# AdaBoost and other Large Margin Classifiers: Convexity in Classification

#### **Peter Bartlett**

Division of Computer Science and Department of Statistics UC Berkeley

Joint work with Mikhail Traskin.

slides at http://www.cs.berkeley.edu/~bartlett

#### The Pattern Classification Problem

- i.i.d.  $(X,Y), (X_1,Y_1), \ldots, (X_n,Y_n)$  from  $\mathcal{X} \times \{\pm 1\}$ .
- Use data  $(X_1, Y_1), \ldots, (X_n, Y_n)$  to choose  $f_n : \mathcal{X} \to \mathbb{R}$  with small risk,

$$R(f_n) = \Pr\left(\operatorname{sign}(f_n(X)) \neq Y\right) = \mathbf{E}\ell(Y, f(X)).$$

• Natural approach: minimize empirical risk,

$$\hat{R}(f) = \hat{\mathbf{E}}\ell(Y, f(X)) = \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, f(X_i)).$$

- Often intractable...
- Replace 0-1 loss,  $\ell$ , with a convex surrogate,  $\phi$ .

- Consider the margins, Y f(X).
- Define a margin cost function  $\phi : \mathbb{R} \to \mathbb{R}^+$ .
- Define the  $\phi$ -risk of  $f: \mathcal{X} \to \mathbb{R}$  as  $R_{\phi}(f) = \mathbf{E}\phi(Yf(X))$ .
- Choose  $f \in \mathcal{F}$  to minimize  $\phi$ -risk. (e.g., use data,  $(X_1, Y_1), \ldots, (X_n, Y_n)$ , to minimize **empirical**  $\phi$ -risk,

$$\hat{R}_{\phi}(f) = \hat{\mathbf{E}}\phi(Yf(X)) = \frac{1}{n} \sum_{i=1}^{n} \phi(Y_i f(X_i)),$$

or a regularized version.)

#### • Adaboost:

- $-\mathcal{F} = \operatorname{span}(\mathcal{G})$  for a VC-class  $\mathcal{G}$ ,
- $\phi(\alpha) = \exp(-\alpha),$
- Minimizes  $\hat{R}_{\phi}(f)$  using greedy basis selection, line search:

$$f_{t+1} = f_t + \alpha_{t+1} g_{t+1},$$

$$\hat{R}_{\phi}(f_t + \alpha_{t+1} g_{t+1}) = \min_{\alpha \in \mathbb{R}, g \in \mathcal{G}} \hat{R}_{\phi}(f_t + \alpha g).$$

 Effective in applications: real-time face detection, spoken dialogue systems, ...

- Many other variants
  - Support vector machines with 1-norm soft margin.
    - \*  $\mathcal{F}$  = ball in reproducing kernel Hilbert space,  $\mathcal{H}$ .
    - $* \phi(\alpha) = \max(0, 1 \alpha).$
    - \* Algorithm minimizes  $\hat{R}_{\phi}(f) + \lambda ||f||_{\mathcal{H}}^2$ .
  - Neural net classifiers

$$\phi(\alpha) = \max(0, (0.8 - \alpha)^2).$$

L2Boost, LS-SVMs

$$\phi(\alpha) = (1 - \alpha)^2.$$

Logistic regression

$$\phi(\alpha) = \log(1 + \exp(-2\alpha)).$$



# **Statistical Consequences of Using a Convex Cost**

- Is AdaBoost universally consistent? Other  $\phi$ ?
  - (Lugosi and Vayatis, 2004), (Mannor, Meir and Zhang, 2002):
     regularized boosting.
  - (Jiang, 2004): process consistency of AdaBoost, for certain probability distributions.
  - (Zhang, 2004), (Steinwart, 2003): SVM.

# **Statistical Consequences of Using a Convex Cost**

- How is risk related to  $\phi$ -risk?
  - (Lugosi and Vayatis, 2004), (Steinwart, 2003): asymptotic.
  - (Zhang, 2004): comparison theorem.

Overview

- Relating excess risk to excess  $\phi$ -risk.
  - $\psi$ -transform: best possible bound.
  - conditions on  $\phi$ .
- Universal consistency of AdaBoost.

