Topics in Prediction and Learning Lecture 4: Online Density Estimation

Peter Bartlett

Computer Science and Statistics University of California at Berkeley

Mathematical Sciences Queensland University of Technology

27 February–9 March, 2017 CREST, ENSAE

Online Prediction as a Zero-Sum Game

Minimize *regret* wrt comparison C:

$$R(y_1^n, a_1^n) = \sum_{t=1}^n \ell(a_t, y_t) - \inf_{\hat{a} \in \mathcal{C}} \sum_{t=1}^n \ell(\hat{a}_t, y_t).$$

Online Prediction as a Zero-Sum Game

Minimize regret wrt comparison C:

$$R(y_1^n, a_1^n) = \sum_{t=1}^n \ell(a_t, y_t) - \inf_{\hat{a} \in \mathcal{C}} \sum_{t=1}^n \ell(\hat{a}_t, y_t).$$

Log loss

$$\ell(\hat{p}, y) = -\log \hat{p}(y).$$

Online Prediction as a Zero-Sum Game

Minimize *regret* wrt comparison C:

$$R(y_1^n, a_1^n) = \sum_{t=1}^n \ell(a_t, y_t) - \inf_{\hat{a} \in \mathcal{C}} \sum_{t=1}^n \ell(\hat{a}_t, y_t).$$

Log loss

$$\ell(\hat{p}, y) = -\log \hat{p}(y).$$

Comparison class

Parametric family of densities: $C = \{p_{\theta} : \theta \in \Theta\}$,

Online Prediction as a Zero-Sum Game

Minimize *regret* wrt comparison C:

$$R(y_1^n, a_1^n) = \sum_{t=1}^n \ell(a_t, y_t) - \inf_{\hat{a} \in \mathcal{C}} \sum_{t=1}^n \ell(\hat{a}_t, y_t).$$

Log loss

$$\ell(\hat{p},y) = -\log \hat{p}(y).$$

Comparison class

Parametric family of densities: $\mathcal{C} = \{p_{\theta} : \theta \in \Theta\}$,

where $p_{\theta}: \mathcal{Y}^n \to \mathbb{R}^+$ is a parameterized probability density with respect to the *n*-fold product of a fixed reference measure λ on \mathcal{Y} :

Online Prediction as a Zero-Sum Game

Minimize *regret* wrt comparison C:

$$R(y_1^n, a_1^n) = \sum_{t=1}^n \ell(a_t, y_t) - \inf_{\hat{a} \in \mathcal{C}} \sum_{t=1}^n \ell(\hat{a}_t, y_t).$$

Log loss

$$\ell(\hat{p},y) = -\log \hat{p}(y).$$

Comparison class

Parametric family of densities: $\mathcal{C} = \{p_{\theta}: \theta \in \Theta\}$,

where $p_{\theta}: \mathcal{Y}^n \to \mathbb{R}^+$ is a parameterized probability density with respect to the *n*-fold product of a fixed reference measure λ on \mathcal{Y} :

For all $\theta \in \Theta$,

$$\int_{\mathcal{Y}^n} p_{\theta}(y_1,\ldots,y_n) d\lambda^n(y) = 1.$$

Comparison class

For $p = p_{\theta}$ and $y \in \mathcal{Y}$, we write $p_t(y) = p(y|y_1, \dots, y_{t-1})$. Thus,

$$\sum_{t=1}^{n} \log(p_t(y_t)) = \sum_{t=1}^{n} \log(p(y_t|y_1,\ldots,y_{t-1})) = \log(p(y_1^n)).$$

Comparison class

For $p = p_{\theta}$ and $y \in \mathcal{Y}$, we write $p_t(y) = p(y|y_1, \dots, y_{t-1})$. Thus,

$$\sum_{t=1}^{n} \log(p_t(y_t)) = \sum_{t=1}^{n} \log(p(y_t|y_1, \dots, y_{t-1})) = \log(p(y_1^n)).$$

Regret

$$R(y_1^n, a_1^n) = \sum_{t=1}^n \ell(a_t, y_t) - \inf_{\hat{a} \in \mathcal{C}} \sum_{t=1}^n \ell(\hat{a}_t, y_t)$$

Comparison class

For $p = p_{\theta}$ and $y \in \mathcal{Y}$, we write $p_t(y) = p(y|y_1, \dots, y_{t-1})$. Thus,

$$\sum_{t=1}^{n} \log(p_t(y_t)) = \sum_{t=1}^{n} \log(p(y_t|y_1, \dots, y_{t-1})) = \log(p(y_1^n)).$$

Regret

$$R(y_1^n, a_1^n) = \sum_{t=1}^n \ell(a_t, y_t) - \inf_{\hat{a} \in \mathcal{C}} \sum_{t=1}^n \ell(\hat{a}_t, y_t)$$

$$R(y_1^n, \hat{p}_1^n) = \sup_{p \in \mathcal{C}} \sum_{t=1}^n \log(p(y_t | y_1^{t-1})) - \sum_{t=1}^n \log(\hat{p}_t(y_t))$$

Comparison class

For $p = p_{\theta}$ and $y \in \mathcal{Y}$, we write $p_t(y) = p(y|y_1, \dots, y_{t-1})$. Thus,

$$\sum_{t=1}^{n} \log(p_t(y_t)) = \sum_{t=1}^{n} \log(p(y_t|y_1, \dots, y_{t-1})) = \log(p(y_1^n)).$$

Regret

$$\begin{split} R(y_1^n, a_1^n) &= \sum_{t=1}^n \ell(a_t, y_t) - \inf_{\hat{a} \in \mathcal{C}} \sum_{t=1}^n \ell(\hat{a}_t, y_t) \\ R(y_1^n, \hat{p}_1^n) &= \sup_{p \in \mathcal{C}} \sum_{t=1}^n \log(p(y_t | y_1^{t-1})) - \sum_{t=1}^n \log(\hat{p}_t(y_t)) \\ &= \sup_{p \in \mathcal{C}} \log(p(y_1^n)) - \sum_{t=1}^n \log(\hat{p}_t(y_t)). \end{split}$$

Definition: Parametric constant model

Parametric family of i.i.d. densities on \mathcal{Y}^n :

Definition: Parametric constant model

Parametric family of i.i.d. densities on \mathcal{Y}^n :

$$C = \{p_{\theta}^n : \theta \in \Theta\},$$

where $p_{ heta}^n$ is the *n*-fold product of the probability density $p_{ heta}: \mathcal{Y} o \mathbb{R}^+$

Definition: Parametric constant model

Parametric family of i.i.d. densities on \mathcal{Y}^n :

$$C = \{p_{\theta}^n : \theta \in \Theta\},\$$

where p_{θ}^{n} is the *n*-fold product of the probability density $p_{\theta}: \mathcal{Y} \to \mathbb{R}^{+}$, which is a parameterized probability density with respect to the fixed reference measure λ on \mathcal{Y} :

$$\int_{\mathcal{Y}} p_{\theta}(y) \, d\lambda(y) = 1.$$

Definition: Parametric constant model

Parametric family of i.i.d. densities on \mathcal{Y}^n :

$$C = \{p_{\theta}^n : \theta \in \Theta\},$$

where p_{θ}^{n} is the *n*-fold product of the probability density $p_{\theta}: \mathcal{Y} \to \mathbb{R}^{+}$, which is a parameterized probability density with respect to the fixed reference measure λ on \mathcal{Y} :

$$\int_{\mathcal{Y}} p_{\theta}(y) \, d\lambda(y) = 1.$$

For $p = p_{\theta}$ and $y_t \in \mathcal{Y}$, we have $p_t(y_t) = p(y_t|y_1, \dots, y_{t-1}) = p(y)$.

