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The Pattern Classification Problem

• i.i.d. (X,Y ), (X1, Y1), . . . , (Xn, Yn) from X × {±1}.

• Use data(X1, Y1), . . . , (Xn, Yn) to choosefn : X → R with small

risk,

R(f) = Pr (sign(f(X)) 6= Y ) = Eℓf (X,Y ),

whereℓf is the 0-1 loss:

ℓf (x, y) =







1 if y 6= sign(f(x)),

0 otherwise.
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The Pattern Classification Problem

• Natural approach: minimizeempirical risk,

R̂(f) = Êℓf =
1

n

n∑

i=1

ℓf (Xi, Yi).

• Often computationally intractable...

• An alternative approach:

Replace 0-1 loss,ℓ, with a convex surrogate,φ.

3



Large Margin Algorithms

• Consider themargins,Y f(X).

• Define amargin cost functionφ : R → R
+.

• Define theφ-risk of f : X → R asRφ(f) = Eφ(Y f(X)).

• Choosef ∈ F to minimizeφ-risk.

(e.g., use data,(X1, Y1), . . . , (Xn, Yn), to minimizeempirical φ-risk ,

R̂φ(f) = Êφ(Y f(X)) =
1

n

n∑

i=1

φ(Yif(Xi)),

or a regularized version.)
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Large Margin Algorithms

• Adaboost:

− F = span(G) for a VC-classG,

− φ(α) = exp(−α),

− MinimizesR̂φ(f) using greedy basis selection, line search:

ft+1 = ft + αt+1gt+1,

R̂φ(ft + αt+1gt+1) = min
α∈R,g∈G

R̂φ(ft + αg).
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Large Margin Algorithms

• Support vector machines:

− F = ball in reproducing kernel Hilbert space,H.

− φ(α) = max (0, 1 − α).

− Algorithm minimizesR̂φ(f) + λ‖f‖2
H.

This is equivalent to a quadratic program:

min ξ
′1 + λα

′
Kα

s.t. 1 − ξ ≤ diag(y)Kα,

ξ ≥ 0,

wherey = (Y1, . . . , Yn),

Ki,j = k(Xi, Xj),

f̂(x) =
Pn

i=1 αik(Xi, x),

andk is the reproducing kernel ofH.
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Large Margin Algorithms

• Many other variants

− Neural net classifiers

− L2Boost, LS-SVMs

− Logistic regression
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Large Margin Algorithms
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Overview

1. Classification with convex loss.

2. Universal consistency of large margin algorithms.

3. Classification problems with low noise.
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Overview

1. Classification with convex loss.

• Impact of replacing 0-1 loss with convex loss?

• Whatφ are suitable for classification?

• Relationship between risk andφ-risk?

2. Universal consistency of large margin algorithms.

3. Classification problems with low noise.
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Definitions and Facts

R(f) = Pr (sign(f(X)) 6= Y ) R∗ = inf
f
R(f) risk

Rφ(f) = Eφ(Y f(X)) R∗
φ = inf

f
Rφ(f) φ-risk

η(x) = Pr(Y = 1|X = x) conditional probability

f∗(x) = sign(2η(x) − 1) Bayes decision rule.

Notice:Rφ(f) = E (E [φ(Y f(X))|X ]), andconditionalφ-risk is:

E [φ(Y f(X))|X = x] = η(x)φ(f(x)) + (1 − η(x))φ(−f(x)).
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Definitions

H(η) = inf
α∈R

(ηφ(α) + (1 − η)φ(−α))

H−(η) = inf
α:α(2η−1)≤0

(ηφ(α) + (1 − η)φ(−α)) .

Definition: We say thatφ is classification-calibratedif, for η 6= 1/2,

H−(η) > H(η).

i.e., pointwise optimization of conditionalφ-risk leads to the correct sign.
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The ψ transform

Definition: Given convexφ, defineψ : [0, 1] → [0,∞) by

ψ(θ) = H−

(
1 + θ

2

)

−H

(
1 + θ

2

)

.

