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Online Prediction as a Zero-Sum Game

Minimize regret wrt comparison C:
g P Log loss

= ra Up,y) = —log p(y).
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Comparison class

Parametric family of densities: C = {pg : 0 € ©},
where pg : Y" — R™ is a parameterized probability density with respect to
the n-fold product of a fixed reference measure A on ):

For all 6 € ©,
/ P, o Vo) A = L
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Comparison class

For p=py and y € Y, we write p:(y) = p(y|y1,...,yt—1). Thus,
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Definition: Parametric constant model

Parametric family of i.i.d. densities on Y":

C={pj:0€c0}

where pj is the n-fold product of the probability density py :  — R,
which is a parameterized probability density with respect to the fixed
reference measure A\ on V:

/ po(y) dA(y) = 1.
y

For p = pg and y; € Y, we have p:(y:) = p(ytly1, .- -, ye-1) = p(y). Thus,

Z log(pe(yt)) = Z log(p(yt))-
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Strategies are joint densities

o A strategy p is a mapping from histories y{ = (y1,...,yt)
to densities p(-|yf) on V.

@ Every strategy is a joint density:
P(y1s-- s yn) = B(y1)B(yaly1) - Blyaly? ™)

o Every joint density p is a strategy, pr+1(-) = B(-|y{)-
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Online density estimation with log loss

We abuse notation, and write:

= H po(yt)-
t=1

Regret wrt comparison C = {py} is a log likelihood ratio, which is a
difference of KL- divergences

R(y{,p Zf Pr,yt) — Iiggfzzf(p,yt)
t=1

= sup log pp(y1') — log p(y1")
6co

= nKL(Pa[18) — nf nKL(Palpo)

where P, is the empirical distribution, with mass 1/n on yi,...,y,, and
KL(P,||p) is the Kullback-Leibler divergence of P, with respect to p.
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Online density estimation with log loss

Many interpretations of prediction with log loss

@ Sequential probability prediction.

@ Sequential lossless data compression
(“minimum description length")

@ Repeated gambling/investment.

Long history in several communities.

[Kelly, 1956], [Solomonoff, 1964], [Kolmogorov, 1965], [Cover, 1974], [Rissanen, 1976, 1987, 1996], [Shtarkov, 1987], [Feder,
Merhav and Gutman, 1992], [Freund, 1996], [Xie and Barron, 2000], [Cesa-Bianchi and Lugosi, 2001, 2006], [Griinwald, 2007]
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NML

") (y1) o sup pa(y2)
0cO
(n) supgeo Po(y1')

/ sup ps(20') dA"(20)
Y 60

Integrability
We require that the Shtarkov integral,

| A

/ sup pg(z7') dA"(z7)
Y 60

is finite. y
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Normalized maximum likelihood

The Shtarkov integral for n =2 is

//suppg zl ) dz; dz;
yeee
_ 2 _ 2
= / / exp <_(21 (21 +2)/2) + (2= (2 +2)/2) ) dz; dz
27 yJy 2

)2
_ 2 / / exp <_(2122)> dz dzs
T yJy 4

- 32 [

= Q.
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Normalized maximum likelihood
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Normalized maximum likelihood

Given an initial sequence y;” € Y, define the conditional Shtarkov
integral

/ sup Pa(yi™, y 1) dAT Ty ).
yn—m Hce

For the Gaussian family of densities on R and y; € R, the conditional
Shtarkov integral for n = 2 is

= 2
/SUPPe(yl Y2 dyz—/eXp< (2 y1) > dys> :\/>.
y €0 ™
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Fix y[" € V.
The conditional regret given y;” wrt the comparison class C = {pp} is
n n

R(yrr)'1+laﬁ|y1m) = Z E(ﬁtayt) - éggzg(pv yt)
t=m+1 =il
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Conditional NML
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0cO

supgeo Po(y1)

v S5P POV, Zm) AN (Zm1)

P (ym i) = /
%

15/39



Conditional normalized maximum likelihood

Conditional NML

Given y{" € Y™,

P (v yA™) o sup pa(yy)
I(C)

(n) supgee Po(¥1)

Pt Vi1 lyi) = /

sup po(¥1"s Zmy1) AN " (g 41)
Yn—m gcO

| A

Integrability
We require that the conditional Shtarkov integral given y{" is finite,
that is,

/ sup po(y1"s Zmy1) AN " (zp 1) < 00.
yn—m e
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Normalized maximum likelihood

NML is optimal

[Shtarkov, 1987]

Fix n > 0 and suppose that the Shtarkov integral is finite, so that NML is
well defined.