Definition: Parametric constant model

Parametric family of i.i.d. densities on \mathcal{Y}^n :

$$C = \{p_{\theta}^n : \theta \in \Theta\},\$$

where p_{θ}^{n} is the *n*-fold product of the probability density $p_{\theta}: \mathcal{Y} \to \mathbb{R}^{+}$, which is a parameterized probability density with respect to the fixed reference measure λ on \mathcal{Y} :

$$\int_{\mathcal{Y}} p_{\theta}(y) \, d\lambda(y) = 1.$$

For $p=p_{\theta}$ and $y_t \in \mathcal{Y}$, we have $p_t(y_t)=p(y_t|y_1,\ldots,y_{t-1})=p(y)$. Thus,

$$\sum_{t=1}^{n} \log(p_t(y_t)) = \sum_{t=1}^{n} \log(p(y_t)).$$

Strategies are joint densities

• A strategy \hat{p} is a mapping from histories $y_1^t = (y_1, \dots, y_t)$ to densities $\hat{p}(\cdot|y_1^t)$ on \mathcal{Y} .

Strategies are joint densities

- A strategy \hat{p} is a mapping from histories $y_1^t = (y_1, \dots, y_t)$ to densities $\hat{p}(\cdot|y_1^t)$ on \mathcal{Y} .
- Every strategy is a joint density:

$$\hat{p}(y_1,\ldots,y_n)=$$

Strategies are joint densities

- A strategy \hat{p} is a mapping from histories $y_1^t = (y_1, \dots, y_t)$ to densities $\hat{p}(\cdot|y_1^t)$ on \mathcal{Y} .
- Every strategy is a joint density:

$$\hat{\rho}(y_1,\ldots,y_n) = \hat{\rho}(y_1)\hat{\rho}(y_2|y_1)\cdots\hat{\rho}(y_n|y_1^{n-1}).$$

Strategies are joint densities

- A strategy \hat{p} is a mapping from histories $y_1^t = (y_1, \dots, y_t)$ to densities $\hat{p}(\cdot|y_1^t)$ on \mathcal{Y} .
- Every strategy is a joint density:

$$\hat{\rho}(y_1,\ldots,y_n) = \hat{\rho}(y_1)\hat{\rho}(y_2|y_1)\cdots\hat{\rho}(y_n|y_1^{n-1}).$$

• Every joint density \hat{p} is a strategy, $\hat{p}_{t+1}(\cdot) = \hat{p}(\cdot|y_1^t)$.

Regret

We abuse notation, and write:

$$p_{\theta}(y_1^n) = \prod_{t=1}^n p_{\theta}(y_t).$$

Regret

We abuse notation, and write:

$$p_{\theta}(y_1^n) = \prod_{t=1}^n p_{\theta}(y_t).$$

Regret wrt comparison $\mathcal{C} = \{p_{\theta}\}$ is a log likelihood ratio,

$$R(y_1^n, \hat{p}) = \sum_{t=1}^n \ell(\hat{p}_t, y_t) - \inf_{p \in \mathcal{C}} \sum_{t=1}^n \ell(p, y_t)$$

Regret

We abuse notation, and write:

$$p_{\theta}(y_1^n) = \prod_{t=1}^n p_{\theta}(y_t).$$

Regret wrt comparison $\mathcal{C} = \{p_{\theta}\}$ is a log likelihood ratio,

$$R(y_1^n, \hat{p}) = \sum_{t=1}^n \ell(\hat{p}_t, y_t) - \inf_{p \in \mathcal{C}} \sum_{t=1}^n \ell(p, y_t)$$
$$= \sup_{\theta \in \Theta} \log p_{\theta}(y_1^n) - \log \hat{p}(y_1^n)$$

Regret

We abuse notation, and write:

$$p_{\theta}(y_1^n) = \prod_{t=1}^n p_{\theta}(y_t).$$

Regret wrt comparison $C = \{p_{\theta}\}$ is a log likelihood ratio, which is a difference of KL-divergences:

$$R(y_1^n, \hat{p}) = \sum_{t=1}^n \ell(\hat{p}_t, y_t) - \inf_{p \in \mathcal{C}} \sum_{t=1}^n \ell(p, y_t)$$
$$= \sup_{\theta \in \Theta} \log p_{\theta}(y_1^n) - \log \hat{p}(y_1^n)$$

Regret

We abuse notation, and write:

$$p_{\theta}(y_1^n) = \prod_{t=1}^n p_{\theta}(y_t).$$

Regret wrt comparison $C = \{p_{\theta}\}$ is a log likelihood ratio, which is a difference of KL-divergences:

$$R(y_1^n, \hat{p}) = \sum_{t=1}^n \ell(\hat{p}_t, y_t) - \inf_{p \in \mathcal{C}} \sum_{t=1}^n \ell(p, y_t)$$

$$= \sup_{\theta \in \Theta} \log p_{\theta}(y_1^n) - \log \hat{p}(y_1^n)$$

$$= nKL(P_n || \hat{p}) - \inf_{\theta \in \Theta} nKL(P_n || p_{\theta}),$$

where P_n is the empirical distribution, with mass 1/n on y_1, \ldots, y_n , and $KL(P_n||p)$ is the Kullback-Leibler divergence of P_n with respect to p.

Many interpretations of prediction with log loss

Many interpretations of prediction with log loss

• Sequential probability prediction.

Many interpretations of prediction with log loss

- Sequential probability prediction.
- Sequential lossless data compression ("minimum description length")

Many interpretations of prediction with log loss

- Sequential probability prediction.
- Sequential lossless data compression ("minimum description length")
- Repeated gambling/investment.

Many interpretations of prediction with log loss

- Sequential probability prediction.
- Sequential lossless data compression ("minimum description length")
- Repeated gambling/investment.

Long history in several communities.

[Kelly, 1956], [Solomonoff, 1964], [Kolmogorov, 1965], [Cover, 1974], [Rissanen, 1976, 1987, 1996], [Shtarkov, 1987], [Feder, Merhav and Gutman, 1992], [Freund, 1996], [Xie and Barron, 2000], [Cesa-Bianchi and Lugosi, 2001, 2006], [Grünwald, 2007]

Outline

- Normalized maximum likelihood
- Multinomials
- SNML: predicting like there's no tomorrow
- Bayesian strategies
- Optimality = exchangeability

Outline

- Normalized maximum likelihood
- Multinomials
- SNML: predicting like there's no tomorrow
- Bayesian strategies
- Optimality = exchangeability

NML

$$p_{nml}^{(n)}(y_1^n) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^n)$$

NML

$$\begin{aligned} p_{nml}^{(n)}(y_1^n) &\propto \sup_{\theta \in \Theta} p_{\theta}(y_1^n) \\ p_{nml}^{(n)}(y_1^n) &= \frac{\sup_{\theta \in \Theta} p_{\theta}(y_1^n)}{\int_{\mathcal{Y}^n} \sup_{\theta \in \Theta} p_{\theta}(z_1^n) \, d\lambda^n(z_1^n)} \end{aligned}$$

NML

$$p_{nml}^{(n)}(y_1^n) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^n)$$

$$p_{nml}^{(n)}(y_1^n) = \frac{\sup_{\theta \in \Theta} p_{\theta}(y_1^n)}{\int_{\mathcal{Y}^n} \sup_{\theta \in \Theta} p_{\theta}(z_1^n) d\lambda^n(z_1^n)}$$

Integrability

We require that the Shtarkov integral,

$$\int_{\mathcal{V}^n} \sup_{\theta \in \Theta} p_{\theta}(z_1^n) \, d\lambda^n(z_1^n)$$

is finite.

Example

Consider the Gaussian family of densities on \mathbb{R} ($\lambda =$ Lebesgue measure):

$$p_{\mu}(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2}\right),$$

for $\mu \in \mathbb{R}$.