(with Mike Jordan and Jon McAuliffe)

## **Definitions and Facts**

$$R(f) = \Pr\left(\operatorname{sign}(f(X)) \neq Y\right)$$
  $R^* = \inf_f R(f)$  risk  $R_{\phi}(f) = \mathbb{E}\phi(Yf(X))$   $R_{\phi}^* = \inf_f R_{\phi}(f)$   $\phi$ -risk  $\eta(x) = \Pr(Y = 1|X = x)$  conditional probability.

•  $\eta$  defines an optimal classifier:  $R^* = R(\operatorname{sign}(\eta(x) - 1/2))$ .

#### **Definitions and Facts**

$$R(f) = \Pr\left(\operatorname{sign}(f(X)) \neq Y\right)$$
  $R^* = \inf_f R(f)$  risk  $R_{\phi}(f) = \mathbb{E}\phi(Yf(X))$   $R_{\phi}^* = \inf_f R_{\phi}(f)$   $\phi$ -risk  $\eta(x) = \Pr(Y = 1|X = x)$  conditional probability.

•  $\eta$  defines an optimal classifier:  $R^* = R(\operatorname{sign}(\eta(x) - 1/2))$ .

Notice:  $R_{\phi}(f) = \mathbb{E}(\mathbb{E}[\phi(Yf(X))|X])$ , and conditional  $\phi$ -risk is:

$$\mathbb{E}\left[\phi(Yf(X))|X=x\right] = \eta(x)\phi(f(x)) + (1-\eta(x))\phi(-f(x)).$$

# **Definitions**

Conditional  $\phi$ -risk:

$$\mathbb{E}\left[\phi(Yf(X))|X=x\right] = \eta(x)\phi(f(x)) + (1-\eta(x))\phi(-f(x)).$$

Optimal conditional  $\phi$ -risk for  $\eta \in [0, 1]$ :

$$H(\eta) = \inf_{\alpha \in \mathbb{R}} (\eta \phi(\alpha) + (1 - \eta)\phi(-\alpha)).$$

$$R_{\phi}^* = \mathbb{E}H(\eta(X)).$$

# Optimal Conditional $\phi$ -risk: Example





## **Definitions**

Optimal conditional  $\phi$ -risk for  $\eta \in [0, 1]$ :

$$H(\eta) = \inf_{\alpha \in \mathbb{R}} \left( \eta \phi(\alpha) + (1 - \eta) \phi(-\alpha) \right).$$

Optimal conditional  $\phi$ -risk with incorrect sign:

$$H^{-}(\eta) = \inf_{\alpha:\alpha(2\eta - 1) \le 0} (\eta \phi(\alpha) + (1 - \eta)\phi(-\alpha)).$$

Note: 
$$H^-(\eta) \ge H(\eta)$$
  $H^-(1/2) = H(1/2)$ .

# **Definitions**

$$H(\eta) = \inf_{\alpha \in \mathbb{R}} (\eta \phi(\alpha) + (1 - \eta)\phi(-\alpha))$$
  
$$H^{-}(\eta) = \inf_{\alpha : \alpha(2\eta - 1) \le 0} (\eta \phi(\alpha) + (1 - \eta)\phi(-\alpha)).$$

**Definition:**  $\phi$  is classification-calibrated if, for  $\eta \neq 1/2$ ,

$$H^-(\eta) > H(\eta).$$

i.e., pointwise optimization of conditional  $\phi$ -risk leads to the correct sign. (c.f. Lin (2001))

# The $\psi$ transform

**Definition:** Given convex  $\phi$ , define

$$\psi:[0,1] \to [0,\infty)$$
 by

$$\psi(\theta) = \phi(0) - H\left(\frac{1+\theta}{2}\right).$$

(The definition is a little more involved for non-convex  $\phi$ .)



# The Relationship between Excess Risk and Excess $\phi$ -risk

#### **Theorem:**

- 1. For any P and f,  $\psi(R(f) R^*) \le R_{\phi}(f) R_{\phi}^*$ .
- 2. For  $|\mathcal{X}| \geq 2$ ,  $\epsilon > 0$  and  $\theta \in [0, 1]$ , there is a P and an f with

$$R(f) - R^* = \theta$$
  
$$\psi(\theta) \le R_{\phi}(f) - R_{\phi}^* \le \psi(\theta) + \epsilon.$$

- 3. The following conditions are equivalent:
  - (a)  $\phi$  is classification calibrated.
  - (b)  $\psi(\theta_i) \to 0 \text{ iff } \theta_i \to 0.$
  - (c)  $R_{\phi}(f_i) \to R_{\phi}^*$  implies  $R(f_i) \to R^*$ .