(The definition is a little more involved for non-convexφ.)
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The Relationship between Excess Risk and Excessφ-risk

Theorem: [with Mike Jordan and Jon McAuliffe]

1. For anyP andf , ψ(R(f) −R∗) ≤ Rφ(f) −R∗
φ.

2. For|X | ≥ 2, ǫ > 0 andθ ∈ [0, 1], there is aP and anf with

R(f) −R∗ = θ

ψ(θ) ≤ Rφ(f) −R∗
φ ≤ ψ(θ) + ǫ.

3. The following conditions are equivalent:

(a) φ is classification calibrated.

(b) ψ(θi) → 0 iff θi → 0.

(c) Rφ(fi) → R∗
φ impliesR(fi) → R∗.
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Classification-calibratedφ

Theorem: If φ is convex,

φ is classification calibrated⇔







φ is differentiable at0

φ′(0) < 0.
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Classification-calibratedφ

Theorem: If φ is convex,

φ is classification calibrated⇔







φ is differentiable at0

φ′(0) < 0.

φ (α)
η φ (α) + (1−η) φ (α)

(η < 1/2)
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Classification with convex loss

Bartlett, Jordan and McAuliffe,Convexity, classification, and risk bounds.

See also:

Zhang, Statistical behavior and consistency of classification methods based

on convex risk minimization.

Steinwart, How to compare different loss functions and their risks.
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Overview

1. Classification with convex loss.

2. Universal consistency of large margin algorithms.

• AdaBoost.

3. Classification problems with low noise.
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Universal Consistency

• Assume:i.i.d. data, (X,Y ), (X1, Y1), . . . , (Xn, Yn) from

from X × Y (with Y = {±1}).

• Consider a methodfn = A((X1, Y1), . . . , (Xn, Yn)),

e.g.,fn = AdaBoost((X1, Y1), . . . , (Xn, Yn), tn).

Definition: We say that the method isuniversally consistentif, for all

distributionsP ,

R(fn)
a.s→ R∗,

whereR is the risk andR∗ is the Bayes risk:

R(f) = Pr(Y 6= sign(f(X)), R∗ = inf
f
R(f).

19



The Approximation/Estimation Decomposition

Consider an algorithm that chooses

fn = arg min
f∈Fn

R̂φ(f) or fn = arg min
f∈F

(

R̂φ(f) + λnΩ(f)
)

.

(R̂φ(f) is empiricalφ-risk,F1 ⊆ F2 ⊆ · · · ⊆ F , andΩ is regularization.)

We can decompose the excess risk estimate as

ψ (R(fn) −R∗) ≤ Rφ(fn) −R∗
φ

= Rφ(fn) − inf
f∈Fn

Rφ(f)

︸ ︷︷ ︸

estimation error

+ inf
f∈Fn

Rφ(f) −R∗
φ

︸ ︷︷ ︸

approximation error

.
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The Approximation/Estimation Decomposition

ψ (R(fn) −R∗) ≤ Rφ(fn) −R∗
φ

= Rφ(fn) − inf
f∈Fn

Rφ(f)

︸ ︷︷ ︸

estimation error

+ inf
f∈Fn

Rφ(f) −R∗
φ

︸ ︷︷ ︸

approximation error

.

• Approximation and estimation errors are in terms ofRφ, notR.

• Like a regression problem.

• With a rich class and appropriate regularization,Rφ(fn) → R∗
φ.

(e.g.,Fn gets large slowly, orλn → 0 slowly.)

• Universal consistency (R(fn) → R∗) iff φ is classification calibrated.
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Example: Universal Consistency of SVMs

For a Reproducing Kernel Hilbert SpaceH, choose

fn = arg min
f∈H

(

R̂φ(f) + λn‖f‖2
H

)

,

or fn = arg min
f∈Hn

R̂φ(f) with Hn = {f ∈ H : λn‖f‖2
H ≤ 1}.

Thenψ (R(fn) −R∗) ≤ Rφ(fn) − inf
f∈Hn

Rφ(f)

︸ ︷︷ ︸

estimation error

+ inf
f∈Hn

Rφ(f) −R∗
φ

︸ ︷︷ ︸

approximation error

.

If H is large (e.g., a Gaussian kernel onR
d), inff∈Hn

Rφ(f) → R∗
φ.

Forλn → 0 (suitably slowly),|R̂φ(fn) −Rφ(fn)| a.s→ 0.

In that case,Rφ(fn)
a.s→ R∗

φ, and universal consistency follows.