Example

Consider the Gaussian family of densities on \mathbb{R} ($\lambda = \text{Lebesgue measure}$):

$$p_{\mu}(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2}\right),$$

for $\mu \in \mathbb{R}$. Then the Shtarkov integral for n=1 is

$$\int_{\mathcal{V}} \sup_{\theta \in \Theta} p_{\theta}(z_1) dz_1 =$$

Example

Consider the Gaussian family of densities on \mathbb{R} ($\lambda = \text{Lebesgue measure}$):

$$p_{\mu}(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2}\right),$$

for $\mu \in \mathbb{R}$. Then the Shtarkov integral for n=1 is

$$\int_{\mathcal{Y}} \sup_{\theta \in \Theta} p_{\theta}(z_1) dz_1 = \frac{1}{\sqrt{2\pi}} \int_{\mathcal{Y}} dz_1$$

Example

Consider the Gaussian family of densities on \mathbb{R} ($\lambda = \text{Lebesgue measure}$):

$$p_{\mu}(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2}\right),$$

for $\mu \in \mathbb{R}$. Then the Shtarkov integral for n=1 is

$$\int_{\mathcal{Y}} \sup_{\theta \in \Theta} p_{\theta}(z_1) \, dz_1 = \frac{1}{\sqrt{2\pi}} \int_{\mathcal{Y}} dz_1 = \infty.$$

Example

$$\int_{\mathcal{V}} \int_{\mathcal{V}} \sup_{\theta \in \Theta} p_{\theta}(z_1^2) dz_1 dz_2$$

Example

$$\int_{\mathcal{Y}} \int_{\mathcal{Y}} \sup_{\theta \in \Theta} p_{\theta}(z_1^2) dz_1 dz_2$$

$$= \frac{1}{2\pi} \int_{\mathcal{Y}} \int_{\mathcal{Y}} \exp\left(-\frac{(z_1 - (z_1 + z_2)/2)^2 + (z_2 - (z_1 + z_2)/2)^2}{2}\right) dz_1 dz_2$$

Example

$$\begin{split} & \int_{\mathcal{Y}} \int_{\mathcal{Y}} \sup_{\theta \in \Theta} p_{\theta}(z_{1}^{2}) \, dz_{1} \, dz_{2} \\ & = \frac{1}{2\pi} \int_{\mathcal{Y}} \int_{\mathcal{Y}} \exp\left(-\frac{(z_{1} - (z_{1} + z_{2})/2)^{2} + (z_{2} - (z_{1} + z_{2})/2)^{2}}{2}\right) \, dz_{1} \, dz_{2} \\ & = \frac{1}{2\pi} \int_{\mathcal{Y}} \int_{\mathcal{Y}} \exp\left(-\frac{(z_{1} - z_{2})^{2}}{4}\right) \, dz_{1} \, dz_{2} \end{split}$$

Example

$$\begin{split} & \int_{\mathcal{Y}} \int_{\mathcal{Y}} \sup_{\theta \in \Theta} p_{\theta}(z_{1}^{2}) \, dz_{1} \, dz_{2} \\ & = \frac{1}{2\pi} \int_{\mathcal{Y}} \int_{\mathcal{Y}} \exp\left(-\frac{(z_{1} - (z_{1} + z_{2})/2)^{2} + (z_{2} - (z_{1} + z_{2})/2)^{2}}{2}\right) \, dz_{1} \, dz_{2} \\ & = \frac{1}{2\pi} \int_{\mathcal{Y}} \int_{\mathcal{Y}} \exp\left(-\frac{(z_{1} - z_{2})^{2}}{4}\right) \, dz_{1} \, dz_{2} \\ & = \frac{\sqrt{2}}{\sqrt{\pi}} \int_{\mathcal{Y}} dz_{1} \end{split}$$

Example

 $=\infty$.

$$\begin{split} & \int_{\mathcal{Y}} \int_{\mathcal{Y}} \sup_{\theta \in \Theta} p_{\theta}(z_{1}^{2}) \, dz_{1} \, dz_{2} \\ & = \frac{1}{2\pi} \int_{\mathcal{Y}} \int_{\mathcal{Y}} \exp\left(-\frac{(z_{1} - (z_{1} + z_{2})/2)^{2} + (z_{2} - (z_{1} + z_{2})/2)^{2}}{2}\right) \, dz_{1} \, dz_{2} \\ & = \frac{1}{2\pi} \int_{\mathcal{Y}} \int_{\mathcal{Y}} \exp\left(-\frac{(z_{1} - z_{2})^{2}}{4}\right) \, dz_{1} \, dz_{2} \\ & = \frac{\sqrt{2}}{\sqrt{\pi}} \int_{\mathcal{Y}} dz_{1} \end{split}$$

Definition

Given an initial sequence $y_1^m \in \mathcal{Y}^m$, define the *conditional Shtarkov* integral

$$\int_{\mathcal{Y}^{n-m}} \sup_{\theta \in \Theta} p_{\theta}(y_1^m, y_{m+1}^n) d\lambda^{n-m}(y_{m+1}^n).$$

Definition

Given an initial sequence $y_1^m \in \mathcal{Y}^m$, define the *conditional Shtarkov* integral

$$\int_{\mathcal{Y}^{n-m}} \sup_{\theta \in \Theta} p_{\theta}(y_1^m, y_{m+1}^n) d\lambda^{n-m}(y_{m+1}^n).$$

Example

For the Gaussian family of densities on $\mathbb R$ and $y_1\in\mathbb R$, the conditional Shtarkov integral for n=2 is

$$\int_{\mathcal{Y}} \sup_{\theta \in \Theta} p_{\theta}(y_1, y_2) dy_2 = \frac{1}{2\pi} \int_{\mathcal{Y}} \exp\left(-\frac{(y_2 - y_1)^2}{4}\right) dy_2$$

Definition

Given an initial sequence $y_1^m \in \mathcal{Y}^m$, define the *conditional Shtarkov* integral

$$\int_{\mathcal{Y}^{n-m}} \sup_{\theta \in \Theta} p_{\theta}(y_1^m, y_{m+1}^n) d\lambda^{n-m}(y_{m+1}^n).$$

Example

For the Gaussian family of densities on $\mathbb R$ and $y_1\in\mathbb R$, the conditional Shtarkov integral for n=2 is

$$\int_{\mathcal{Y}} \sup_{\theta \in \Theta} p_{\theta}(y_1, y_2) \, dy_2 = \frac{1}{2\pi} \int_{\mathcal{Y}} \exp\left(-\frac{(y_2 - y_1)^2}{4}\right) \, dy_2 = \sqrt{\frac{2}{\pi}}.$$

Conditional regret

Definition

Fix $y_1^m \in \mathcal{Y}$.

The conditional regret given y_1^m wrt the comparison class $\mathcal{C} = \{p_{ heta}\}$ is

Conditional regret

Definition

Fix $y_1^m \in \mathcal{Y}$.

The conditional regret given
$$y_1^m$$
 wrt the comparison class $\mathcal{C} = \{p_\theta\}$ is
$$R(y_{m+1}^n, \hat{\rho}|y_1^m) = \sum_{t=m+1}^n \ell(\hat{\rho}_t, y_t) - \inf_{p \in \mathcal{C}} \sum_{t=1}^n \ell(p, y_t)$$

Conditional regret

Definition

Fix
$$y_1^m \in \mathcal{Y}$$
.

The conditional regret given y_1^m wrt the comparison class $\mathcal{C} = \{p_\theta\}$ is

$$R(y_{m+1}^{n}, \hat{p}|y_{1}^{m}) = \sum_{t=m+1}^{n} \ell(\hat{p}_{t}, y_{t}) - \inf_{p \in \mathcal{C}} \sum_{t=1}^{n} \ell(p, y_{t})$$
$$= \sup_{\theta \in \Theta} \log p_{\theta}(y_{1}^{n}) - \log \hat{p}(y_{m+1}^{n}).$$

Conditional NML

Given $y_1^m \in \mathcal{Y}^m$,

$$p_{nml}^{(n)}(y_{m+1}^n|y_1^m) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^n)$$

Conditional NML

Given $y_1^m \in \mathcal{Y}^m$,

$$\begin{aligned} p_{nml}^{(n)}(y_{m+1}^{n}|y_{1}^{m}) &\propto \sup_{\theta \in \Theta} p_{\theta}(y_{1}^{n}) \\ p_{nml}^{(n)}(y_{m+1}^{n}|y_{1}^{m}) &= \frac{\sup_{\theta \in \Theta} p_{\theta}(y_{1}^{n})}{\int_{\mathcal{Y}^{n-m}} \sup_{\theta \in \Theta} p_{\theta}(y_{1}^{m}, z_{m+1}^{n}) \, d\lambda^{n-m}(z_{m+1}^{n})} \end{aligned}$$

$$\int_{\mathcal{Y}^{n-m}} \sup_{\theta \in \Theta} p_{\theta}(y_1^m, z_{m+1}^n) d\lambda^{n-m}(z_{m+1}^n)$$

Conditional NML

Given $y_1^m \in \mathcal{Y}^m$,

$$\begin{aligned} p_{nml}^{(n)}(y_{m+1}^{n}|y_{1}^{m}) &\propto \sup_{\theta \in \Theta} p_{\theta}(y_{1}^{n}) \\ p_{nml}^{(n)}(y_{m+1}^{n}|y_{1}^{m}) &= \frac{\sup_{\theta \in \Theta} p_{\theta}(y_{1}^{n})}{\int_{\mathcal{Y}^{n-m}} \sup_{\theta \in \Theta} p_{\theta}(y_{1}^{m}, z_{m+1}^{n}) d\lambda^{n-m}(z_{m+1}^{n})} \end{aligned}$$

Integrability

We require that the conditional Shtarkov integral given y_1^m is finite, that is,

$$\int_{\mathcal{Y}^{n-m}} \sup_{\theta \in \Theta} p_{\theta}(y_1^m, z_{m+1}^n) \, d\lambda^{n-m}(z_{m+1}^n) < \infty.$$

NML is optimal

[Shtarkov, 1987]

Fix n > 0 and suppose that the Shtarkov integral is finite, so that NML is well defined.