# **Classification-calibrated** $\phi$

If  $\phi$  is classification-calibrated, then

$$\psi(\theta_i) \to 0 \text{ iff } \theta_i \to 0.$$

Since the function  $\psi$  is always convex, in that case it is strictly increasing and so has an inverse.

Thus, we can write

$$R(f) - R^* \le \psi^{-1} \left( R_{\phi}(f) - R_{\phi}^* \right).$$

Facts:

- $H(\eta), H^-(\eta)$  are symmetric about  $\eta = 1/2$ .
- $H(1/2) = H^{-}(1/2)$ , hence  $\psi(0) = 0$ .
- $\psi(\theta)$  is convex.
- $\psi(\theta) = H^-\left(\frac{1+\theta}{2}\right) H\left(\frac{1+\theta}{2}\right)$ .

Excess risk of  $f: \mathcal{X} \to \mathbb{R}$  is

$$R(f) - R^* = \mathbb{E} \left( \mathbf{1} \left[ \text{sign}(f(X)) \neq \text{sign}(\eta(X) - 1/2) \right] | 2\eta(X) - 1| \right).$$

$$\psi(R(f) - R^*) \qquad (\psi \operatorname{convex}, \psi(0) = 0)$$

$$\leq \mathbb{E} \left( \mathbf{1} \left[ \operatorname{sign}(f(X)) \neq \operatorname{sign}(\eta(X) - 1/2) \right] \psi \left( |2\eta(X) - 1| \right) \right)$$

$$= \mathbb{E} \left( \mathbf{1} \left[ \operatorname{sign}(f(X)) \neq \operatorname{sign}(\eta(X) - 1/2) \right] \left( H^{-}(\eta(X)) - H(\eta(X)) \right) \right)$$

$$\leq \mathbb{E} \left( \phi(Yf(X)) - H(\eta(X)) \right)$$

$$= R_{\phi}(f) - R_{\phi}^*.$$

Excess risk of  $f: \mathcal{X} \to \mathbb{R}$  is

$$R(f) - R^* = \mathbb{E} \left( \mathbf{1} \left[ \text{sign}(f(X)) \neq \text{sign}(\eta(X) - 1/2) \right] | 2\eta(X) - 1| \right).$$

$$\psi(R(f) - R^*) \qquad \text{(definition of } \psi)$$

$$\leq \mathbb{E} \left( \mathbf{1} \left[ \operatorname{sign}(f(X)) \neq \operatorname{sign}(\eta(X) - 1/2) \right] \psi \left( |2\eta(X) - 1| \right) \right)$$

$$= \mathbb{E} \left( \mathbf{1} \left[ \operatorname{sign}(f(X)) \neq \operatorname{sign}(\eta(X) - 1/2) \right] \left( H^{-}(\eta(X)) - H(\eta(X)) \right) \right)$$

$$\leq \mathbb{E} \left( \phi(Yf(X)) - H(\eta(X)) \right)$$

$$= R_{\phi}(f) - R_{\phi}^*.$$

Excess risk of  $f: \mathcal{X} \to \mathbb{R}$  is

$$R(f) - R^* = \mathbb{E} \left( \mathbf{1} \left[ \text{sign}(f(X)) \neq \text{sign}(\eta(X) - 1/2) \right] | 2\eta(X) - 1| \right).$$

$$\psi(R(f) - R^*) \qquad (H^- \text{ minimizes conditional } \phi\text{-risk})$$

$$\leq \mathbb{E} \left(\mathbf{1} \left[ \operatorname{sign}(f(X)) \neq \operatorname{sign}(\eta(X) - 1/2) \right] \psi \left( | 2\eta(X) - 1| \right) \right)$$

$$= \mathbb{E} \left(\mathbf{1} \left[ \operatorname{sign}(f(X)) \neq \operatorname{sign}(\eta(X) - 1/2) \right] \left( H^-(\eta(X)) - H(\eta(X)) \right) \right)$$

$$\leq \mathbb{E} \left( \phi(Yf(X)) - H(\eta(X)) \right)$$

$$= R_{\phi}(f) - R_{\phi}^*.$$

Excess risk of  $f: \mathcal{X} \to \mathbb{R}$  is

$$R(f) - R^* = \mathbb{E} \left( \mathbf{1} \left[ \text{sign}(f(X)) \neq \text{sign}(\eta(X) - 1/2) \right] | 2\eta(X) - 1| \right).$$