© NML equalizes regret: for any y/,

ROy, p)) = log /y sup po(z) dN"(z7).

@ Any strategy p that predicts differently from NML has strictly worse
maximum regret.
© Thus, NML is the minimax optimal strategy:

mﬁin r’r}%x R(y1', p) = Ry, pl(‘)lr?lf)‘
1
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Normalized maximum likelihood

The regret,

log / sup po(2]) dA"(2f)
yn Hc©

is often called the stochastic complexity of {py : 0 € ©}.
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Conditional normalized maximum likelihood

Conditional NML is optimal

Fix yi" € Y™ and n > m. Suppose that the conditional Shtarkov integral
given y{" is finite, so that conditional NML is well defined.

@ Conditional NML equalizes conditional regret: for any yp .4,

RO PIyE) =108 | sup o7 270) X" (2hs).

@ Any conditional strategy p that predicts differently from conditional
NML has strictly worse maximum conditional regret.

© Thus, conditional NML is the minimax optimal strategy:

min max R(y7 1. AYT") = R(vpsa. g ")
m+1
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Conditional normalized maximum likelihood

Call the regret,

log / sup po (Y20 1) dA™(2 )
yn—m e

the conditional stochastic complexity of {pg : § € ©}, given y{".
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Optimality of NML

First, NML is an equalizer:

RO Pi) = log <;UP po(y1 )> — log (P,(,Q/(yl” ))

co
supgeo Po(y7
= log <sup pe(yl”)> — log oco PoUYT)
06 / sup py(2f)) dN"(20)
N

— log / sup pa(20') dA"(2]),
yn e

which is independent of y;.
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Optimality of NML

Proof
(n)

nml’

Second, for any other strategy, p # p
BYT) < P (v1):

there is a sequence y{ with
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Optimality of NML

Proof

Second, for any other strategy, p # pf,','g,, there is a sequence y{ with

BYE) < Py (D).
For this sequence,
R(y1, ) > R(y1, P

So NML is the minimax optimal strategy.

(n) ).

nm/
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(n)
n Pomi\ Y1)
P el yoy) = LamA).

pnml(ylt 1)

@ To predict, we compute conditional distributions, marginalize.
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NML
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Computing Normalized maximum likelihood

NML

P\ (y1 -+ yn) ox sup po(yy)
0€©

(n)
n pnm (y)
pr(7nzl(yt|y1"'yt*1) (n) I tll

fyn_: SUPgeo Pe()’fztnﬂ) dAn_t(Zt.Zrl)

- fynftJrl SUPgco p@(Ylt_lzp) d/\n_t+1(zt,7)

@ To predict, we compute conditional distributions, marginalize.
@ All that conditioning is computationally expensive!
@ When can we compute it cheaply?

(] Mu|t|n0mla|s. [Kontkanen, Buntine, Myllymaki, Rissanen, Tirri, 2003]
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Normalized maximum likelihood
Multinomials
SNML: predicting like there's no tomorrow

Bayesian strategies

Optimality = exchangeability
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po(y) =6y, 0 e AK.
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Then
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Computing NML

Example
Consider y € {1,...,K} and

po(y) =6y, 9 e AKX,

Then

p(0) () = Mmaxe Polyt)
8 log sz maxg py(z7)

How do we compute the denominator (the stochastic complexity)?
(The sums required to compute p,(;z,(yt|y1 -+ y¢_1) are similar.)
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Computing NML

For y € {1,...,K}", define h € {0,...,n}¥ by

n

h, = Zl[yt =v].

t=1

Define the maximum likelihood estimator A(y{") = h/n.
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Computing NML

For y € {1,...,K}", define h € {0,...,n}¥ by

n

h, = Zl[yt =v].

t=1
Define the maximum likelihood estimator A(y{") = h/n. Then

n K
ny __ . _ nhy
max py(y7') = [ [ Pagypy(ve) = [1 &0

t=1 v=1

25 /39



Computing NML

For y € {1,...,K}", define h € {0,...,n}¥ by

n

h, = Zl[}/t = V]'
t=1
Define the maximum likelihood estimator A(y{") = h/n. Then

n S “ h e
ny __ A — v = o
m(fxpe(h) = Hpé)(yl")(yt) N o = 1 < > .