NML is optimal

[Shtarkov, 1987]

Fix n > 0 and suppose that the Shtarkov integral is finite, so that NML is well defined.

1 NML equalizes regret: for any y_1^n ,

$$R(y_1^n, p_{nml}^{(n)}) = \log \int_{\mathcal{Y}^n} \sup_{\theta \in \Theta} p_{\theta}(z_1^n) \, d\lambda^n(z_1^n).$$

NML is optimal

[Shtarkov, 1987]

Fix n > 0 and suppose that the Shtarkov integral is finite, so that NML is well defined.

1 NML equalizes regret: for any y_1^n ,

$$R(y_1^n, p_{nml}^{(n)}) = \log \int_{\mathcal{Y}^n} \sup_{\theta \in \Theta} p_{\theta}(z_1^n) d\lambda^n(z_1^n).$$

② Any strategy \hat{p} that predicts differently from NML has strictly worse maximum regret.

NML is optimal

[Shtarkov, 1987]

Fix n > 0 and suppose that the Shtarkov integral is finite, so that NML is well defined.

1 NML equalizes regret: for any y_1^n ,

$$R(y_1^n, p_{nml}^{(n)}) = \log \int_{\mathcal{Y}^n} \sup_{\theta \in \Theta} p_{\theta}(z_1^n) \, d\lambda^n(z_1^n).$$

- ② Any strategy \hat{p} that predicts differently from NML has strictly worse maximum regret.
- Thus, NML is the minimax optimal strategy:

$$\min_{\hat{\rho}} \max_{y_1^n} R(y_1^n, \hat{\rho}) = R(y_1^n, \rho_{nml}^{(n)}).$$

The regret,

$$\log \int_{\mathcal{Y}^n} \sup_{\theta \in \Theta} p_{\theta}(z_1^n) \, d\lambda^n(z_1^n)$$

is often called the *stochastic complexity* of $\{p_{\theta} : \theta \in \Theta\}$.

Conditional NML is optimal

Fix $y_1^m \in \mathcal{Y}^m$ and n > m. Suppose that the conditional Shtarkov integral given y_1^m is finite, so that conditional NML is well defined.

① Conditional NML equalizes conditional regret: for any y_{m+1}^n ,

$$R(y_{m+1}^{n}, p_{nml}^{(n)}|y_{1}^{m}) = \log \int_{\mathcal{Y}^{n-m}} \sup_{\theta \in \Theta} p_{\theta}(y_{1}^{m} z_{m+1}^{n}) d\lambda^{n-m}(z_{m+1}^{n}).$$

- ② Any conditional strategy \hat{p} that predicts differently from conditional NML has strictly worse maximum conditional regret.
- 3 Thus, conditional NML is the minimax optimal strategy:

$$\min_{\hat{\rho}} \max_{y_{m+1}^n} R(y_{m+1}^n, \hat{\rho}|y_1^m) = R(y_{m+1}^n, p_{nml}^{(n)}|y_1^m).$$

Call the regret,

$$\log \int_{\mathcal{Y}^{n-m}} \sup_{\theta \in \Theta} p_{\theta}(y_1^m z_{m+1}^n) d\lambda^{n-m}(z_{m+1}^n)$$

the conditional stochastic complexity of $\{p_{\theta}: \theta \in \Theta\}$, given y_1^m .

Proof

Proof

$$R(y_1^n,p_{nml}^{(n)})$$

Proof

$$R(y_1^n, p_{nml}^{(n)}) = \log \left(\sup_{\theta \in \Theta} p_{\theta}(y_1^n) \right) - \log \left(p_{nml}^{(n)}(y_1^n) \right)$$

Proof

$$\begin{split} R(y_1^n, p_{nml}^{(n)}) &= \log \left(\sup_{\theta \in \Theta} p_{\theta}(y_1^n) \right) - \log \left(p_{nml}^{(n)}(y_1^n) \right) \\ &= \log \left(\sup_{\theta \in \Theta} p_{\theta}(y_1^n) \right) - \log \left(\frac{\sup_{\theta \in \Theta} p_{\theta}(y_1^n)}{\int_{\mathcal{V}^n} \sup_{\theta \in \Theta} p_{\theta}(z_1^n) \, d\lambda^n(z_1^n)} \right) \end{split}$$

Proof

$$\begin{split} R(y_1^n, p_{nml}^{(n)}) &= \log \left(\sup_{\theta \in \Theta} p_{\theta}(y_1^n) \right) - \log \left(p_{nml}^{(n)}(y_1^n) \right) \\ &= \log \left(\sup_{\theta \in \Theta} p_{\theta}(y_1^n) \right) - \log \left(\frac{\sup_{\theta \in \Theta} p_{\theta}(y_1^n)}{\int_{\mathcal{Y}^n} \sup_{\theta \in \Theta} p_{\theta}(z_1^n) \, d\lambda^n(z_1^n)} \right) \\ &= \log \int_{\mathcal{Y}^n} \sup_{\theta \in \Theta} p_{\theta}(z_1^n) \, d\lambda^n(z_1^n), \end{split}$$

Proof

First, NML is an equalizer:

$$R(y_1^n, p_{nml}^{(n)}) = \log \left(\sup_{\theta \in \Theta} p_{\theta}(y_1^n) \right) - \log \left(p_{nml}^{(n)}(y_1^n) \right)$$

$$= \log \left(\sup_{\theta \in \Theta} p_{\theta}(y_1^n) \right) - \log \left(\frac{\sup_{\theta \in \Theta} p_{\theta}(y_1^n)}{\int_{\mathcal{Y}^n} \sup_{\theta \in \Theta} p_{\theta}(z_1^n) d\lambda^n(z_1^n)} \right)$$

$$= \log \int_{\mathcal{Y}^n} \sup_{\theta \in \Theta} p_{\theta}(z_1^n) d\lambda^n(z_1^n),$$

which is independent of y_1^n .

Proof

Second, for any other strategy, $\hat{p} \neq p_{nml}^{(n)}$, there is a sequence y_1^n with $\hat{p}(y_1^n) < p_{nml}^{(n)}(y_1^n)$.

Proof

Second, for any other strategy, $\hat{p} \neq p_{nml}^{(n)}$, there is a sequence y_1^n with $\hat{p}(y_1^n) < p_{nml}^{(n)}(y_1^n)$.

For this sequence,

$$R(y_1^n, \hat{p}) > R(y_1^n, p_{nml}^{(n)}).$$

Proof

Second, for any other strategy, $\hat{p} \neq p_{nml}^{(n)}$, there is a sequence y_1^n with $\hat{p}(y_1^n) < p_{nml}^{(n)}(y_1^n)$.

For this sequence,

$$R(y_1^n, \hat{p}) > R(y_1^n, p_{nml}^{(n)}).$$

So NML is the minimax optimal strategy.

Computing Normalized maximum likelihood

NML

$$p_{nml}^{(n)}(y_1\cdots y_n)\propto \sup_{\theta\in\Theta}p_{\theta}(y_1^n)$$

NML

$$p_{nml}^{(n)}(y_1\cdots y_n)\propto \sup_{\theta\in\Theta}p_{\theta}(y_1^n)$$

• To predict, we compute conditional distributions, marginalize.