$$\psi(R(f) - R^*) \qquad \text{(definition of } R_{\phi})$$

$$\leq \mathbb{E} \left( \mathbf{1} \left[ \operatorname{sign}(f(X)) \neq \operatorname{sign}(\eta(X) - 1/2) \right] \psi \left( |2\eta(X) - 1| \right) \right)$$

$$= \mathbb{E} \left( \mathbf{1} \left[ \operatorname{sign}(f(X)) \neq \operatorname{sign}(\eta(X) - 1/2) \right] \left( H^{-}(\eta(X)) - H(\eta(X)) \right) \right)$$

$$\leq \mathbb{E} \left( \phi(Yf(X)) - H(\eta(X)) \right)$$

$$= R_{\phi}(f) - R_{\phi}^*.$$

# Classification-calibrated $\phi$

**Theorem:** If  $\phi$  is convex,

$$\phi$$
 is classification calibrated  $\Leftrightarrow \begin{cases} \phi \text{ is differentiable at } 0 \\ \phi'(0) < 0. \end{cases}$ 

**Theorem:** If  $\phi$  is classification calibrated,

$$\exists \gamma > 0, \forall \alpha \in \mathbb{R},$$

$$\gamma \phi(\alpha) \geq \mathbf{1} \left[ \alpha \leq 0 \right].$$

# Overview

- Relating excess risk to excess  $\phi$ -risk.
- Universal consistency of AdaBoost.

(with Mikhail Traskin)

- The approximation/estimation decomposition.
- AdaBoost: Previous results.
- Universal consistency.

## **Universal Consistency**

- Assume: i.i.d. data,  $(X, Y), (X_1, Y_1), \dots, (X_n, Y_n)$  from  $\mathcal{X} \times \mathcal{Y}$  (with  $\mathcal{Y} = \{\pm 1\}$ ).
- Consider a method  $f_n = A((X_1, Y_1), \dots, (X_n, Y_n))$ , e.g.,  $f_n = AdaBoost((X_1, Y_1), \dots, (X_n, Y_n), t_n)$ .

**Definition:** We say that the method is universally consistent if, for all distributions P,

$$R(f_n) \stackrel{a.s}{\to} R^*,$$

where R is the risk and  $R^*$  is the Bayes risk:

$$R(f) = \Pr(Y \neq \operatorname{sign}(f(X)), \qquad R^* = \inf_f R(f).$$

# The Approximation/Estimation Decomposition

Consider an algorithm that chooses

$$f_n = \arg\min_{f \in \mathcal{F}} \hat{R}_{\phi}(f) + \lambda_n \Omega(f).$$

We can decompose the excess risk estimate as

$$\psi\left(R(f_n) - R^*\right) \le R_{\phi}(f_n) - R_{\phi}^*$$

$$= R_{\phi}(f_n) - \inf_{f \in \mathcal{F}_n} R_{\phi}(f) + \inf_{f \in \mathcal{F}_n} R_{\phi}(f) - R_{\phi}^* .$$
estimation error approximation error

# The Approximation/Estimation Decomposition

Consider an algorithm that chooses

$$f_n = \arg\min_{f \in \mathcal{F}_n} \hat{R}_{\phi}(f).$$

We can decompose the excess risk estimate as

$$\psi\left(R(f_n) - R^*\right) \le R_{\phi}(f_n) - R_{\phi}^*$$

$$= R_{\phi}(f_n) - \inf_{f \in \mathcal{F}_n} R_{\phi}(f) + \inf_{f \in \mathcal{F}_n} R_{\phi}(f) - R_{\phi}^* .$$
estimation error approximation error

# The Approximation/Estimation Decomposition

$$\psi\left(R(f_n) - R^*\right) \le R_{\phi}(f_n) - R_{\phi}^*$$

$$= R_{\phi}(f_n) - \inf_{f \in \mathcal{F}_n} R_{\phi}(f) + \inf_{f \in \mathcal{F}_n} R_{\phi}(f) - R_{\phi}^*.$$
estimation error approximation error

- Approximation and estimation errors are in terms of  $R_{\phi}$ , not R.
- Like a regression problem.
- With a rich class and appropriate regularization,  $R_{\phi}(f_n) \to R_{\phi}^*$ . (e.g.,  $\mathcal{F}_n$  gets large slowly, or  $\lambda_n \to 0$  slowly.)
- Universal consistency  $(R(f_n) \to R^*)$  iff  $\phi$  is classification calibrated.

