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The Pattern Classification Problem I

Lid (X,Y), (X1, Y7),...,(X,,Y,) fromX x {£1}.

Usedata(X1,Y1),...,(X,,Y,) tochoose f,, : X — R with small
rsk,

R(fn) = Pr(sign(fn(X)) #Y) = ELY, f(X)).

Natural approach: minimize empirical risk,

A A

R(T) = BUY, £(X)) = 3" €Y F(X0).

Often intractable...

Replace O0-1 loss, ¢, with a convex surrogate, ¢.




‘ Large Margin AIgorithmsI

Consider the margins, Y f(X).
Define amargin cost function ¢ : R — R,
Definethe ¢-risk of f : X - Ras Ry, (f) = Eo(Y f(X)).

Choose f € F to minimize ¢-risk.
(e.g., usedata, (X1,Y7),...,(X,,Y,), tominimizeempirical ¢-risk,

Ry(f) = Eo(Y f(X Z¢ Y f(X

or aregularized version.)




‘ Large Margin AIgorithmsI
Adaboost:

F = span(G) foraVC-class G,
¢(a) = exp(—a),
Minimizes R¢(f) using greedy basis selection, line search.
Support vector machines with 2-norm soft margin.
F = ball in reproducing kernel Hilbert space, H.
(max (0,1 — a))”.

Algorithm minimizes R, (f) + || f13,.




‘ Large Margin AIgorithmsI

Many other variants

Neura net classifiers
() = max(0, (0.8 — «)?).

Support vector machines with 1-norm soft margin
¢(a) = max(0,1 — «).

L2Boost, LS-SVMs

d(a) = (1 —a)”.

Logistic regression

b(a) = log(1 + exp(—2a)).




‘ Large Margin AIgorithmsI




Statistical Consequences of Using a Convex Cost I

Bayes risk consistency? For which ¢?

(Lugos and Vayatis, 2004), (Mannor, Meir and Zhang, 2002).
regularized boosting.

(Zhang, 2004), (Steinwart, 2003). SV M.

(Jiang, 2004): boosting with early stopping.




Statistical Consequences of Using a Convex Cost I

How isrisk related to ¢-risk?
(Lugos and Vayatis, 2004), (Steinwart, 2003): asymptotic.

(Zhang, 2004): comparison theorem.

Convergence rates? With low noise?
(Tsybakov, 2001): empirical risk minimization.

Estimating conditional probabilities?

Multiclass?




Overview I

Relating excess risk to excess ¢-risk.

The approximation/estimation decomposition and universal

consistency.
Convergence rates. low noise.
Kernel classifiers: sparseness versus probability estimation.

Structured multiclass classification.




\ Definitions and Facts'

R(f) = Pr(sign(f(X)) #Y)  Risk,
R" = ir}f R(f) Bayesrisk,

n(x) =Pr(Y =1|X = x) conditional probability.
n defines an optimal classifier:
R* = R(sign(n(x) — 1/2)).
Excessriskof f: X — RS

R(f) — R" = E (1 [sign(f(X)) # sign(n(X) — 1/2)] [2n(X) —1]).
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Definitions'

Conditional ¢-risk:

E[o(Y f(X)|X = 2] =n(z)o(f(x)) + (1 —n(z))¢(—f(x)).
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‘Conditional O-T1sK: Example'

o(a) = (max(0,1 — ).
Co.5(0)=036(a) + 0.7¢(—a)
Co.7()=0.7p(a) 4 0.3¢(—)
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Definitions'

R(f)=Pr(sien(/(X)) £Y) R =mfR(f)  (Bayesrisk)

Ry(f) = E¢(Y f(X)) Ry =inf Ro(f)  (optimal ¢-risk)

Conditional ¢-risk:

E[op(Y f(X)X = a] = n(x)o(f(x) + (1 —n(x))p(—f(x)).
Optimal conditiona ¢-risk for € [0, 1]:

H(n) = inf (no(a) + (1 —n)o(—a)).

