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\The Pattern Classification Problem.

Lid. (X, Y), (X1, Y7),...,(X,,Y,) from X x {£1}.

Use datg X1,Y7),...,(X,,Y,) to choosef,, : X — R with small
risk,

R(fn) = Pr(sign(fn(X)) #Y) = ELY, f(X)).

Natural approach: minimizempirical risk

A A

R(P) = BUY, £(X)) = 3" Y, F(X0).

Often intractable...

Replace 0-1 losg, with a convex surrogate,




Large Margin Algorithms I

Consider thanargins,Y f(X).
Define amargin cost function) : R — R,
Define thep-risk of f : X — RasR,(f) = E¢(Y f(X)).

Choosef € F to minimize¢-risk.
(e.g., use datd, X1, Y1), ..., (X,,Y,), to minimizeempirical ¢-risk,

Ry(f) = Eo(Y f(X Z¢ Y f(X

or a regularized version.)




Large Margin Algorithms I
Adaboost

F = span(@G) for a VC-clasg,
¢(a) = exp(—a),

Minimizes}?¢(f) using greedy basis selection, line search:

ft41 = [t + 4419141,

Ry(fi + ars1gii1) = &EfIlé}i;leg Ry(f: + ag).

Effective in applications: real-time face detection, spokiialogue
systems, ...




Large Margin Algorithms I

Many other variants

Support vector machinesgith 1-norm soft margin.
F = ball in reproducing kernel Hilbert spack.
¢(a) = max (0,1 — «).

Algorithm minimizesR, (f) + A| f13,.

Neural net classifiers

() = max(0, (0.8 — a)?).
L2Boost, LS-SVMs

d(a) = (1 —a)*.

Logistic regression

b(a) = log(1 + exp(—2a)).




Large Margin Algorithms I




‘ Statistical Consequences of Using a Convex CTt

|Is AdaBoost universally consistent? Otlygt
(Lugosi and Vayatis, 2004), (Mannor, Meir and Zhang, 2002):

regularized boosting.

(Jiang, 2004): process consistency of AdaBoost, for aertal
probability distributions.

(Zhang, 2004), (Steinwart, 2003): SVM.




‘ Statistical Consequences of Using a Convex Cjt

How is risk related tap-risk?
(Lugosi and Vayatis, 2004), (Steinwart, 2003): asymptotic

(Zhang, 2004): comparison theorem.




\ Overview I

Relating excess risk to excessisk. (with Mike Jordan and Jon McAulife)
y-transform: best possible bound.

conditions ony.

Universal consistency of AdaBoost.




Definitions and FactE.

R(f) = Pr(sign(f(X)) #Y)  R* =inf R(f)
Ro(f) = Eo(Y (X)) R, = inf Ry(f)
Pr(Y =1|X =x) conditional probability

n defines aroptimal classifier R* = R(sign(n(x) — 1/2)).
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Definitions and FactEI

R(f) = Pr(sign(f(X)) #Y)  R' =inf R(f)
Ro(f) = Eo(Y f(X) R} = inf Ry(/)
n(x) =Pr(Y =1|X =x) conditional probability
n defines aroptimal classifier R* = R(sign(n(x) — 1/2)).
Notice: Ry(f) = E(E [¢(Y f(X))|X]), andconditionalg-risk is:

E[p(Y f(X)|X = z] = n(x)e(f(x)) + (1 —n(z))o(—f(z)).
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\Deﬁnmons'

Conditionalg-risk:

E[op(Y f(X))|X = z] = n(x)e(f(x)) + (1 —n(x))o(—f(z)).

Optimal conditionalp-risk for n € [0, 1]:

fﬂm=;g%M¢wo+cr—m¢«ﬂm.

RS =EH(n(X)).
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‘Optimal Conditional ¢-risk: Example'
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\Deﬁnmonsl

Optimal conditionaky-risk forn € [0, 1]:

H(n) = inf (ng(a) + (1 =n)p(-a)).

aceR

Optimal conditionalp-risk with incorrect sign

inf _(ng(a) + (1 —n)o(—a)).

a:a(2n—1)<0

H™(n) > H(n)
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\Deﬁnmonsl

inf (ng(a) + (1 —n)o(—a))

aceR

inf _ (no(a) + (1 —n)p(-a)).

a:a(2n—1)<0

Definition: ¢ is classification-calibratedif,
forn #1/2,

H™(n) > H(n).

l.e., pointwise optimization of conditionatrisk leads to the correct sign.
(c.f. Lin (2001))
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‘The 1y transform I

Definition: Given convexp, define
i [0,1] = [0, 00) by

140
— )

(The definition is a little more involved
for non-convexy.)
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The Relationship between Excess Risk and Excesgsrisk I

Theorem:
1. ForanyP andf, ¢(R(f)— R") < Ry(f) — R}.
2. For|X| > 2,e> 0andf € [0, 1], there is aP and anf with

R(f)—R" =90
W(0) < Rg(f) — Ry <9(0) +e.