**Overview** 

- Relating excess risk to excess  $\phi$ -risk.
- Universal consistency of AdaBoost.
  - The approximation/estimation decomposition.
  - AdaBoost: Previous results.
  - Universal consistency.

# AdaBoost

```
Sample, S_n = ((x_1,y_1),\dots,(x_n,y_n)) \in (X \times \{\pm 1\})^n

Number of iterations, T

function AdaBoost(S_n,T)

f_0 := 0

for t from 1,\dots,T

(\alpha_t,h_t) := \arg\min_{\alpha \in \mathbb{R},h \in F} \frac{1}{n} \sum_{i=1}^n \exp\left(-y_i\left(f_{t-1}(x_i) + \alpha h(x_i)\right)\right)
f_t := f_{t-1} + \alpha_t h_t
return f_T
```

# **Previous results: Regularized versions**

AdaBoost greedily minimizes

$$\hat{R}_{\phi}(f) = \frac{1}{n} \sum_{i=1}^{n} \exp(-Y_i f(X_i))$$

over  $f \in \operatorname{span}(F)$ .

(Notice that, for many interesting basis classes F, the infimum is zero.)

Instead of AdaBoost, consider a regularized version of its criterion.

# **Previous results: Regularized versions**

- 1. Minimize  $\hat{R}_{\phi}(f)$  over  $f \in \gamma_n \operatorname{co}(F)$ , the scaled convex hull of F.
- 2. Minimize

$$\hat{R}_{\phi}(f) + \lambda_n ||f||_1,$$

over  $f \in \text{span}(F)$ , where  $||f||_1 = \inf\{\gamma : f \in \gamma \text{co}(F)\}.$ 

For suitable choices of the parameters ( $\gamma_n$  and  $\lambda_n$ ), these algorithms are universally consistent.

(Lugosi and Vayatis, 2004), (Zhang, 2004)

# **Previous results: Bounded step size**

**function** AdaBoostwithBoundedStepSize( $S_n, T$ )

$$f_0 := 0$$
 for  $t$  from  $1, \ldots, T$  
$$(\alpha_t, h_t) := \arg\min_{\alpha \in \mathbb{R}, h \in F} \frac{1}{n} \sum_{i=1}^n \exp\left(-y_i \left(f_{t-1}(x_i) + \alpha h(x_i)\right)\right)$$
 
$$f_t := f_{t-1} + \min\{\alpha_t, \epsilon\} h_t$$
 return  $f_T$ 

For suitable choices of the parameters  $(T = T_n \text{ and } \epsilon = \epsilon_n)$ , this algorithm is universally consistent.

(Zhang and Yu, 2005), (Bickel, Ritov, Zakai, 2006)

#### **Previous results about AdaBoost**

AdaBoost greedily minimizes

$$\hat{R}_{\phi}(f) = \frac{1}{n} \sum_{i=1}^{n} \exp(-Y_i f(X_i))$$

over  $f \in \text{span}(F)$ .

- Consider AdaBoost with early stopping:  $f_n$  is the function returned by AdaBoost after  $t_n$  steps.
- How should we choose  $t_n$ ? Note: The infimum is often zero. Don't want  $t_n$  too large.

# Previous result about AdaBoost: 'Process consistency'

**Theorem:** [Jiang, 2004] For a (suitable) basis class defined on  $\mathbb{R}^d$ , and for all probability distributions P satisfying certain smoothness assumptions, there is a sequence  $t_n$  such that  $f_n = AdaBoost(S_n, t_n)$  satisfies

$$R(f_n) \stackrel{a.s.}{\to} R^*.$$

- Conditions on the distribution P are unnatural and cannot be checked.
- How should the stopping time  $t_n$  grow with sample size n? Does it need to depend on the distribution P?
- Rates?

Overview

- Relating excess risk to excess  $\phi$ -risk.
- Universal consistency of AdaBoost.
  - The approximation/estimation decomposition.
  - AdaBoost: Previous results.
  - Universal consistency.