=l v=1 v=
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Computing NML

We can write

Pk ,n = Z P@(Zln)(zf)
zf

[Kontkanen, Buntine, Myllymaki, Rissanen, Tirri, 2003]
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We can write
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2z

hi+-+hx=n Tv=1

[Kontkanen, Buntine, Myllymaki, Rissanen, Tirri, 2003]



Computing NML

We can write

nl SN
Pk ,n = ZP@(zln)(Zl) = Z hyl- - hg! H (n> :
27 h+-th=n v=1

But we can split this sum: for any ki1 + k» = K,

o A \™ [ ho\
o= 3 () (7)) Punfir

hi+hy=n
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Computing NML

We can write

nl SN
Pk ,n = ZP@(zln)(Zl) = Z hyl- - hg! H (n> :
27 h+-th=n v=1

But we can split this sum: for any ki1 + k» = K,
n (™ ("™
o= 2 i (2) (5) P
hi+hy=n

So we can build up a table of these values, with a suitable geometric
sequence of kis and all values of hy, to compute Pk , in O(n?log K) time.

v

[Kontkanen, Buntine, Myllymaki, Rissanen, Tirri, 2003]



Computing NML

We can write

oy (™
Pron = Zpé(zl")(zl) - Z Ayl - hyl H (n) :
Z] m+-+hg=n v=1

But we can split this sum: for any ki1 + k» = K,
n (™ ("™
o= 2 i (2) (5) P
hi+hy=n

So we can build up a table of these values, with a suitable geometric
sequence of kis and all values of hy, to compute Pk , in O(n?log K) time.

v

[Kontkanen, Buntine, Myllymaki, Rissanen, Tirri, 2003]
Also conditional multinomial models on {1,..., K}9.



Normalized maximum likelihood
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fynft SUPgeco PO(YltZthrl) d/\n_t(zgﬂ)
fyn—tﬂ SUPgco pe(ylt_lzp) d)\n—t—l—l(zg)

P%/(J’tb’l Y1) =

o Computationally cheaper strategies:

o Horizon-independent NML ( “Sequential NML")
e Bayesian prediction
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Normalized maximum likelihood.
Multinomials
SNML: predicting like there’s no tomorrow.

Bayesian strategies.

Optimality = exchangeability.
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Predicting like there's no tomorrow: Sequential NML

Sequential Normalized Maximum Likelihood (SNML)

Penmi(yelyi ™) = P (velyf ™) o sup po(yi)
€

@ Pretend that this is the last prediction we'll ever make.
@ Simpler conditional calculation.

@ Has asymptotically optimal regret.

[Roos and Rissanen, 2008], [Kottowski and Griinwald, 2011]
o
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Predicting like there's no tomorrow: Sequential NML

Sequential Normalized Maximum Likelihood (SNML)

Penmi(ve i) = PO (yelyi ™) o sup po(y1)
€

SNML is optimal iff ps,ms is exchangeable. \

[Hedayati and B., 2016]

@ pspmi is exchangeable means:
for any n, any y{, and any permutation o on {1,...,n},

Psnmi (Y15 - -+ Yn) = Psnml()/a(l)v e 7yC7(n))-
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Proof (<)
© SNML's regret doesn't depend on the last observation.

Py(¥7)
,Dsnml(yln)7
psnml(}’f) = psnml(}/n|y1n_1)psnml(y1n_1)

(0 is maximum likelihood)
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Proof (<)
© SNML's regret doesn't depend on the last observation.

Py(¥7)
R yn, P. /) = |Og = (0 is maximum likelihood)
( 1o Fsnm ) psnml()’ln)
psnml(}’f) — psnml(}/n|y1n_1)psnml(y1n_1)
Py(¥1)

o n—1
Ty sups oo, 2) A(2) )
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Proof (<)
© SNML's regret doesn't depend on the last observation.

Py(¥7)
R yn, P. /) = |Og = (0 is maximum likelihood)
( 1o Fsnm ) psnml()’ln)
psnml(yln) — psnml(yn|y1 )psnml(yln 1)
Py(Y7)

n—1
Ty sups oo, 2) A(2) )

SO

psnm/(yl 1)
fy supg po(yy ™, z) dA\(2)

R(Yl 9 psnml)
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Proof (<)

@ If SNML is exchangeable, then its regret is permutation-invariant:

ngl Pé()/t)
psnml()/f)

R(Y1n7 psnm/) = Iog
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Proof (<)

© If SNML is exchangeable, then its regret is permutation-invariant:

[liz P3(ve)

R(y1' Psnmi) = lo :
(1 Snm) - psnml(yln)

In that case, SNML's regret is independent of observations:

R(yla <5 Yn—1,Yn; Psnml) = R(Yl: ces Y1, V15 psnml)
= R(ylv cee 7yn*15}/1;psnm/)

= R(ylv cee 7}7n—17)7n; psnml)-

So if SNML is exchangeable, then it is an equalizer, and so it is the
same as NML.