R;, = EH(5(X)).
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Optimal Conditional ¢-risk: Example'
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Definitions'

Optimal conditiona ¢-risk for € [0, 1]:

H(n) = inf (ng(a) + (1 =n)p(-a)).

aceR

Optimal conditional ¢-risk with incorrect sign:

inf _ (ng(a) + (1 —n)p(-a)).

a:a(2n—1)<0

H™(n) > H(n)

15
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Definitions'
ClyIElFR (no(a) + (1 —n)o(—a))
inf  (no(a) + (1 —n)p(—a)).

a:a(2n—1)<0

Definition: ¢ Is classification-calibrated if,
forn #£1/2,

H™(n) > H(n).

|.e., pointwise optimization of conditional ¢-risk leads to the correct sign.
(c.f. Lin (2001))
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Definitions'

Definition: Given ¢, define ) : [0,1] — [0, 00) by 1 = ¢**, where

A CORICD)

Here, ¢** isthe Fenchel-Legendre biconjugate of g,

epi(g™") = co(epi(g)),
epi(g) ={(z,y) 1z € (0,1}, g(x) <y}
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‘w-transform: Example'

e 1) isthe best convex lower bound on

Y(0) = H ((1+6)/2) — H((1+6)/2),
the excess conditional ¢-risk when the
sign isincorrect.

o 1) = ¢** isthe biconjugate of ),

co(epi(v)),
{(a,t) : o €[0,1], () <t}

o 1 isthe functional convex hull of 1.
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The Relationship between Excess Risk and Excess qb-riskI

Theorem:
1. Forany Pand f, o(R(f) — R") < Ry(f) — R},

2. Thisbound cannot be improved.

3. Near-minimal ¢-risk implies near-minimal risk
precisely when ¢ Is classification-calibrated.
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The Relationship between Excess Risk and Excess qb-riskI

Theorem:
1. Forany Pand f, o(R(f) — R*) < Ry(f) — R},

2. Thisbound cannot be improved:
For |X|>2,e>0andf € [0, 1], thereisa P and an f with

R(f)—R" =0
Y(0) < Ry(f) — Ry < (0) +e.

3. Near-minimal ¢-risk implies near-minimal risk
precisely when ¢ is classification-calibrated.
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The Relationship between Excess Risk and Excess qb-riskI

Theorem:
1. Forany Pand f, o(R(f) — R*) < Ry(f) — R},

2. Thisbound cannot be improved.

3. The following conditions are equivalent:
(@) ¢ isclassification calibrated.
(©) Ry(fi) — R implies R(f;) — R*.
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Excess Risk Bounds. Proof Idea'

Facts:
H(n), H™ (n) are symmetric about n = 1/2.
H(1/2) = H~(1/2), hence¢(0) = 0.

Y (6) 1S convex.

w0 < b0 = (F37) 1 (F57),
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Excess Risk Bounds: Proof Idea'

E (1 [sign(f(X)) # sign(n(X) —1/2)] |2n(X) —1]).

(v convex, (0) = 0)
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Excess Risk Bounds: Proof Idea'

E (1 [sign(f(X)) # sign(n(X) —1/2)] |2n(X) —1]).

(¥ <)
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Excess Risk Bounds: Proof Idea'

E (1 [sign(f(X)) # sign(n(X) —1/2)] |2n(X) —1]).

(definition of )
(1(X) = 1/2)] % (12n(X) = 1)))
(1(X) = 1/2)] § (|20(X) — 1))
)| (H~(n(X)) = H(n(X))))
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Excess Risk Bounds: Proof Idea'
X)—=1/2)]2n(X) — 1]).

— R" (H~ minimizes conditional ¢-risk)

)
<1 sign(f (X)) # sign(n(X) — 1/2)] v (12n(X) - 1)))
1 [sign(f(X)) # sign(n(X) - 1/2)] % (|20(X) - 1]))
sign(f(X)) # sign(n(X) — 1/2)] (H~ (n(X)) — H(n(X))))
(Y (X)) = H(n(X)))
Qb(f)_R(b

IA

I
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Excess Risk Bounds: Proof Idea'

E (1 [sign(f(X)) # sign(n(X) —1/2)] |2n(X) —1]).

(definition of R,)
(1(X) = 1/2)] % (12n(X) = 1)))
(1(X) = 1/2)] § (|20(X) — 1))
)| (H~(n(X)) = H(n(X))))
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Excess Risk Bounds: Proof Idea'

Conver se;

1. If ¢ isconvex, ¢ = 1.
Fix P(x1) =1 andchoosen(xz,) = (1+6)/2.
Each inequality is clearly tight.

. If 4 is not convex:
Choose 6, and 6, so that 1(6;) = ¥(6;) and 8 € co{6:,6}.
Set (1) = (1+61)/2 and n(zz) = (1 + 62) /2.
Again, each inequality is clearly tight.