NML

$$p_{nml}^{(n)}(y_1 \cdots y_n) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^n)$$

$$p_{nml}^{(n)}(y_t | y_1 \cdots y_{t-1}) = \frac{p_{nml}^{(n)}(y_1^t)}{p_{nml}^{(n)}(y_1^{t-1})}$$

• To predict, we compute conditional distributions, marginalize.

NML

$$\begin{split} \rho_{nml}^{(n)}(y_1 \cdots y_n) &\propto \sup_{\theta \in \Theta} p_{\theta}(y_1^n) \\ \rho_{nml}^{(n)}(y_t | y_1 \cdots y_{t-1}) &= \frac{\rho_{nml}^{(n)}(y_1^t)}{\rho_{nml}^{(n)}(y_1^{t-1})} \\ &= \frac{\int_{\mathcal{Y}^{n-t}} \sup_{\theta \in \Theta} p_{\theta}(y_1^t z_{t+1}^n) \, d\lambda^{n-t}(z_{t+1}^n)}{\int_{\mathcal{Y}^{n-t+1}} \sup_{\theta \in \Theta} p_{\theta}(y_1^{t-1} z_t^n) \, d\lambda^{n-t+1}(z_t^n)} \end{split}$$

• To predict, we compute conditional distributions, marginalize.

$$\begin{split} p_{nml}^{(n)}(y_1 \cdots y_n) &\propto \sup_{\theta \in \Theta} p_{\theta}(y_1^n) \\ p_{nml}^{(n)}(y_t | y_1 \cdots y_{t-1}) &= \frac{p_{nml}^{(n)}(y_1^t)}{p_{nml}^{(n)}(y_1^{t-1})} \\ &= \frac{\int_{\mathcal{Y}^{n-t}} \sup_{\theta \in \Theta} p_{\theta}(y_1^t z_{t+1}^n) \, d\lambda^{n-t}(z_{t+1}^n)}{\int_{\mathcal{Y}^{n-t+1}} \sup_{\theta \in \Theta} p_{\theta}(y_1^{t-1} z_t^n) \, d\lambda^{n-t+1}(z_t^n)} \end{split}$$

- To predict, we compute conditional distributions, marginalize.
- All that conditioning is computationally expensive!

$$\begin{split} \rho_{nml}^{(n)}(y_1 \cdots y_n) &\propto \sup_{\theta \in \Theta} p_{\theta}(y_1^n) \\ \rho_{nml}^{(n)}(y_t | y_1 \cdots y_{t-1}) &= \frac{\rho_{nml}^{(n)}(y_1^t)}{\rho_{nml}^{(n)}(y_1^{t-1})} \\ &= \frac{\int_{\mathcal{Y}^{n-t}} \sup_{\theta \in \Theta} p_{\theta}(y_1^t z_{t+1}^n) \, d\lambda^{n-t}(z_{t+1}^n)}{\int_{\mathcal{Y}^{n-t+1}} \sup_{\theta \in \Theta} p_{\theta}(y_1^{t-1} z_t^n) \, d\lambda^{n-t+1}(z_t^n)} \end{split}$$

- To predict, we compute conditional distributions, marginalize.
- All that conditioning is computationally expensive!
- When can we compute it cheaply?

$$\begin{split} \rho_{nml}^{(n)}(y_1 \cdots y_n) &\propto \sup_{\theta \in \Theta} p_{\theta}(y_1^n) \\ \rho_{nml}^{(n)}(y_t | y_1 \cdots y_{t-1}) &= \frac{\rho_{nml}^{(n)}(y_1^t)}{\rho_{nml}^{(n)}(y_1^{t-1})} \\ &= \frac{\int_{\mathcal{Y}^{n-t}} \sup_{\theta \in \Theta} p_{\theta}(y_1^t z_{t+1}^n) \, d\lambda^{n-t}(z_{t+1}^n)}{\int_{\mathcal{Y}^{n-t+1}} \sup_{\theta \in \Theta} p_{\theta}(y_1^{t-1} z_t^n) \, d\lambda^{n-t+1}(z_t^n)} \end{split}$$

- To predict, we compute conditional distributions, marginalize.
- All that conditioning is computationally expensive!
- When can we compute it cheaply?
- Multinomials.

Outline

- Normalized maximum likelihood
- Multinomials
- SNML: predicting like there's no tomorrow
- Bayesian strategies
- Optimality = exchangeability

Example

Consider $y \in \{1, \dots, K\}$ and

$$p_{\theta}(y) = \theta_y, \qquad \theta \in \Delta^K.$$

Example

Consider $y \in \{1, ..., K\}$ and

$$p_{\theta}(y) = \theta_y, \qquad \theta \in \Delta^K.$$

Then

$$p_{nml}^{(n)}(y_1^n) = \frac{\max_{\theta} p_{\theta}(y_1^n)}{\log \sum_{z_1^n} \max_{\theta} p_{\theta}(z_1^n)}.$$

Example

Consider $y \in \{1, ..., K\}$ and

$$p_{\theta}(y) = \theta_y, \qquad \theta \in \Delta^K.$$

Then

$$p_{nml}^{(n)}(y_1^n) = \frac{\max_{\theta} p_{\theta}(y_1^n)}{\log \sum_{z_1^n} \max_{\theta} p_{\theta}(z_1^n)}.$$

How do we compute the denominator (the stochastic complexity)?

Example

Consider $y \in \{1, ..., K\}$ and

$$p_{\theta}(y) = \theta_y, \qquad \theta \in \Delta^K.$$

Then

$$p_{nml}^{(n)}(y_1^n) = \frac{\max_{\theta} p_{\theta}(y_1^n)}{\log \sum_{z_1^n} \max_{\theta} p_{\theta}(z_1^n)}.$$

How do we compute the denominator (the stochastic complexity)? (The sums required to compute $p_{nm}^{(n)}(y_t|y_1\cdots y_{t-1})$ are similar.)

Example

For $y_1^n \in \{1, \dots, K\}^n$, define $h \in \{0, \dots, n\}^K$ by

$$h_{v} = \sum_{t=1}^{n} 1[y_{t} = v].$$

Example

For $y_1^n \in \{1, \dots, K\}^n$, define $h \in \{0, \dots, n\}^K$ by

$$h_{v} = \sum_{t=1}^{n} 1[y_{t} = v].$$

$$\max_{\theta} p_{\theta}(y_1^n)$$

Example

For $y_1^n \in \{1, \dots, K\}^n$, define $h \in \{0, \dots, n\}^K$ by

$$h_{v} = \sum_{t=1}^{n} 1[y_{t} = v].$$

$$\max_{\theta} p_{\theta}(y_1^n) = \prod_{t=1}^n p_{\hat{\theta}(y_1^n)}(y_t)$$

Example

For $y_1^n \in \{1, \dots, K\}^n$, define $h \in \{0, \dots, n\}^K$ by

$$h_{v} = \sum_{t=1}^{n} 1[y_{t} = v].$$

$$\max_{\theta} p_{\theta}(y_1^n) = \prod_{t=1}^n p_{\hat{\theta}(y_1^n)}(y_t) = \prod_{v=1}^K \hat{\theta}_v^{h_v}$$

Example

For $y_1^n \in \{1, ..., K\}^n$, define $h \in \{0, ..., n\}^K$ by

$$h_{v} = \sum_{t=1}^{n} 1[y_{t} = v].$$

$$\max_{\theta} p_{\theta}(y_1^n) = \prod_{t=1}^n p_{\hat{\theta}(y_1^n)}(y_t) = \prod_{v=1}^K \hat{\theta}_v^{h_v} = \prod_{v=1}^K \left(\frac{h_v}{n}\right)^{h_v}.$$

Example

We can write

$$P_{K,n}:=\sum_{z_1^n}p_{\hat{\theta}(z_1^n)}(z_1^n)$$

Example

We can write

$$P_{K,n} := \sum_{z_1^n} p_{\hat{\theta}(z_1^n)}(z_1^n) = \sum_{h_1 + \dots + h_K = n} \frac{n!}{h_1! \cdots h_K!} \prod_{v=1}^K \left(\frac{h_v}{n}\right)^{h_v}.$$