3. The following conditions are equivalent:
(a) ¢ Is classification calibrated.
(b) ¥(6;) — 0iff 6, — 0.
(©) Ry(fi) — R impliesR(f;) — R*.
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Classification-calibrated ¢ I

If ¢ Is classification-calibrated, then

Since the function) is always convex, in that case it is strictly increasing
and so has an inverse.

Thus, we can write

R(f)— B* <o~ (Ry(f) — RY) .
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\ Excess Risk Bounds: Proof Idea

Facts:
H(n), H™ (n) are symmetric about = 1/2.
H(1/2) = H—(1/2), hencey(0) = 0.

Y (6) is convex.

N CORICO)
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Excess Risk Bounds: Proof Idea

Excessrislof f : X — RIS

R(f) — R" = E (1 [sign(f(X)) # sign(n(X) — 1/2)] [2n(X) —1]).

(v convex,(0) = 0)
( (X) = 1/2)]4 (12n(X) — 1))
(n(X) —1/2)] (H~ (n(X)) — H(n(X))))
X)))
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Excess Risk Bounds: Proof Idea

Excessrislof f : X — RIS

R(f) — R" = E (1 [sign(f(X)) # sign(n(X) — 1/2)] [2n(X) —1]).

(definition of R,)
—1/2)]¢ ([2n(X) —1]))
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Classification-calibrated ¢ I

Theorem: If ¢ Is convex,

¢ Is differentiable ab
¢'(0) < 0.

¢ Is classification calibrated> {

Theorem: If ¢ is classification calibrated,
3y > 0, Va € R,
vP(a) = 1 < 0].
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\ Overview I

Relating excess risk to excesgisk.

Universal consistency of AdaBoost.

The approximation/estimation decomposition.

AdaBoost: Previous results.

Universal consistency.
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‘ Universal Consistencz'

Assumei.id. data (X,Y), (X1,Y1),..., (X,,Y,) from
from X x Y (with Y = {£1}).

Consider a method,, = A((X1,Y1),..., (X, Yy)),
e.g.,fn = AdaBoost((X1,Y1),...,(Xn, Yn), tn).

Definition: We say that the method imiversally consistent, for all
distributionsP,

R(fn) = R”,

whereR is therisk and R* is theBayes risk

R(f) = Pr(Y #sign(f(X)),  R' =i R().
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‘ The Approximation/Estimation Decomposition'

Consider an algorithm that chooses

fo = arg min Ry(f) + M)

We can decompose the excess risk estimate as

= Ry(fn) = inf Ro(f)+ fieﬂjﬁn Ry(f) — Ry -

A\ . 7 7

Ve

estimation error approximation error
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‘ The Approximation/Estimation Decomposition'

Consider an algorithm that chooses

= in R,(f).
f arg min s(f)

We can decompose the excess risk estimate as

= Ry(fn) = inf Ro(f)+ fieﬂjﬁn Ry(f) — Ry -

A\ . 7 7

Ve

estimation error approximation error
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‘ The Approximation/Estimation Decomposition.

= Ro(fn) = inf Ro(f)+ Iieﬂjf_n Ry(f) — Ry .

- 7 7

~~

estimation error approximation error

o Approximation and estimation errors are in termsg®yf, not 2.
e Like aregression problem.

 With arich class and appropriate regularizatiéy,( f.,) — I}
(e.g.,F, gets large slowly, oiA,, — 0 slowly.)

e Universal consistencyH( f,,) — R*) iff ¢ is classification calibrated.
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\ Overview I

Relating excess risk to excesgisk.

Universal consistency of AdaBoost.

The approximation/estimation decomposition.
AdaBoost: Previous results.

Universal consistency.
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\ AdaBoost'

Sample, S, = (z1,y1),.--,(Tn,yn)) € (X x{£E1}H)"
Nunmber of iterations, T
function AdaBoost ( S,,T)

f() =0

for t from1,...,T

n

(at, ht) := arg min 1 Zexp (—yi (fi—1(zs) + ah(x:)))

a€ER,hEF N,

=1

ft == fi—1 + aih
return fr
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‘ Previous results: Regularized versioni

AdaBoost greedily minimizes

over f € spanF).

(Notice that, for many interesting basis classgghe infimum is zero.)

Instead of AdaBoost, consider@gularized version of its criterion
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‘ Previous results: Regularized versioni

1. Minimize}?¢(f) over f € ~,Co(F), the scaled convex hull df.

2. Minimize

Ry (f) + Ml fl1,
over f € spantF'), where||f||1 = inf{~v : f € yco(F)}.