32/39
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Predicting like there's no tomorrow: Sequential NML

Proof (=)

o p,,m,(yl) is permutation-invariant:

P (1) o sup 11 poye)-

SC) =1
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Predicting like there's no tomorrow: Sequential NML

Sequential Normalized Maximum Likelihood (SNML)

Penmi(elyi ™) = P (velyf ™) o sup po(v{)
€

SNML is optimal iff ps,ms is exchangeable. \
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Normalized maximum likelihood.
Multinomials

SNML: predicting like there's no tomorrow.
Bayesian strategies.

Optimality = exchangeability.

35/39



Bayesian strategies

36/39



Bayesian strategies

Bayesian strategies

For prior  on ©:

pelyl) = /e Pl dn(0)

36 /39



Bayesian strategies

Bayesian strategies

For prior  on ©:

pelyl) = /e Pl dn(0)

@ Sequential update to prior.

36 /39



Bayesian strategies

Bayesian strategies

For prior  on ©:

pelyl) = /e Pl dn(0)

P (01y1) o< p=(0]yf ™ )po(ye)-

@ Sequential update to prior.

36 /39



Bayesian strategies

Bayesian strategies

For prior  on ©:

pelyl) = /e Pl dn(0)

pr(81yf) o< pr(Blys 1) palye)-
@ Sequential update to prior.
o Consider Jeffreys prior:
m(0) o< V]1(0)],

1(0) = Cov (Vg In pp(X)) . (X ~ pp)

36 /39



Bayesian strategies

Bayesian strategies

For prior  on ©:

pelyl) = /e Pl dn(0)

pr(Bly1) o< pr(8lyiH)pa(ye)-
@ Sequential update to prior.

o Consider Jeffreys prior:

() o< V/[1(0)];
1(0) = Cov (Vg In pp(X)) . (X ~ pp)

@ Attractive properties (e.g., invariant to parameterization).

36 /39



Bayesian strategies

Bayesian strategies

For prior  on ©:

pelyl) = /e Pl dn(0)

P (01y1) o< p=(0]yf ™ )po(ye)-

Sequential update to prior.

Consider Jeffreys prior:

() o< V/[1(0)];
1(0) = Cov (Vg In pp(X)) . (X ~ pp)

Attractive properties (e.g., invariant to parameterization).

Asymptotically optimal regret for exponential families.

[Clarke and Barron, 1990, 1994]
y

36 /39



Sequential NML and Bayesian strategies

Optimality [Hedayati and B., 2016]

37/39



Sequential NML and Bayesian strategies

Optimality [Hedayati and B., 2016]

For regular py (asymptotically normal maximum likelihood estimator, Fisher
information well-behaved, integrals exist), the fO||OWing are eqUiValent:

37/39



Sequential NML and Bayesian strategies

Optimality [Hedayati and B., 2016]

For regular py (asymptotically normal maximum likelihood estimator, Fisher
information well-behaved, integrals exist), the fO||OWing are eqUiValent:

© NML = SNML.

© psnmi exchangeable.

37/39



Sequential NML and Bayesian strategies

Optimality [Hedayati and B., 2016]

For regular py (asymptotically normal maximum likelihood estimator, Fisher
information well-behaved, integrals exist), the fO||OWing are eqUiValent:

© NML = SNML.

© psnmi exchangeable.
© NML = Bayesian.

37/39



Sequential NML and Bayesian strategies

Optimality [Hedayati and B., 2016]

For regular py (asymptotically normal maximum likelihood estimator, Fisher
information well-behaved, integrals exist), the fO||OWing are eqUiValent:

© NML = SNML.

© psnmi exchangeable.
© NML = Bayesian.
@ NML = Bayesian with Jeffreys prior.

37/39



Sequential NML and Bayesian strategies

Optimality [Hedayati and B., 2016]

For regular py (asymptotically normal maximum likelihood estimator, Fisher
information well-behaved, integrals exist), the fO||OWing are eqUiValent:

© NML = SNML.

© psnmi exchangeable.

© NML = Bayesian.

@ NML = Bayesian with Jeffreys prior.
© SNML = Bayesian.

37/39



Sequential NML and Bayesian strategies

Optimality [Hedayati and B., 2016]

For regular py (asymptotically normal maximum likelihood estimator, Fisher
information well-behaved, integrals exist), the fO||OWing are eqUiValent:

© NML = SNML.