25



‘ Classification-calibrated gb.

Theorem: If ¢ isconvex,

¢ isdifferentiable at 0
¢'(0) < 0.

¢ I1s classification calibrated < {

Theorem: If ¢ isclassification calibrated,
3y > 0, Va € R,
vP(a) = 1 < 0].
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Overview I

Relating excess risk to excess ¢-risk.

The approximation/estimation decomposition and universal

consistency.
Convergence rates. low noise.
Kernel classifiers. sparseness versus probability estimation.

Structured multiclass classification.
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The Approximation/Estimation Decomposition I

Algorithm chooses

fn = arg miri EnR¢(f) + A\ 2(f).

fer

We can decompose the excess risk estimate as

= Ry(fn) = inf Ry(f)+ fien]{in Ry(f) — Ry -

\ . 7

estimation error approximation error

7
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The Approximation/Estimation Decomposition I

= Ro(fn) = inf Ro(f)+ fienjf_n Ry(f) — Ry

\ - 7

estimation error approximation error

7

o Approximation and estimation errors are in terms of Ry, not .
o Like aregression problem.

e With arich class and appropriate regularization, Ry (fn) — R}.
(e.q., F,, getslarge slowly, or \,, — 0 slowly.)

o Universal consistency (R(f,) — R*) iff ¢ isclassification calibrated.
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\Low Noise'

N f(a)

2n(x) — 1

N

=
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\Low Noise'

Definition: [Tsybakov] Thedistribution P on X’ x {£1} has
noise exponent 0 < a < oo if thereisac > 0 such that

Pr(0 < |2n(X) — 1] <€) < ce”.

Equivalently, thereisac such that for every f : X — {41},

Pr(f(X)(n(X) —1/2) <0) < c(R(f) - R*)”,

8

l+a
a = oo: forsomec > 0,Pr (0 < |2n(X) — 1| < ¢) = 0.

where 5 =

32



\Low Noise'

Tsybakov considered empirical risk minimization.
(But ERM istypically hard)

With:
the noise assumption,

the Bayes classifier in the function class

the empirical risk minimizer has (true) risk converging suprisingly
quickly to the minimum. (Tsybakov, 2001)
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\Risk Boundswith Low Noise'

Theorem: If P hasnoise exponent o,
thenthereisac > 0 suchthat forany f : X — R,

(R(f) — R*)"7
2c

dMﬂRW%(

)éRanRa

where 5 = 1ia € [0, 1].

Notice that we only improve the rate, since the convexity of v implies

_ 16 _
dMﬂRWw(V%” R") )2@%ﬁq>f%)

2c 2c
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\Risk Boundswith Low Noise'

Note: Minimizing 1?4 adapts to noise exponent:
lower noise implies closer relationship between risk and ¢-risk.

Proof idea

Split A

1. Low noiseregion (|n(X) — 1/2| > €): bound risk using noise
assumption.

2. High noise (< ¢): bound risk as before.
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‘ Fast Convergence Ratesfor LargeMargin Classifiersl

U(R(fn) — R") < Rg(fn) — Ry

= Ry(fn) = inf Ry(f)+ fienjﬁn Ry(f) — Ry -

\ - 7 7

estimation error approximation error

R(f,) — R* decreaseswith Ry (f,) — inf; Ry (f).
(Faster decrease with low noise.)

How rapidly does R( f,,) converge?
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‘ Fast Convergence Ratesfor LargeMargin CIassifiersI

Assume that ¢ satisfies

1. A Lipschitz condition:
foral a,b € R, |¢p(a) — ¢(b)| < Lla — b|.

2. A strict convexity condition: the modulus of convexity of ¢ satisfies
dg(€) > €, where

5(€) = inf {

37



M odulus of Convexity I

8
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‘ Fast Convergence Ratesfor Strictly Convex ¢, Convex F I

Theorem: Suppose that:

e ¢ isLipschitz with constant L.

