $S \subseteq \mathbb{R}^{K}_{+}$ is CC iff \exists pred such that $\forall \mathbf{p} \in \Delta_{K}$ and all $\{\mathbf{z}^{(n)}\}$ in S,

$$\langle \mathbf{p}, \mathbf{z}^{(n)} \rangle
ightarrow \inf_{\mathbf{z} \in \mathcal{S}} \langle \mathbf{p}, \mathbf{z} \rangle ,$$

implies

$$p_{\operatorname{pred}(\mathbf{z}^{(n)})} = \max_{y} p_{y}$$

ultimately.

- Assume that the set S is convex and symmetric (symmetry means that all K classes are treated equally).
- The definition is useful because we can show that it is equivalent to:

$$\forall \{\mathbf{f}^{(n)}\} \text{ in } \mathcal{F}, \quad R_{\Psi}(\mathbf{f}^{(n)}) \to R_{\Psi}^* \quad \Rightarrow \quad R(\mathbf{f}^{(n)}) \to R^* .$$

Admissibility

• If any pred works then so will one satisfying $z_{\text{pred}(\mathbf{z})} = \min_y z_y$, which motivates the definition below.

Definition: S is admissible if $\forall z \in \partial S, \forall p \in \mathcal{N}(z)$, we have

 $\arg\min_{y}(z_y) \subseteq \arg\max_{y}(p_y) \; .$

where $\mathcal{N}(\mathbf{z})$ is the set of non-negative normals (to \mathcal{S}) at \mathbf{z} .

For admissibility, it seems that we have to check all points z on the boundary of S, but it turns out that we can ignore many points (like those with singleton normal sets or those which have a unique minimum coordinate).

Necessary and sufficient condition

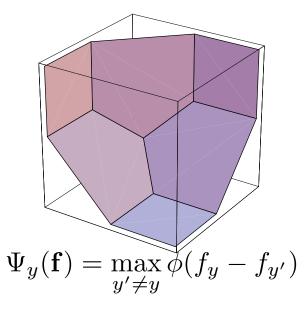
- Admissibility *weaker* than classification calibration.
- It is equivalent to the CC definition with the additional assumption of boundedness of the sequence {z⁽ⁿ⁾}.
- Necessary and sufficient condition is given by:

Theorem Let $\mathcal{S} \subseteq \mathbb{R}_+^K$ be a symmetric convex set. Define the sets

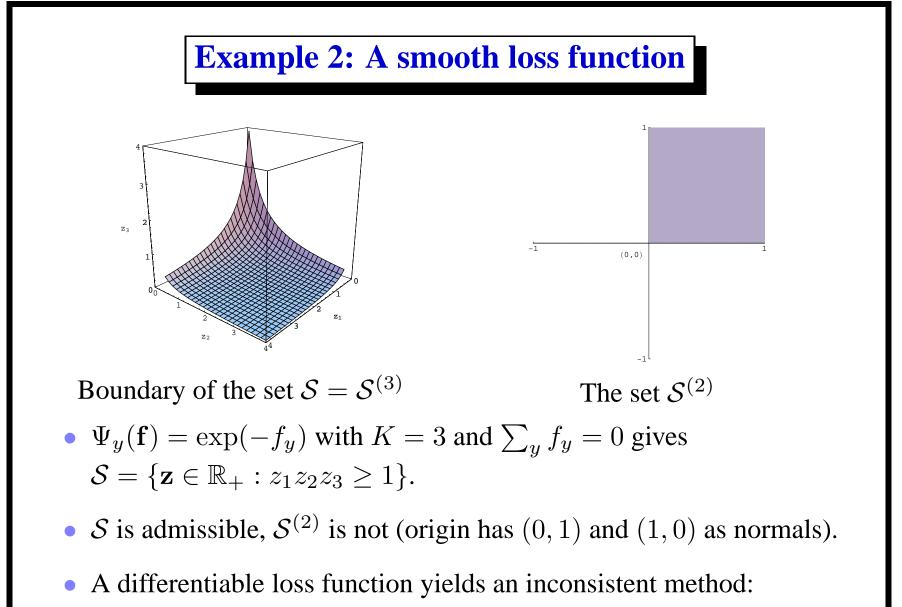
$$\mathcal{S}^{(i)} = \{(z_1, \ldots, z_i) : \mathbf{z} \in \mathcal{S}\}$$

for $i \in \{2, ..., K\}$. Then S is classification calibrated iff each $S^{(i)}$ is admissible.

Example 1: Crammer and Singer



For all φ differentiable at 0, the set of normals at z = (φ(0), φ(0), φ(0)) includes (0, 1, 1), (1, 0, 1) and (1, 1, 0). Since arg min_y(z_y) = {1, 2, 3} and arg max_y((0, 1, 1)) = {2, 3}, admissibility is violated.



something that cannot happen for binary classification.

Statistical Consequences of Using a Convex Cost

- The relationship between excess risk and excess ϕ -risk.
- The approximation/estimation decomposition, universal consistency, and oracle inequalities.
- ϕ -risk and probability models.
- Multiclass classification: Universal consistency.