Example

We can write

$$P_{K,n} := \sum_{z_1^n} p_{\hat{\theta}(z_1^n)}(z_1^n) = \sum_{h_1 + \dots + h_K = n} \frac{n!}{h_1! \cdots h_K!} \prod_{v=1}^K \left(\frac{h_v}{n}\right)^{h_v}.$$

But we can split this sum: for any $k_1 + k_2 = K$,

$$P_{K,n} = \sum_{h_1,h_2,\dots,h_n} \frac{n!}{h_1!h_2!} \left(\frac{h_1}{n}\right)^{h_1} \left(\frac{h_2}{n}\right)^{h_2} P_{k_1,h_1} P_{k_2,h_2}.$$

[Kontkanen, Buntine, Myllymäki, Rissanen, Tirri, 2003]

Example

We can write

$$P_{K,n} := \sum_{z_1^n} p_{\hat{\theta}(z_1^n)}(z_1^n) = \sum_{h_1 + \dots + h_K = n} \frac{n!}{h_1! \cdots h_K!} \prod_{v=1}^K \left(\frac{h_v}{n}\right)^{h_v}.$$

But we can split this sum: for any $k_1 + k_2 = K$,

$$P_{K,n} = \sum_{h_1 + h_2 = n} \frac{n!}{h_1! h_2!} \left(\frac{h_1}{n}\right)^{h_1} \left(\frac{h_2}{n}\right)^{h_2} P_{k_1, h_1} P_{k_2, h_2}.$$

So we can build up a table of these values, with a suitable geometric sequence of k_1 s and all values of h_1 , to compute $P_{K,n}$ in $O(n^2 \log K)$ time.

Example

We can write

$$P_{K,n} := \sum_{z_1^n} p_{\hat{\theta}(z_1^n)}(z_1^n) = \sum_{h_1 + \dots + h_K = n} \frac{n!}{h_1! \cdots h_K!} \prod_{v=1}^K \left(\frac{h_v}{n}\right)^{h_v}.$$

But we can split this sum: for any $k_1 + k_2 = K$,

$$P_{K,n} = \sum_{h_1,h_2,\dots,h_n} \frac{n!}{h_1!h_2!} \left(\frac{h_1}{n}\right)^{h_1} \left(\frac{h_2}{n}\right)^{h_2} P_{k_1,h_1} P_{k_2,h_2}.$$

So we can build up a table of these values, with a suitable geometric sequence of k_1 s and all values of h_1 , to compute $P_{K,n}$ in $O(n^2 \log K)$ time.

[Kontkanen, Buntine, Myllymäki, Rissanen, Tirri, 2003]

$$\begin{split} p_{nml}^{(n)}(y_1\cdots y_n) &\propto \sup_{\theta \in \Theta} p_{\theta}(y_1^n) \\ p_{nml}^{(n)}(y_t|y_1\cdots y_{t-1}) &= \frac{\int_{\mathcal{Y}^{n-t}} \sup_{\theta \in \Theta} p_{\theta}(y_1^t z_{t+1}^n) \, d\lambda^{n-t}(z_{t+1}^n)}{\int_{\mathcal{Y}^{n-t+1}} \sup_{\theta \in \Theta} p_{\theta}(y_1^{t-1} z_t^n) \, d\lambda^{n-t+1}(z_t^n)} \end{split}$$

NML

$$\begin{aligned} p_{nml}^{(n)}(y_1 \cdots y_n) &\propto \sup_{\theta \in \Theta} p_{\theta}(y_1^n) \\ p_{nml}^{(n)}(y_t|y_1 \cdots y_{t-1}) &= \frac{\int_{\mathcal{Y}^{n-t}} \sup_{\theta \in \Theta} p_{\theta}(y_1^t z_{t+1}^n) \, d\lambda^{n-t}(z_{t+1}^n)}{\int_{\mathcal{Y}^{n-t+1}} \sup_{\theta \in \Theta} p_{\theta}(y_1^{t-1} z_t^n) \, d\lambda^{n-t+1}(z_t^n)} \end{aligned}$$

• Computationally cheaper strategies:

$$\begin{split} \rho_{nml}^{(n)}(y_1\cdots y_n) &\propto \sup_{\theta\in\Theta} p_{\theta}(y_1^n) \\ \rho_{nml}^{(n)}(y_t|y_1\cdots y_{t-1}) &= \frac{\int_{\mathcal{Y}^{n-t}} \sup_{\theta\in\Theta} p_{\theta}(y_1^tz_{t+1}^n) \, d\lambda^{n-t}(z_{t+1}^n)}{\int_{\mathcal{Y}^{n-t+1}} \sup_{\theta\in\Theta} p_{\theta}(y_1^{t-1}z_t^n) \, d\lambda^{n-t+1}(z_t^n)} \end{split}$$

- Computationally cheaper strategies:
 - Horizon-independent NML ("Sequential NML")

$$\begin{aligned} p_{nml}^{(n)}(y_1 \cdots y_n) &\propto \sup_{\theta \in \Theta} p_{\theta}(y_1^n) \\ p_{nml}^{(n)}(y_t|y_1 \cdots y_{t-1}) &= \frac{\int_{\mathcal{Y}^{n-t}} \sup_{\theta \in \Theta} p_{\theta}(y_1^t z_{t+1}^n) \, d\lambda^{n-t}(z_{t+1}^n)}{\int_{\mathcal{Y}^{n-t+1}} \sup_{\theta \in \Theta} p_{\theta}(y_1^{t-1} z_t^n) \, d\lambda^{n-t+1}(z_t^n)} \end{aligned}$$

- Computationally cheaper strategies:
 - Horizon-independent NML ("Sequential NML")
 - Bayesian prediction

Outline

- Normalized maximum likelihood.
- Multinomials
- SNML: predicting like there's no tomorrow.
- Bayesian strategies.
- Optimality = exchangeability.

Sequential Normalized Maximum Likelihood (SNML)

Sequential Normalized Maximum Likelihood (SNML)

Pretend that this is the last prediction we'll ever make.

Sequential Normalized Maximum Likelihood (SNML)

$$p_{snml}(y_t|y_1^{t-1}) := p_{nml}^{(t)}(y_t|y_1^{t-1})$$

• Pretend that this is the last prediction we'll ever make.

Sequential Normalized Maximum Likelihood (SNML)

$$p_{\mathit{snml}}(y_t|y_1^{t-1}) := p_{\mathit{nml}}^{\textcolor{red}{(t)}}(y_t|y_1^{t-1}) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^t)$$

Pretend that this is the last prediction we'll ever make.

Sequential Normalized Maximum Likelihood (SNML)

$$p_{\mathit{snml}}(y_t|y_1^{t-1}) := p_{\mathit{nml}}^{\textcolor{red}{(t)}}(y_t|y_1^{t-1}) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^t)$$

- Pretend that this is the last prediction we'll ever make.
- Simpler conditional calculation.

Sequential Normalized Maximum Likelihood (SNML)

$$p_{snml}(y_t|y_1^{t-1}) := p_{nml}^{(t)}(y_t|y_1^{t-1}) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^t)$$

- Pretend that this is the last prediction we'll ever make.
- Simpler conditional calculation.
- Has asymptotically optimal regret.

[Roos and Rissanen, 2008], [Kotłowski and Grünwald, 2011]

Sequential Normalized Maximum Likelihood (SNML)

$$p_{\mathit{snml}}(y_t|y_1^{t-1}) = p_{\mathit{nml}}^{(t)}(y_t|y_1^{t-1}) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^t)$$

Sequential Normalized Maximum Likelihood (SNML)

$$p_{\mathit{snml}}(y_t|y_1^{t-1}) = p_{\mathit{nml}}^{(t)}(y_t|y_1^{t-1}) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^t)$$

Theorem

SNML is optimal iff p_{snml} is exchangeable.

Sequential Normalized Maximum Likelihood (SNML)

$$p_{snml}(y_t|y_1^{t-1}) = p_{nml}^{(t)}(y_t|y_1^{t-1}) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^t)$$

Theorem

SNML is optimal iff p_{snml} is exchangeable.