¢ has modulus of convexity d,(e) > €". (Set o« = max(1,2 —2/r).)
o F isaconvex set of uniformly bounded functions.

o Fisfinitedimensiona (supp log N (e, F, Lo(P)) < dlog(1/¢)).
Then with probability at least 1 — §, the minimizer f € F of R, satisfies

A dlogn + log(1/6)\ */°
R¢<f>—;g;R¢<f>gc< 8 *n"g(”) .
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‘ Fast Convergence Ratesfor Strictly Convex ¢, Convex F I

Thekey idea:

Strict convexity ensures that the variance of the excess ¢-loss is controlled.
Define f* = argmin ;. » Ry(f).

For f € F, define the excess ¢-loss as

gr(w,y) = o(yf(x)) — d(yf*(v)).

Theorem: If ¢ isLipschitz with constant L and uniformly convex
with modulus of convexity d4(e) > €”, then for any f in a convex
set F,

ng min(1,2/r)
5 .

Eg? < LK (f — f*) < L (—
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Fast Convergence Ratesfor Strictly Convex ¢ I

8

— Ry(f) — Ro(f7)

41



‘An Aside: Tsybakov’'s Condition Revisited I

Definition: [Tsybakov] Thedistribution P on X’ x {£1} has
noise exponent « if thereisac > 0 suchthat every f : X —
{£1} has

Pr(f(X)(n(X) —1/2) <0) < ¢ (R(f) - k)",

where 3 = lj—éoz e [0, 1].

Thisisthe variance condition:

o Bayesclassifierisin F; set f* = sign(n — 1/2).
o Eg? = Pr(f(X)(n(X)—1/2) <0).
o Egs = R(f) — R".

e — Assumption isequivalent to ]Eg]% < c(Ing)ﬁ. Fast rates follow.
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Risk Boundswith Low Noise: Examples'

Adaboost: ¢(a) = e™“.

SVM with 2-norm soft-margin penaty: ¢(a) = (max(0,1 — «))?.

Quadratic loss: ¢(a) = (1 — a)?.

All of these satisfy:
CONVex.
classification calibrated.
quadratic modulus of convexity, 0.
quadratic .
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\Risk Boundswith Low Noise.

Theorem: If ¢ has
modulus of convexity d,(a) > o2,
noise exponent = oo (thatis, | Pr(Y = 1|X) —1/2| > ¢;), and
F isd-dimensional,

then with probability at least 1—4, the minimizer f of £¢ satisfies

R(f) - R Sc( - +]}ngTR¢(f)—R¢)-

(And there are ssimilar fast rates for larger classes.)




Summary: Large Margin CIassifiersI

Relating excess risk to excess ¢-risk:
1 relates excess risk to excess ¢-risk.
Best possible.

The approximation/estimation decomposition and universal
consistency.

Convergence rates. low noise.
Tighter bound on excess risk.

Fast convergence of ¢-risk for strictly convex ¢.
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Overview I

Relating excess risk to excess ¢-risk.

The approximation/estimation decomposition and universal

consistency.
Convergence rates. low noise.
Kernel classifiers. sparseness versus probability estimation.

Structured multiclass classification.

46



Kernel Methods for Classificationl

fo = avgmin (Eo(Y F(X)) + Aallf]1?)

fer

where H is areproducing kernel Hilbert space (RKHS), with norm || - ||,
and \,, > 0 isaregularization parameter.

Example:

L1-SVM: é(a) = (1 —a),
L2-SVM: () = (1 —a)y)”.
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Kernel Methods for Classification'

support of P in{x : k(x,z) < B}. \

An — 0, suitably slowly. > = Ry(fn) — fig?f{Rgb(f).

¢ locally Lipschitz.

RKHS suitably rich inf Ry(f) = R},
suitably ri = Inf Ry(f) =Ry

¢ classification calibrated = R(fn,) — R".

l.e., auniversal kernel, suitable ¢, appropriate regularization schedule
= universal consistency.

e.g., (Steinwart, 2001)
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Overview I

Relating excess risk to excess ¢-risk.

The approximation/estimation decomposition and universal
consistency.

Convergence rates. low noise.

Kernel classifiers
probability estimation

Sparseness

Structured multiclass classification.
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‘ Estimating Conditional Probabilities.