For suitable choices of the parameteys &nd),,), these algorithms are
universally consistent.
(Lugosi and Vayatis, 2004), (Zhang, 2004

29



‘ Previous results: Bounded step siz'

function AdaBoost w t hBoundedSt epSi ze( S, T)
f() =0
for t from1,...,T

n

(at, ht) := arg min 1 Zexp (—yi (fi—1(zs) + ah(x:)))

a€ER,hEF N,

=1

ft := fi—1 + min{ay, e} hy
return fr

For suitable choices of the parametéfrs=f T, ande = ¢,,), this algorithm
IS universally consistent.
(Zhang and Yu, 2005), (Bickel, Ritov, Zakai, 2006
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\ Previous results about AdaBoosI

AdaBoost greedily minimizes

Rolf) = — D exp(=Yif (X)

over f € spanF).

Consider AdaBoost with early stopping:
fn Is the function returned by AdaBoost aftgrsteps.

How should we choosg,?
Note: The infimum is often zero. Don’t waty too large.
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Previous result about AdaBoost: ‘Process consistenc.’

Theorem: [Jiang, 2004] For a (suitable) basis class defined
on R¢, and for all probability distributionsP satisfying cer-
tain smoothness assumptions, there is a sequencaich that
fn =AdaBoost ( S,,,t,) satisfies

R(f.) =5 R

Conditions on the distributio®? are unnatural and cannot be checked

How should the stopping timgg, grow with sample size?
Does it need to depend on the distributiBA

Rates?
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\ Overview I

Relating excess risk to excesgisk.

Universal consistency of AdaBoost.

The approximation/estimation decomposition.
AdaBoost: Previous results.

Universal consistency.
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The key theorem'

o Assumedy o (F) < oo
Otherwise AdaBoost must stop and fail after one step.

e Assume
lim inf {Rg(f): f € Aco(F)} = R},

A— 00

where

Ro(f) = Bexp(-Y f(X)), R} =inf Ry()).

That is, the approximation error is zero.
For exampleF' is linear threshold functions, or binary trees with axis
orthogonal decisions iR and at least + 1 leaves.
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The key theorem'

Theorem: |If
dVC(F) < 00,
R} = li_>n(;101nf {Rys(f) : f € Aco(F)},
t, — 00O

t, =O0(n'~*)  for somea > 0,

then AdaBoost is universally consistent.
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The key theorem: Idea of proof.

We showR( fi,) — R, which impliesR(f:,) — R*, since the loss
functiona — exp(—«) is classification calibrated.

Step 1.Notice that we can clig;, :
If we definer, (f) asx — max{—\, min{\, f(x)}}, then

Ry(mx(ft,)) = Ry = R(ma(fi,)) = B© = R(fy,) = R".

°
T

We will need to relax the clipping\(, — 00).
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The key theorem: Idea of proof.

Step 2.Use VC-theory (for clipped combinations bfunctions fromF’) to
show that, with high probability,

dyco(F)tlogt

Ro(ma()) < Folm(F) + )y ,

n

whereR, is the empirical version oRy,

A

Ry(f) = By exp(—Y f(X)).
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The key theorem: Idea of proof.

Step 3.The clipping only hurts for small values of the exponentraiecion:

A A

Ry(mr(fi)) < Ro(fe) +e .
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The key theorem: Idea of proof'

Step 4. Apply numerical convergence result of (Bickel et al, 200&)r any
comparison functiorf € F\ = {Ry(f) : f € Aco(F)},

Ry(f1) < Ry(f) + (M 1)

Here, we exploit an attractive property of the exponenaaslfunction and
the fact that classifiers are binary-valued:

The second derivative d?,, in a basis direction is large whenevgy, is
large. This keeps the steps taken by AdaBoost from beincpipe |
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The key theorem: Idea of proof.

Step 5.RelateR, () to Ry (f)

Choosing\,, — oo suitably slowly, we can choosg, so that
Ry(fn) — R (by assumption), and then for= O(n'~%), we have the
result.
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The key theorem: Idea of proof.
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The key theorem: Idea of proof.
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‘Open Problems'

e Other loss functions?
e.g., LogitBoost uses — log(1 + exp(—2a)) in place ofexp(—a).
(The difficulty is the behaviour of the second derivativefig)c In the
direction of a basis function. For the numerical convergemsults, we

want it large whenevek,, is large.)

Real-valued basis functions?
(The same issue arises.)

Rates?

The bottleneck is the rate of decrease®yf( f;). The numerical
convergence result ensures it decreasq_‘isaslog_l/ 1.

This seems pessimistic.
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\ Overview I

Relating excess risk to excesgisk.

Universal consistency of AdaBoost.
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