#### The key theorem

- Assume  $d_{VC}(F) < \infty$ Otherwise AdaBoost must stop and fail after one step.
- Assume

$$\lim_{\lambda \to \infty} \inf \left\{ R_{\phi}(f) : f \in \lambda \operatorname{co}(F) \right\} = R_{\phi}^*,$$

where

$$R_{\phi}(f) = \mathbf{E} \exp(-Yf(X)), \qquad R_{\phi}^* = \inf_f R_{\phi}(f).$$

That is, the approximation error is zero.

For example, F is linear threshold functions, or binary trees with axis orthogonal decisions in  $\mathbb{R}^d$  and at least d+1 leaves.

#### The key theorem

**Theorem:** If

$$d_{VC}(F) < \infty,$$

$$R_{\phi}^* = \lim_{\lambda \to \infty} \inf \left\{ R_{\phi}(f) : f \in \lambda \operatorname{co}(F) \right\},$$

$$t_n \to \infty$$

$$t_n = O(n^{1-\alpha}) \quad \text{for some } \alpha > 0,$$

then AdaBoost is universally consistent.

We show  $R_{\phi}(f_{t_n}) \to R_{\phi}^*$ , which implies  $R(f_{t_n}) \to R^*$ , since the loss function  $\alpha \mapsto \exp(-\alpha)$  is classification calibrated.

**Step 1.** Notice that we can clip  $f_{t_n}$ :

If we define  $\pi_{\lambda}(f)$  as  $x \mapsto \max\{-\lambda, \min\{\lambda, f(x)\}\}\$ , then

$$R_{\phi}(\pi_{\lambda}(f_{t_n})) \to R_{\phi}^* \implies R(\pi_{\lambda}(f_{t_n})) \to R^* \implies R(f_{t_n}) \to R^*.$$



We will need to relax the clipping  $(\lambda_n \to \infty)$ .

**Step 2.** Use VC-theory (for clipped combinations of t functions from F) to show that, with high probability,

$$R_{\phi}(\pi_{\lambda}(f_t)) \leq \hat{R}_{\phi}(\pi_{\lambda}(f_t)) + c(\lambda) \sqrt{\frac{d_{VC}(F)t \log t}{n}},$$

where  $\hat{R}_{\phi}$  is the empirical version of  $R_{\phi}$ ,

$$\hat{R}_{\phi}(f) = \mathbf{E}_n \exp(-Yf(X)).$$

**Step 3.** The clipping only hurts for small values of the exponential criterion:

$$\hat{R}_{\phi}(\pi_{\lambda}(f_t)) \le \hat{R}_{\phi}(f_t) + e^{-\lambda}.$$



**Step 4.** Apply numerical convergence result of (Bickel et al, 2006): For any comparison function  $\bar{f} \in F_{\lambda} = \{R_{\phi}(f) : f \in \lambda \operatorname{co}(F)\},$ 

$$\hat{R}_{\phi}(f_t) \leq \hat{R}_{\phi}(\bar{f}) + \epsilon(\lambda, t).$$

Here, we exploit an attractive property of the exponential loss function and the fact that classifiers are binary-valued:

The second derivative of  $\hat{R}_{\phi}$  in a basis direction is large whenever  $\hat{R}_{\phi}$  is large. This keeps the steps taken by AdaBoost from being too large.

**Step 5.** Relate  $\hat{R}_{\phi}(\bar{f})$  to  $R_{\phi}(\bar{f})$ .

Choosing  $\lambda_n\to\infty$  suitably slowly, we can choose  $\bar f_n$  so that  $R_\phi(\bar f_n)\to R_\phi^*$  (by assumption), and then for  $t=O(n^{1-\alpha})$ , we have the result.















#### **Open Problems**

- Other loss functions? e.g., LogitBoost uses  $\alpha \mapsto \log(1 + \exp(-2\alpha))$  in place of  $\exp(-\alpha)$ . (The difficulty is the behaviour of the second derivative of  $\hat{R}_{\phi}$  in the direction of a basis function. For the numerical convergence results, we want it large whenever  $\hat{R}_{\phi}$  is large.)
- Real-valued basis functions?
   (The same issue arises.)
- Rates?

  The bottleneck is the rate of decrease of  $\hat{R}_{\phi}(f_t)$ . The numerical convergence result ensures it decreases to  $\bar{f}$  as  $\log^{-1/2} t$ .

  This seems pessimistic.

Overview

- Relating excess risk to excess  $\phi$ -risk.
- Universal consistency of AdaBoost.

slides at http://www.cs.berkeley.edu/~bartlett