Can we use alarge margin classifier,

fo = argmin (Eo(Y F(X) + Al FI1).

fer

to estimate the conditional probability n(x) = Pr(Y = 1| X = x)?
Does f,, (x) giveinformation about n(x), say, asymptotically?

o Confidence-rated predictions are of interest for many decision
problems.

o Probabilities are useful for combining decisions.
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‘ Estimating Conditional Probabilities'

If ¢ IS convex, we can write

H(n) = inf (né(a) + (1 —n)d(—a))
=no(a”(n)) + (1 —n)o(—=a™(n)),

where a”(n) = arg min (n¢(a) + (1 —17)¢(—a)) C R U {Fooj.

Recall:

Ry =EH(n(X)) = Eo(Ya™(n(X)))
n(x) =Pr(Y = 1|X = x).
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‘ Estimating Conditional Probabilities'

a’(n) = argmin (np(a) + (1 = n)d(—a)) C RUFoo}.

Examples of o*(n) versusn € [0, 1]:

1

.5
1
.5

0

| — I L2-SVM: ¢(a) = (1 - a)y)’
_Oj m— 1,1-SVM Ll-SVM ¢(Oz) = (1 — Oé)_|_.
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‘ Estimating Conditional Probabilities.

If a*(n) isnot invertible, that is, there are n; # 7, with

a*(m) Na’(n2) # 0,

then there are distributions P and functions f,, with Ry (f,) — R}, but
fn(x) cannot be used to estimate n(x).

eg. fn(x) = a™(m) Na*(n2). Isn(x) = m orn(z) = n?
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Overview I

Relating excess risk to excess ¢-risk.

The approximation/estimation decomposition and universal

consistency.
Convergence rates. low noise.
Kernel classifiers. sparseness versus probability estimation

Structured multiclass classification.
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Sparseness'

Representer theorem: solution of optimization problem can be
represented as:

fn(x) = Zaik(az,xi) .

Inputs x; with «; #~ 0 are called support vectors (SV's).

Sparseness (number of support vectors < n) means faster evaluation of
the classifier.
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Spar seness. Steinwart’sresults'

For L1 and L2-SVM, Steinwart proved that the asymptotic fraction of
SV’'sis EG(U(X)) (under some technical assumptions).

The function G(7) depends on the loss function used:

L2-SVM doesn’'t produce sparse solutions (asymptotically) while
L1-SVM does.

Recall: L2-SVM can estimate n while L1-SVM cannot.
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‘ Spar seness ver sus Estimating Conditional Probabilities'

The ability to estimate conditional probabilities always causes | oss of
Sparseness.

e Lower bound of the asymptotic fraction of data that become SV’s can
bewritten as EG(n(X)).

e ((n)is1 throughout the region where probabilities can be estimated.

e Theregion where G(n) = 1 isaninterval centered at 1/2.
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Example'

Steinwart’s lower bound on the asymptotic fraction of SV's:
Pr[ 0 ¢ 0¢(Ya™(n(X))) ]

Write the lower bound as EG(n( X)) where
G(n) =n1[0 ¢ 9¢p(a”(n))] + (1 —n)1[0 ¢ dp(—a"(n))]

N

L1 -1+ 2(1—t)4
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Spar seness vs. Estimating Probabilities.

In general, G(n) is1onaninterval around 1/2; outside that interval,
G(n) = min{n,1 — n}.
We know this gives aloose lower bound for L1-SVM:

Sharp bound can be derived for loss functions of the form:

o(t) = h((to — 1))

where h is convex, differentiable and 2/ (0) > 0.
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Asymptotically Sharp Result I

Recall that our classifier can beexpressed as ) . a;k(-, ;) and let

If the kerndl k IS analytic and universal (and the underlying Px is continuous and
non-trivial), then for a regularization sequence \,, — 0 sufficiently slowly:

#SV p

n

n/vy 0<n<ny

1 y<n<l-—»n
(I-n)/y 1-9<n<1

EG(n(X))

2
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‘ Example again I

. ; _¢’(t0) " .. . . .
<ws,glven> by — 57 0) o' (1) and o*(n) isinvertible in the interval
Y I — )

Below h(t) = 3t% + ¢, —¢'(1) = 2, —¢/(—1) = 2 and hence y = 1.

4

s((1=1)4)* + 30 —t)+
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Overview I

Relating excess risk to excess ¢-risk.

The approximation/estimation decomposition and universal
consistency.

Convergence rates. low noise.