(Steinwart, 2005)
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Universal Consistency: AdaBoost?

• For SVMs, the regularization term keepsfn small, which is essential

for the uniform convergence result:|R̂φ(fn) −Rφ(fn)| a.s→ 0.

• AdaBoost?
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AdaBoost

Sample, Sn = ((x1, y1), . . . , (xn, yn)) ∈ (X×{±1})n

Number of iterations, T

Class of basis functions, G

function AdaBoost(Sn, T):

f0 := 0

for t from 1, . . . , T

(αt, gt) := arg min
α∈R,g∈G

1

n

n
X

i=1

exp (−yi (ft−1(xi) + αg(xi)))

ft := ft−1 + αtgt

return fT
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Previous results: Regularized versions

Instead, we could consider aregularized version of AdaBoost:

1. MinimizeR̂φ(f) overFn = γnco(G), the scaled convex hull ofG.

2. Minimize

R̂φ(f) + λn‖f‖∗,
over span(G), where‖f‖∗ = inf{γ : f ∈ γco(G)}.

For suitable choices of the parameters (γn andλn), these algorithms are

universally consistent. (Lugosi and Vayatis, 2004), (Zhang, 2004)

Also bounded step size. (Zhang and Yu, 2005), (Bickel, Ritov, Zakai, 2006)
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Previous results: ‘Process consistency’

Theorem: [Jiang, 2004]

For a (suitable) basis class defined onR
d, and for all probability

distributionsP satisfying certain smoothness assumptions, there is

a sequencetn such thatfn =AdaBoost(Sn, tn) satisfies

R(fn)
a.s.→ R∗.
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Universal consistency of AdaBoost

Theorem: [with Mikhail Traskin]

If dV C(G) <∞,

R∗
φ = lim

λ→∞
inf {Rφ(f) : f ∈ λco(G)} ,

tn → ∞
tn = O(n1−α) for someα > 0,

thenAdaBoost is universally consistent.
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Universal consistency of AdaBoost

Theorem:
If dV C(G) <∞,

R∗
φ = lim

λ→∞
inf {Rφ(f) : f ∈ λco(G)} ,

tn → ∞
tn = O(n1−α) for someα > 0,

then AdaBoost is universally consistent.

Idea of proof:

Uniform convergence of clippedtn-combinations. Clipping does not greatly

increaseR̂φ. ThenR̂φ(ftn) approaches best in anℓ∗-ball. Then uniform

convergence overℓ∗-balls.
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Overview

1. Classification with convex loss.

2. Universal consistency of large margin algorithms.

3. Classification problems with low noise.
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Low Noise

The difficulty of a binary classification problem is determined by

the probability thatη(X) = Pr(Y = 1|X) is near1/2.

Most favorable case:

for somec > 0, Pr (0 < |2η(X) − 1| < c) = 0.
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Low Noise

Definition: [Tsybakov] The distributionP onX ×{±1} has

noise exponent0 ≤ α <∞ if there is ac > 0 such that

Pr (0 < |2η(X) − 1| < ǫ) ≤ cǫα.

• Tsybakov considered empirical risk minimization in binary

classification.

• Under the noise assumption, if the Bayes classifier is in the function

class, the risk of the empirical risk minimizer converges suprisingly

quickly to the minimum.
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Overview

1. Classification with convex loss.

2. Universal consistency of large margin algorithms.

3. Classification problems with low noise.

• Large margin classifiers exploit low noise.

• Adaptivity to low noise.
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Risk Bounds with Low Noise: Convex Losses

Low noise improves the comparison inequality: (Bartlett, Jordan, McAuliffe)

c (R(f) −R∗)β ψ

(

(R(f) −R∗)
1−β

2c

)

≤ Rφ(f) −R∗
φ,

whereβ =
α

1 + α
∈ [0, 1]. (Consider, for example,α = ∞.)

• Strictly convex lossφ (e.g., AdaBoost’s exponential loss)

⇒ ψ strictly convex⇒ strict improvement.
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Risk Bounds with Low Noise: Convex Losses

Example: Suppose thatφ has quadratic modulus of convexity,

Pr (0 < |2η(X) − 1| < c) = 0, and

f̂ minimizesR̂φ over a finite-dimensional function classF . Then

ER(f̂) −R∗ ≤ C

(

inf
f∈F

Rφ(f) −R∗
φ +

logn

n

)

.