© psnmi exchangeable.

© NML = Bayesian.

©@ NML = Bayesian with Jeffreys prior.
© SNML = Bayesian.

© SNML = Bayesian with Jeffreys prior.

37/39



Sequential NML and Bayesian strategies

Optimality [Hedayati and B., 2016]

For regular py (asymptotically normal maximum likelihood estimator, Fisher
information well-behaved, integrals exist), the fO||OWing are eqUiValent:

© NML = SNML.

© psnmi exchangeable.

© NML = Bayesian.

©@ NML = Bayesian with Jeffreys prior.
© SNML = Bayesian.

© SNML = Bayesian with Jeffreys prior.

@ If we can ignore the time horizon and be optimal, that's the same as
Bayesian prediction with Jeffreys prior.

37/39



Sequential NML and Bayesian strategies

Optimality [Hedayati and B., 2016]

For regular py (asymptotically normal maximum likelihood estimator, Fisher
information well-behaved, integrals exist), the fO||OWing are eqUiValent:

Q@ NML = SNML.

© psnmi exchangeable.

© NML = Bayesian.

©@ NML = Bayesian with Jeffreys prior.
© SNML = Bayesian.

© SNML = Bayesian with Jeffreys prior.

@ If we can ignore the time horizon and be optimal, that's the same as
Bayesian prediction with Jeffreys prior.
o If any Bayesian strategy is optimal, it uses Jeffreys prior.

37/39



Sequential NML and Bayesian strategies

Optimality [Hedayati and B., 2016]

For regular py (asymptotically normal maximum likelihood estimator, Fisher
information well-behaved, integrals exist), the fO||OWing are eqUiValent:

Q@ NML = SNML.

© psnmi exchangeable.

© NML = Bayesian.

©@ NML = Bayesian with Jeffreys prior.
© SNML = Bayesian.

© SNML = Bayesian with Jeffreys prior.

@ If we can ignore the time horizon and be optimal, that's the same as
Bayesian prediction with Jeffreys prior.

o If any Bayesian strategy is optimal, it uses Jeffreys prior.
o Why?

37/39



Sequential NML and Bayesian strategies

Optimality [Hedayati and B., 2016]

For regular py (asymptotically normal maximum likelihood estimator, Fisher
information well-behaved, integrals exist), the fO||OWing are eqUiValent:

© NML = SNML.

© psnmi exchangeable.

© NML = Bayesian.

©@ NML = Bayesian with Jeffreys prior.
© SNML = Bayesian.

© SNML = Bayesian with Jeffreys prior.

@ If we can ignore the time horizon and be optimal, that's the same as
Bayesian prediction with Jeffreys prior.

o If any Bayesian strategy is optimal, it uses Jeffreys prior.

@ Why? If NML=SNML, then we can consider long time horizons, so

the asymptotics emerge.
37/39



Sequential NML and Bayesian strategies

Optimality [Hedayati and B., 2016]

For regular py (asymptotically normal maximum likelihood estimator, Fisher
information well-behaved, integrals exist), the fO||OWing are eqUiValent:

© NML = SNML.

© psnmi exchangeable.

© NML = Bayesian.

©@ NML = Bayesian with Jeffreys prior.
© SNML = Bayesian.

© SNML = Bayesian with Jeffreys prior.

@ If we can ignore the time horizon and be optimal, that's the same as
Bayesian prediction with Jeffreys prior.

o If any Bayesian strategy is optimal, it uses Jeffreys prior.

@ Why? If NML=SNML, then we can consider long time horizons, so
the asymptotics emerge. Asymptotic normality of the MLE implies
Jeffreys prior is the only candidate. 37/39
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po(y) = h(y)exp (6y — A(6)).
@ psyme is exchangeable (i.e., SNML optimal, Bayesian optimal) <

@ Gaussian distributions with fixed variance o2 > 0,
@ gamma distributions with fixed shape k > 0,
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Online density estimation with log loss

Examples [B., Griinwald, Harremogs, Hedayati, Kottowski, 2013]

@ One-dimensional exponential families:
po(y) = h(y)exp (6y — A(6)).
@ psyme is exchangeable (i.e., SNML optimal, Bayesian optimal) <
@ Gaussian distributions with fixed variance o2 > 0,
@ gamma distributions with fixed shape k > 0,

© Tweedie exponential family of order 3/2,
@ Or smooth transformations.

normal gamma Pareto

08
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Normalized maximum likelihood.
Multinomials
SNML: predicting like there's no tomorrow.

Bayesian strategies.

Optimality = exchangeability.
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