Kerndl classifiers

— No sparseness where o* () isinvertible.

— Can design ¢ to trade off sparseness and probability estimation.

Structured multiclass classification.

dides at http://www.stat.berkel ey.edu/~bartlett/talks
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Structured Classification: Optical Character Recognition'

X = grey-scale image of a sequence of characters
Y = seguence of characters
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‘Structured Classification: Parsing'

X = sentence
Y = parsetree

The pedestrian crossed the road.

S

NP VP
| N V /Ni

The pedestrian crossed DT N

the road
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\Structured Classification'

Data: i.i.d. (X,Y), (X1,Y7),...,(X,,Y,) fromAX x ).

Lossfunction: ¢ : ? — R, /(¢,y) = cost of mistake.

Usedata (X1,Y7),...,(X,,Y,) tochoose f : X — ) with small risk,

R(f) = E{(f(X),Y).

Often choose f from afixed class F.
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Structured Classification Problems'

Key issue: | )| isvery large.
e OCR: exponential in number of characters
e parsing: exponential in sentence length
Generative Modélling:

o Split Y into parts/assume sparse dependencies.
(e.g., graphical model; probabilistic context-free grammar.)
o Plug-in estimate:
1. Simple model p(x,y; 0) of Pr(Y = y| X = x).
2. Use datato estimate parameters 6. (e.g., ML)

3. Compute arg max,cy p(z,y; 0). (e.g., dynamic programming)
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Generative M odd '

If each factor isalog-linear model, we compute alinear discriminant:

= arg max log(ﬁ(w, Y, ‘9))
yey

— arg max (x,y)0;.
gyeyzz:g( y)
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Structured Classification Problems. Spar se Representations

Suppose y naturally decomposes into parts:
R(x,y) denotes the set of “parts’ belongingto (x,y) € X x Y
G(z,y)= > glz,r)

rcR(x,y)

) = arg max G(x,y)'0 = arg max xz,7)'0,
§ = arg max G(x, y) gyGyTERZ(M)g( )

e e.g. Markov random fields. Parts are configurations for cliques.

e e.g. PCFGs. Parts are rule-location pairs (rules of grammar applied at
specific locations in the sentence).
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‘ Large Margin Methods for Structured Classificationl

Choose f as maximum of linear functions,

= G "0
f(z) = arg max G(z.y)'0,

to minimize empirical ¢-risk.

e.g., Support Vector Machines:

Y ={%£1},49,y) = 1[g # y], G(x,y) = y:
Choose 6 to minimize

n

1
MO+~ 37 (1= YiX0),

1=1

where (z); = max{z,0}.)
Thisisaquadratic program (QP).

69



Large Margin Classifiersl

For Y = {£1}, {(9,y) = 1[g # y], and G(z, y) = yx,

(1 - 2Y,X16); = max (0(4,Y;) — (Vi — §)X16).,

Y

=max (((9,Y:) — (G(X;,Y:)'0 — G(X;,9)'0))

g +

Think of G(x,y)'0 — G(z,y)’6 as an upper bound on the loss (7, y)
that we'll incur when we choose the g that maximizes G(x, y)'6.

70



‘ Large Margin Multiclass Classification I

Choose 6 to minimize

(5, Y5) — G ,0)

_|_ Y

where (z)+ = max{z,0} and G, ; = G(X;,Y;) — G(X;, 7).
Suggested by Taskar et al, 2004.

Quadratic program.
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‘ Large Margin Multiclass Classification I

Primal problem: Dual problem:

ming . (%)\H@HQ + % > ei)

Subject to the constraints: Subject to the constraints:

Vi,yEy(Xi), Vi, Zaiyzl
H/Gi,y Z g(ya Yv@) — & Y
Vi, € Z 0

Vi7y7 a’iay Z O
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‘ Large Margin Multiclass Classification I

Some observations:

Quadratic program over a = (o ), restricted to (n copies of) the
probability ssmplex:

Q(a)

a; € A.

Number of variablesis sum over data of number of possible |abels.
Very large: n|)|.
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‘ Exponentiated Gradient Algorithm I

Exponentiated gradients:

ot = arg min (D (a, oz(t>) +na’'VQ (oz(t>>) .

D isKullback-Liebler divergence.
V(@ term moves « in direction of decreasing ().
KL term constrainsit to be close to a(*).