• Striking: the fluctuations in̂R(f̂) are of the order of1/
√
n in this case.

• Note that the algorithm minimizes the empiricalφ-risk as before, but now

an improvement in the noise exponent gives an improvement inthe rate.
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Low Noise: Small Variance

Definition: The distributionP onX ×{±1} has

noise exponent0 ≤ α < ∞ if there is ac > 0

such that

Pr (0 < |2η(X) − 1| < ǫ) ≤ cǫα.

• Equivalently, there is ac such that for everyf : X → {±1},

Pr (f(X) 6= f∗(X)) ≤ c (R(f) −R∗)
β

⇔ E (ℓf − ℓf∗)
2≤ c (E (ℓf − ℓf∗))

β
,

wheref∗ is the Bayes decision rule andβ =
α

1 + α
.
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Low Noise: Small Variance

Suppose that, for someg∗ (think ℓf∗) and for allg (think ℓf ),

b
(√

Var(g − g∗)
)

≤ E (g − g∗) ,

whereb is a convex, increasing function.

• Thevariance of the excess lossis bounded in terms of its expectation.

• As the risk,Eg, approaches the optimal risk,Eg∗, the lossg becomes

more correlated withg∗.

• This ensures that the excess riskE (ĝ − g∗) for the empirical

minimizer ĝ, converges quickly.
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Local Low Noise and Model Selection

Suppose that we wish to do model selection over a nested hierarchy,

F1 ⊆ F2 ⊆ · · · ⊆ Fm ⊆ · · ·

Tsybakov’s low noise assumption bounds the variance of the excess loss of

all functions. Instead, suppose we have convex increasingbm for which

for all m and allf ∈ Fm, bm

(√

Var(ℓf − ℓf∗)

)

≤ E (ℓf − ℓf∗) .

This allows for thelocal conditionto be favorable,

even when the bestglobal conditionis weak.

For instance, for some small modelFm, we might have small variance of

excess loss, that is, the best functions tend to agree with the Bayes rule.
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Local Low Noise and Model Selection

Considerpenalization-based model selectionschemes:

empirical minimizer inFm: f̂m = arg min
f∈Fm

Êℓf ,

selected model: m̂ = arg min
m

(

Êℓ
f̂m

+ pen(m)
)

,

estimator: f̂ = f̂m̂.

Ideally, the penalty pen(m) would approximate the difference between the

risk and the empirical risk of̂fm.
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Local Low Noise and Model Selection

Theorem: [with Sylvain Arlot] There is a penalty pen(m) such that for

all bm, with probability at least1 − e−t,R(f̂) −R∗ is no more than

C inf
m

(

inf
f∈Fm

(R(f) −R∗) + pen(m) + b∗m

(√

ct

n

)

+
t

n

)

,

whereb∗m is the convex conjugate ofbm:

b∗m(x) = sup{xy − bm(y) : y ≥ 0}.

• The penalties arelocal Rademacher averages.

See (Massart, 2000), (Lugosi and Wegkamp, 2004), (Bartlett, Bousquet and Mendelson, 2005),(Koltchinskii, 2006)

• This model selection schemeadaptsto thebm.

39



Local Low Noise and Model Selection

For example, suppose that

• VCdim(Fm) = Vm,

• everyf ∈ Fm satisfies thelocal low noise condition

Pr(f 6= f∗) ≤ 1

hm

(R(f) −R∗) .

Then this model selection scheme satisfies theoracle inequality

ER(f̂) −R∗ ≤ c inf
m

(

inf
f∈Fm

(R(f) −R∗) +
Vm log n

hmn

)

.

This is optimal up to a factor oflogn.
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Convex methods for classification

1. Classification with convex loss.

• Large margin methods.

• Classification-calibratedφ: minimization ofRφ minimizesR.

2. Universal consistency of large margin algorithms.

• AdaBoost, stopped aftertn = O(n1−α), is universally consistent.

3. Classification problems with low noise.

• Large margin methods exploit low noise.

• Penalization-based model selection methods that are adaptive to

local low noise conditions.

slides at http://www.stat.berkeley.edu/∼bartlett
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