[Hedayati and B., 2016]

• p_{snml} is exchangeable means: for any n, any y_1^n , and any permutation σ on $\{1, \ldots, n\}$, $p_{snml}(y_1, \ldots, y_n) = p_{snml}(y_{\sigma(1)}, \ldots, y_{\sigma(n)})$.

Proof (\Leftarrow)

$\mathsf{Proof}\left(\Leftarrow\right)$

$$R(y_1^n, p_{snml})$$

$\mathsf{Proof}\ (\Leftarrow)$

$$R(y_1^n, p_{snml}) = \log \frac{p_{\hat{\theta}}(y_1^n)}{p_{snml}(y_1^n)},$$
 ($\hat{\theta}$ is maximum likelihood)

Proof (\Leftarrow)

$$R(y_1^n, p_{snml}) = \log rac{p_{\hat{ heta}}(y_1^n)}{p_{snml}(y_1^n)},$$
 ($\hat{ heta}$ is maximum likelihood) $p_{snml}(y_1^n) = p_{snml}(y_n|y_1^{n-1})p_{snml}(y_1^{n-1})$

Proof (\Leftarrow)

Proof (\Leftarrow)

SNML's regret doesn't depend on the last observation.

SO

$$R(y_1^n, p_{snml}) = \log \frac{p_{snml}(y_1^{n-1})}{\int_{\mathcal{Y}} \sup_{\theta} p_{\theta}(y_1^{n-1}, z) \, d\lambda(z)}.$$

Proof (\Leftarrow)

② If SNML is exchangeable, then its regret is permutation-invariant:

$$R(y_1^n, p_{snml}) = \log \frac{\prod_{t=1}^n p_{\hat{\theta}}(y_t)}{p_{snml}(y_1^n)}.$$

Proof (\Leftarrow)

If SNML is exchangeable, then its regret is permutation-invariant:

$$R(y_1^n, p_{snml}) = \log \frac{\prod_{t=1}^n p_{\hat{\theta}}(y_t)}{p_{snml}(y_1^n)}.$$

$$R(y_1,\ldots,y_{n-1},y_n;p_{snml})$$

Proof (\Leftarrow)

If SNML is exchangeable, then its regret is permutation-invariant:

$$R(y_1^n, p_{snml}) = \log \frac{\prod_{t=1}^n p_{\hat{\theta}}(y_t)}{p_{snml}(y_1^n)}.$$

$$R(y_1, \ldots, y_{n-1}, y_n; p_{snml}) = R(y_1, \ldots, y_{n-1}, \tilde{y}_1; p_{snml})$$

Proof (\Leftarrow)

1 If SNML is exchangeable, then its regret is permutation-invariant:

$$R(y_1^n, p_{snml}) = \log \frac{\prod_{t=1}^n p_{\hat{\theta}}(y_t)}{p_{snml}(y_1^n)}.$$

$$R(y_1, ..., y_{n-1}, y_n; p_{snml}) = R(y_1, ..., y_{n-1}, \tilde{y}_1; p_{snml})$$

= $R(\tilde{y}_1, ..., y_{n-1}, y_1; p_{snml})$

Proof (\Leftarrow)

• If SNML is exchangeable, then its regret is permutation-invariant:

$$R(y_1^n, p_{snml}) = \log \frac{\prod_{t=1}^n p_{\hat{\theta}}(y_t)}{p_{snml}(y_1^n)}.$$

$$R(y_1, \dots, y_{n-1}, y_n; p_{snml}) = R(y_1, \dots, y_{n-1}, \tilde{y}_1; p_{snml})$$

$$= R(\tilde{y}_1, \dots, y_{n-1}, y_1; p_{snml})$$

$$\vdots$$

$$= R(\tilde{y}_1, \dots, \tilde{y}_{n-1}, \tilde{y}_n; p_{snml}).$$

Proof (\Leftarrow)

If SNML is exchangeable, then its regret is permutation-invariant:

$$R(y_1^n, p_{snml}) = \log \frac{\prod_{t=1}^n p_{\hat{\theta}}(y_t)}{p_{snml}(y_1^n)}.$$

In that case, SNML's regret is independent of observations:

$$R(y_1, \dots, y_{n-1}, y_n; p_{snml}) = R(y_1, \dots, y_{n-1}, \tilde{y}_1; p_{snml})$$

$$= R(\tilde{y}_1, \dots, y_{n-1}, y_1; p_{snml})$$

$$\vdots$$

$$= R(\tilde{y}_1, \dots, \tilde{y}_{n-1}, \tilde{y}_n; p_{snml}).$$

So if SNML is exchangeable, then it is an equalizer,

Proof (\Leftarrow)

If SNML is exchangeable, then its regret is permutation-invariant:

$$R(y_1^n, p_{snml}) = \log \frac{\prod_{t=1}^n p_{\hat{\theta}}(y_t)}{p_{snml}(y_1^n)}.$$

In that case, SNML's regret is independent of observations:

$$R(y_1, \dots, y_{n-1}, y_n; p_{snml}) = R(y_1, \dots, y_{n-1}, \tilde{y}_1; p_{snml})$$

$$= R(\tilde{y}_1, \dots, y_{n-1}, y_1; p_{snml})$$

$$\vdots$$

$$= R(\tilde{y}_1, \dots, \tilde{y}_{n-1}, \tilde{y}_n; p_{snml}).$$

So if SNML is exchangeable, then it is an equalizer, and so it is the same as NML.

Proof (\Rightarrow)

• $p_{nml}^{(n)}(y_1^n)$ is permutation-invariant:

$$p_{nml}^{(n)}(y_1^n) \propto \sup_{\theta \in \Theta} \prod_{t=1}^n p_{\theta}(y_t).$$

Sequential Normalized Maximum Likelihood (SNML)

$$p_{\mathit{snml}}(y_t|y_1^{t-1}) = p_{\mathit{nml}}^{(t)}(y_t|y_1^{t-1}) \propto \sup_{\theta \in \Theta} p_{\theta}(y_1^t)$$

Theorem

SNML is optimal iff p_{snml} is exchangeable.

Outline

- Normalized maximum likelihood.
- Multinomials
- SNML: predicting like there's no tomorrow.
- Bayesian strategies.
- Optimality = exchangeability.

Bayesian strategies

For prior π on Θ :

$$ho_\pi(y_1^t) = \int_{ heta \in \Theta}
ho_ heta(y_1^t) \, d\pi(heta)$$

Bayesian strategies

For prior π on Θ :

$$p_\pi(y_1^t) = \int_{ heta \in \Theta} p_ heta(y_1^t) \, d\pi(heta)$$

• Sequential update to prior.

Bayesian strategies

For prior π on Θ :

$$egin{aligned} p_\pi(y_1^t) &= \int_{ heta \in \Theta} p_ heta(y_1^t) \, d\pi(heta) \ p_\pi(heta|y_1^t) \propto p_\pi(heta|y_1^{t-1}) p_ heta(y_t). \end{aligned}$$

• Sequential update to prior.

Bayesian strategies

For prior π on Θ :

$$egin{aligned} p_\pi(y_1^t) &= \int_{ heta \in \Theta} p_ heta(y_1^t) \, d\pi(heta) \ p_\pi(heta|y_1^t) \propto p_\pi(heta|y_1^{t-1}) p_ heta(y_t). \end{aligned}$$

- Sequential update to prior.
- Consider Jeffreys prior:

$$\pi(\theta) \propto \sqrt{|I(\theta)|},$$

$$I(\theta) = \operatorname{Cov}(\nabla_{\theta} \ln p_{\theta}(X)). \qquad (x \sim p_{\theta})$$

Bayesian strategies

For prior π on Θ :

$$egin{aligned} p_\pi(y_1^t) &= \int_{ heta \in \Theta} p_ heta(y_1^t) \, d\pi(heta) \ p_\pi(heta|y_1^t) \propto p_\pi(heta|y_1^{t-1}) p_ heta(y_t). \end{aligned}$$

- Sequential update to prior.
- Consider Jeffreys prior:

$$\pi(\theta) \propto \sqrt{|I(\theta)|},$$
 $I(\theta) = \operatorname{Cov}(\nabla_{\theta} \ln p_{\theta}(X)).$
 $(x \sim p_{\theta})$

Attractive properties (e.g., invariant to parameterization).