Solutionis

o exp(6)

Y ep(6)))]
with 9¢+D = 9 — v Q(a).
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‘ Exponentiated Gradient Algorithm: Convergence'

Theorem: Foradl v e A,

w,al) Qo)
0T e

230" < Q) + 2
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Exponentiated Gradient Algorithm with Parts'

Suppose y naturally decomposes into parts:

R(x,y) denotes the set of “parts’ belongingto (z,y) € X x Y

G(z,y)= > glz,r)

e e.g. Markov random fields. Parts are configurations for cliques.

e e.g. PCFGs. Parts are rule-location pairs (rules of grammar applied at
specific locations in the sentence).
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Exponentiated Gradient Algorithm with Parts'

Glz,y)= ) glz,r)

reR(x,y)

(Ggy)= > L(ry).

reR(x,y)

Like afactorization of Pr(Y|.X'), where log probabilities decompose as
sums over parts.

We require that loss decomposes in the same way.
e.g., Markov random field: /(9,y) = > . L(Yc, Yc)-
eg., PCFG: {(y,y) = >, 1[ring, notiny].
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Exponentiated Gradient Algorithm with Parts'

In this case, () can be expressed as a function of the “marginal” variables,

Q(ar) = Q(p), with

=Y aiyllr € R(z;,y))-

Exponentiated gradient algorithm:

Za” 1lr € R(x;,y)]

t
0 _ P Rrer@iy )
o v Zy eXp(ZfrER(x Y) 9(t>)
pt+1) — gt) _ UVMQ(M“))-
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Exponentiated Gradient Algorithm: Sparse Representations

Efficiently computing x from 6:

Markov random field: Computing clique marginals from exponential
family parameters.

PCFG: Computing rule probabilities from exponential family
parameters.
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‘ Exponentiated Gradient Algorithm: Convergence'

Theorem: Fordl v & A,

1 ¢ D(u, o) Qo)
T;Q(a“))SQ(UH T e

Step 1.
Forany u € A,

nQ(a') —nQ(u) < D(u,a) = D(u,a™V) + D(a®, al"D).

Follows from convexity of (), definition of updates.
(Standard in analysis of online prediction algorithms.)

80



‘ Exponentiated Gradient Algorithm: Convergence'

Step 2

D(a(”,a(t“)) _ ZlogE len(Xi(t)—EXft))]
i=1

where Pr (XZ@ = — (VQ(a")) ) =

1,y

Follows from definition of updates, Bernstein's inequality.
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‘ Exponentiated Gradient Algorithm: Convergence'

Step 3a: For somed < [, 9(t+1)],

n Zvar(XZ.(t)) —n*(B+\) Zvar(ijte)) < Q(aW) — Q(altt),
i=1

1=1

where Pr (ngg S (VQ(oz(”))i,y) = a(6),,.

e Variance of Xft) Isfirst order term in Taylor series expansion (in #) for

Q.
» Variance of X 7,(t9) Is second order term.
e B isinfinity norm of centered version of V()

o )\islargest eigenvalue of V2Q).
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‘ Exponentiated Gradient Algorithm: Convergence'

Step 3b: For al 6 e [, gt+1)],

Var(X,L.(:g) < e Var(Xz-(t)).

n

;Var(XZ(t)) < T n(B1+ N (Q(Oé(t>> _ Q(a(t+1)>) .
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‘ Exponentiated Gradient Algorithm: Convergence'

Q) = nQ(u)
< D(u, ') — D(u, o) + D(a, ot+1)

"B _1—-nB\ <«
< D(u,a") = D(u,a*V) + ( e )Zvar(XP)
=1

< D(,a") = D, ") + ¢, o (Q(a) ~ Qo))

Theorem: Fordl v e A,

=3°0(") < Q) +
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‘ Large Margin Methods for Structured Classificationl

Generative models
Markov random fields

Probabilistic context-free grammars

Quadratic program for large margin classifiers

Exponentiated gradient algorithm

Convergence analysis
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Overview I

Relating excess risk to excess ¢-risk.

The approximation/estimation decomposition and universal
consistency.

Convergence rates. low noise.

Kernel classifiers: sparseness versus probability estimation.

Structured multiclass classification.

dides at http://www.stat.berkel ey.edu/~bartlett/talks
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