Bayesian strategies

For prior π on Θ :

$$egin{aligned} p_\pi(y_1^t) &= \int_{ heta \in \Theta} p_ heta(y_1^t) \, d\pi(heta) \ p_\pi(heta|y_1^t) \propto p_\pi(heta|y_1^{t-1}) p_ heta(y_t). \end{aligned}$$

- Sequential update to prior.
- Consider Jeffreys prior:

$$\pi(\theta) \propto \sqrt{|I(\theta)|},$$
 $I(\theta) = \operatorname{Cov}\left(\nabla_{\theta} \ln p_{\theta}(X)\right).$
 $(x \sim p_{\theta})$

- Attractive properties (e.g., invariant to parameterization).
- Asymptotically optimal regret for exponential families.

[Clarke and Barron, 1990, 1994]

Optimality [Hedayati and B., 2016]

Optimality [Hedayati and B., 2016]

- \bullet NML = SNML.
- $oldsymbol{o}$ p_{snml} exchangeable.

Optimality [Hedayati and B., 2016]

- \bullet NML = SNML.
- p_{snml} exchangeable.
- NML = Bayesian.

Optimality [Hedayati and B., 2016]

- \bullet NML = SNML.
- $oldsymbol{o}$ p_{snml} exchangeable.
- NML = Bayesian.
- NML = Bayesian with Jeffreys prior.

Optimality

[Hedayati and B., 2016]

- \bullet NML = SNML.
- $oldsymbol{o}$ p_{snml} exchangeable.
- NML = Bayesian.
- NML = Bayesian with Jeffreys prior.
- \odot SNML = Bayesian.

Optimality

[Hedayati and B., 2016]

- \bullet NML = SNML.
- $oldsymbol{o}$ p_{snml} exchangeable.
- NML = Bayesian.
- NML = Bayesian with Jeffreys prior.
- SNML = Bayesian.
- **o** SNML = Bayesian with Jeffreys prior.

Optimality [Hedayati and B., 2016]

- \bullet NML = SNML.
- p_{snml} exchangeable.
- NML = Bayesian.
- NML = Bayesian with Jeffreys prior.
- SNML = Bayesian.
- SNML = Bayesian with Jeffreys prior.
 - If we can ignore the time horizon and be optimal, that's the same as Bayesian prediction with Jeffreys prior.

Optimality

[Hedayati and B., 2016]

- \bullet NML = SNML.
- $oldsymbol{o}$ p_{snml} exchangeable.
- NML = Bayesian.
- NML = Bayesian with Jeffreys prior.
- SNML = Bayesian.
- SNML = Bayesian with Jeffreys prior.
- If we can ignore the time horizon and be optimal, that's the same as Bayesian prediction with Jeffreys prior.
- If any Bayesian strategy is optimal, it uses Jeffreys prior.

Optimality

[Hedayati and B., 2016]

- \bullet NML = SNML.
- $oldsymbol{o}$ p_{snml} exchangeable.
- NML = Bayesian.
- NML = Bayesian with Jeffreys prior.
- \odot SNML = Bayesian.
- SNML = Bayesian with Jeffreys prior.
- If we can ignore the time horizon and be optimal, that's the same as Bayesian prediction with Jeffreys prior.
- If any Bayesian strategy is optimal, it uses Jeffreys prior.
- Why?

Optimality

[Hedayati and B., 2016]

- \bullet NML = SNML.
- $oldsymbol{o}$ p_{snml} exchangeable.
- NML = Bayesian.
- NML = Bayesian with Jeffreys prior.
- \odot SNML = Bayesian.
- SNML = Bayesian with Jeffreys prior.
 - If we can ignore the time horizon and be optimal, that's the same as Bayesian prediction with Jeffreys prior.
 - If any Bayesian strategy is optimal, it uses Jeffreys prior.
- Why? If NML=SNML, then we can consider long time horizons, so the asymptotics emerge.

Optimality [Hedayati and B., 2016]

For regular p_{θ} (asymptotically normal maximum likelihood estimator, Fisher information well-behaved, integrals exist), the following are equivalent:

- \bullet NML = SNML.
- p_{snml} exchangeable.
- NML = Bayesian.
- NML = Bayesian with Jeffreys prior.
- SNML = Bayesian.
- **o** SNML = Bayesian with Jeffreys prior.

Jeffreys prior is the only candidate.

- If we can ignore the time horizon and be optimal, that's the same as Bayesian prediction with Jeffreys prior.
- If any Bayesian strategy is optimal, it uses Jeffreys prior.
- Why? If NML=SNML, then we can consider long time horizons, so the asymptotics emerge. Asymptotic normality of the MLE implies

```
Examples [B., Grünwald, Harremoës, Hedayati, Kotłowski, 2013]
```

Examples

[B., Grünwald, Harremoës, Hedayati, Kotłowski, 2013]

One-dimensional exponential families:

$$p_{\theta}(y) = h(y) \exp(\theta y - A(\theta)).$$

Examples

[B., Grünwald, Harremoës, Hedayati, Kotłowski, 2013]

One-dimensional exponential families:

$$p_{\theta}(y) = h(y) \exp(\theta y - A(\theta)).$$

ullet p_{SNML} is exchangeable (i.e., SNML optimal, Bayesian optimal) \Leftrightarrow

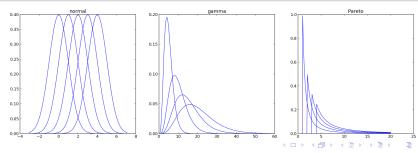
Examples

[B., Grünwald, Harremoës, Hedayati, Kotłowski, 2013]

One-dimensional exponential families:

$$p_{\theta}(y) = h(y) \exp(\theta y - A(\theta)).$$

- ullet p_{SNML} is exchangeable (i.e., SNML optimal, Bayesian optimal) \Leftrightarrow
 - **1** Gaussian distributions with fixed variance $\sigma^2 > 0$,



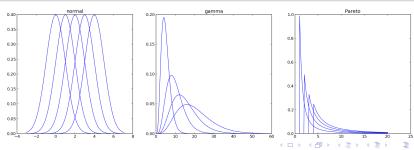
Examples

[B., Grünwald, Harremoës, Hedayati, Kotłowski, 2013]

• One-dimensional exponential families:

$$p_{\theta}(y) = h(y) \exp(\theta y - A(\theta)).$$

- p_{SNML} is exchangeable (i.e., SNML optimal, Bayesian optimal) ⇔
 - Gaussian distributions with fixed variance $\sigma^2 > 0$,
 - 2 gamma distributions with fixed shape k > 0,



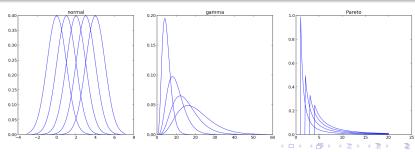
Examples

[B., Grünwald, Harremoës, Hedayati, Kotłowski, 2013]

• One-dimensional exponential families:

$$p_{\theta}(y) = h(y) \exp(\theta y - A(\theta)).$$

- p_{SNML} is exchangeable (i.e., SNML optimal, Bayesian optimal) ⇔
 - **1** Gaussian distributions with fixed variance $\sigma^2 > 0$,
 - 2 gamma distributions with fixed shape k > 0,
 - Tweedie exponential family of order 3/2,



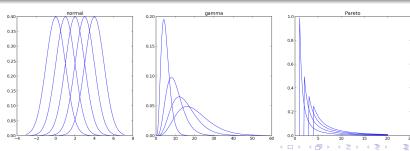
Examples

[B., Grünwald, Harremoës, Hedayati, Kotłowski, 2013]

One-dimensional exponential families:

$$p_{\theta}(y) = h(y) \exp(\theta y - A(\theta)).$$

- p_{SNML} is exchangeable (i.e., SNML optimal, Bayesian optimal) ⇔
 - **1** Gaussian distributions with fixed variance $\sigma^2 > 0$,
 - 2 gamma distributions with fixed shape k > 0,
 - Tweedie exponential family of order 3/2,
 - Or smooth transformations.



Outline

- Normalized maximum likelihood.
- Multinomials
- SNML: predicting like there's no tomorrow.
- Bayesian strategies.
- Optimality = exchangeability.